Fat and Thin Points for Tensor Decomposition [A. Bernardi]

Alessandra Bernardi

University of Trento, Italy
Research Station on Commutative Algebra June 13-17, 2016, Seoul.

FAT PART

Linear and Multilinear algebra Tensor decomposition

V_{1}, \ldots, V_{k} finite dimensional vector spaces over $\mathbb{C},(\mathbb{R})$

$$
\begin{gather*}
F \in V_{1} \otimes \cdots \otimes V_{k} \\
F=\sum_{i=1}^{r} \lambda_{i} v_{1, i} \otimes \cdots \otimes v_{k, i}, \tag{1}
\end{gather*}
$$

$v_{j, i} \in V_{i}, \lambda_{i} \in \mathbb{C}$.
$v_{1, i} \otimes \cdots \otimes v_{k, i}$ rank one element.

Definition

The minimum r s.t. F can be written as in (1) is the rank of F.

Linear and Multilinear algebra Structured Tensor decomposition

One can ask to F and to its decomposition to have certain structure:

Linear and Multilinear algebra Structured Tensor decomposition

One can ask to F and to its decomposition to have certain structure:

- $F \in S^{d} V, F=\sum_{i=1}^{r} \lambda_{i} v_{i}^{\otimes d}$,

Linear and Multilinear algebra Structured Tensor decomposition

One can ask to F and to its decomposition to have certain structure:

- $F \in S^{d} V, F=\sum_{i=1}^{r} \lambda_{i} v_{i}^{\otimes d}$,
i.e. $F \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{d}, F=\sum_{i=1}^{r} \lambda_{i} L_{i}^{d}$ with L_{i} linear forms

Linear and Multilinear algebra Structured Tensor decomposition

One can ask to F and to its decomposition to have certain structure:

- $F \in S^{d} V, F=\sum_{i=1}^{r} \lambda_{i} v_{i}^{\otimes d}$,
i.e. $F \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{d}, F=\sum_{i=1}^{r} \lambda_{i} L_{i}^{d}$ with L_{i} linear forms
- $F \in \Lambda^{d} \vee, F=\sum_{i=1}^{r} \lambda_{i} v_{1, i} \wedge \cdots \wedge v_{d, i}$,

Linear and Multilinear algebra Structured Tensor decomposition

One can ask to F and to its decomposition to have certain structure:

- $F \in S^{d} V, F=\sum_{i=1}^{r} \lambda_{i} v_{i}^{\otimes d}$,
i.e. $F \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{d}, F=\sum_{i=1}^{r} \lambda_{i} L_{i}^{d}$ with L_{i} linear forms
- $F \in \Lambda^{d} \vee, F=\sum_{i=1}^{r} \lambda_{i} v_{1, i} \wedge \cdots \wedge v_{d, i}$,
- $F \in S^{d_{1}} V_{1} \otimes \cdots \otimes S^{d_{k}} V_{k}, F=\sum_{i=1}^{r} \lambda_{i} v_{1, i}^{d_{1}} \otimes \cdots \otimes v_{k, i}^{d_{k}}$
- ...

Rank of the generic element

Problem (Big Waring Problem)

F generic in $S^{d} V^{*}=K\left[x_{0}, \ldots, x_{n}\right]_{d}$, find the minimum r s.t.
$F=\sum_{i=1}^{r} \lambda_{i} L_{i}^{d}$ with L_{i} linear forms.
$X_{n, d}=\left\{\left[L^{d}\right] \mid L \in S^{1} V^{*}\right\}=\left\{\left[v^{\otimes d}\right] \mid v \in V\right\} \subset \mathbb{P}\left(S^{d} V^{*}\right)$ Veronese

$\sigma_{r}\left(X_{n, d}\right):=\overline{\bigcup_{\left[L_{1}^{d}\right], \ldots,\left[L_{r}^{d}\right] \in X_{n, d}}\left\langle\left[L_{1}^{d}\right], \ldots,\left[L_{r}^{d}\right]\right\rangle}$
$\operatorname{expdim}\left(\sigma_{r}\left(X_{n, d}\right)\right)=\min \left\{r n+r-1,\binom{n+d}{d}-1\right\},[A, H$ ' 99$]$

Rank of the generic element

Problem (Big Waring Problem)

F generic in $S^{d} V^{*}=K\left[x_{0}, \ldots, x_{n}\right]_{d}$, find the minimum r s.t.
$F=\sum_{i=1}^{r} \lambda_{i} L_{i}^{d}$ with L_{i} linear forms.
$X_{n, d}=\left\{\left[L^{d}\right] \mid L \in S^{1} V^{*}\right\}=\left\{\left[v^{\otimes d}\right] \mid v \in V\right\} \subset \mathbb{P}\left(S^{d} V^{*}\right)$ Veronese

$\sigma_{r}\left(X_{n, d}\right):=\overline{\bigcup_{\left[L_{1}^{d}\right], \ldots,\left[L_{r}^{d}\right] \in X_{n, d}}\left\langle\left[L_{1}^{d}\right], \ldots,\left[L_{r}^{d}\right]\right\rangle}$
$\operatorname{expdim}\left(\sigma_{r}\left(X_{n, d}\right)\right)=\min \left\{r n+r-1,\binom{n+d}{d}-1\right\}$,

Rank of the generic element

Problem (Big Waring Problem)

F generic in $S^{d} V^{*}=K\left[x_{0}, \ldots, x_{n}\right]_{d}$, find the minimum r s.t.
$F=\sum_{i=1}^{r} \lambda_{i} L_{i}^{d}$ with L_{i} linear forms.
$X_{n, d}=\left\{\left[L^{d}\right] \mid L \in S^{1} V^{*}\right\}=\left\{\left[v^{\otimes d}\right] \mid v \in V\right\} \subset \mathbb{P}\left(S^{d} V^{*}\right)$ Veronese

$\sigma_{r}\left(X_{n, d}\right):=\overline{\bigcup_{\left[L_{1}^{d}\right], \ldots,\left[L_{r}^{d}\right] \in X_{n, d}}\left\langle\left[L_{1}^{d}\right], \ldots,\left[L_{r}^{d}\right]\right\rangle}$
$\operatorname{expdim}\left(\sigma_{r}\left(X_{n, d}\right)\right)=\min \left\{r n+r-1,\binom{n+d}{d}-1\right\},[A, H$ '99]

Rank of the generic element [Alexander, Hirschowitz '99]

$$
\operatorname{dim}\left(\sigma_{r}\left(X_{n, d}\right)\right)+1=\operatorname{dim} T_{Q}\left(\sigma_{r}\left(X_{n, d}\right)\right)
$$

Rank of the generic element [Alexander, Hirschowitz '99]

$$
\begin{aligned}
& \operatorname{dim}\left(\sigma_{r}\left(X_{n, d}\right)\right)+1=\operatorname{dim} T_{Q}\left(\sigma_{r}\left(X_{n, d}\right)\right) \\
& \stackrel{\text { Terracini }}{=} \operatorname{dim}\left\langle T_{L_{1}^{d}}\left(X_{n, d}\right), \ldots, T_{L_{r}^{d}}\left(X_{n, d}\right)\right\rangle
\end{aligned}
$$

Rank of the generic element [Alexander, Hirschowitz '99]

$$
\begin{aligned}
& \operatorname{dim}\left(\sigma_{r}\left(X_{n, d}\right)\right)+1=\operatorname{dim} T_{Q}\left(\sigma_{r}\left(X_{n, d}\right)\right) \\
& \stackrel{\text { Terracini }}{=} \operatorname{dim}\left\langle T_{L_{1}^{d}}\left(X_{n, d}\right), \ldots, T_{L_{r}^{d}}\left(X_{n, d}\right)\right\rangle \\
& =\operatorname{codim}\left\langle T_{L_{1}^{d}}\left(X_{n, d}\right), \ldots, T_{L_{r}^{d}}\left(X_{n, d}\right)\right\rangle^{\perp}
\end{aligned}
$$

Rank of the generic element [Alexander, Hirschowitz '99]

$$
\begin{aligned}
& \operatorname{dim}\left(\sigma_{r}\left(X_{n, d}\right)\right)+1=\operatorname{dim} T_{Q}\left(\sigma_{r}\left(X_{n, d}\right)\right) \\
& \stackrel{\text { Terracini }}{=} \operatorname{dim}\left\langle T_{L_{1}^{d}}\left(X_{n, d}\right), \ldots, T_{L_{r}^{d}}\left(X_{n, d}\right)\right\rangle \\
& =\operatorname{codim}\left\langle T_{L_{1}^{d}}\left(X_{n, d}\right), \ldots, T_{L_{r}^{d}}\left(X_{n, d}\right)\right\rangle \perp
\end{aligned}
$$

Apolarity

Apolarity for symmetric tensors (Veronese): $S=K\left[x_{0}, \ldots, x_{n}\right], T=K\left[y_{0}, \ldots, y_{n}\right]$

$$
y^{\alpha}\left(x^{[\beta]}\right)= \begin{cases}x^{[\beta-\alpha]} & \text { if } \beta \geq \alpha \\ 0 & \text { otherwise }\end{cases}
$$

Rank of the generic element [Alexander, Hirschowitz '99]

$$
\begin{gathered}
\operatorname{dim}\left(\sigma_{r}\left(X_{n, d}\right)\right)+1=\operatorname{dim} T_{Q}\left(\sigma_{r}\left(X_{n, d}\right)\right) \\
\stackrel{\operatorname{Terracini}}{=} \operatorname{dim}\left\langle T_{L_{1}^{d}}\left(X_{n, d}\right), \ldots, T_{L_{r}^{d}}\left(X_{n, d}\right)\right\rangle \\
=\operatorname{codim}\left\langle T_{L_{1}^{d}}\left(X_{n, d}\right), \ldots, T_{L_{r}^{d}}\left(X_{n, d}\right)\right\rangle^{\perp} \\
=\operatorname{dim} I(Z)_{d}=H(I(Z), d) \text { with } Z=\wp_{1}^{2} \cap \cdots \cap \wp_{r}^{2}
\end{gathered}
$$

Rank of the generic element [Alexander, Hirschowitz '99]

Theorem (Alexander-Hirschowitz)

$H\left(K\left[x_{0}, \ldots, x_{n}\right] / \wp_{1}^{2} \cap \cdots \cap \wp_{s}^{2}, d\right)\left(\right.$ or $\operatorname{dim}\left(\sigma_{s}\left(\nu_{d}\left(\mathbb{P}^{n}\right)\right)\right)$) is as expected except for:

- $d=2, n \geq 2, s \leq n$;
- $d=3, n=4, s=7,(\delta=1)$;
- $d=4, n=2, s=5,(\delta=1)$;
- $d=4, n=3, s=9,(\delta=2)$;
- $d=4, n=4, s=14,(\delta=1)$.

The technique used by Alexander and Hirschowitz to compute the dimension of secant varieties of Veronese varieties is mainly the Horace method via induction.

Rank of the generic element [Alexander, Hirschowitz '99]

Theorem (Alexander-Hirschowitz)

$H\left(K\left[x_{0}, \ldots, x_{n}\right] / \wp_{1}^{2} \cap \cdots \cap \wp_{s}^{2}, d\right)\left(\right.$ or $\operatorname{dim}\left(\sigma_{s}\left(\nu_{d}\left(\mathbb{P}^{n}\right)\right)\right)$) is as expected except for:

- $d=2, n \geq 2, s \leq n$;
- $d=3, n=4, s=7,(\delta=1)$;
- $d=4, n=2, s=5,(\delta=1)$;
- $d=4, n=3, s=9,(\delta=2)$;
- $d=4, n=4, s=14,(\delta=1)$.

The technique used by Alexander and Hirschowitz to compute the dimension of secant varieties of Veronese varieties is mainly the Horace method via induction.

More than one Fat Point

Example

$P_{1}, P_{2} \in \mathbb{P}^{2}, P_{i} \leftrightarrow \wp_{i}, I=\wp_{1}^{2} \cap \wp_{2}^{2}$. Is the Hilbert function of I equal to the Hilbert function of 6 points of \mathbb{P}^{2} in general position? No: the Hilbert function of 6 general points of \mathbb{P}^{2} is $[1,3,6,6 \ldots]$ and this would mean that I does not contain conics, but..........

More than one Fat Point

Example

$P_{1}, P_{2} \in \mathbb{P}^{2}, P_{i} \leftrightarrow \wp_{i}, I=\wp_{1}^{2} \cap \wp_{2}^{2}$. Is the Hilbert function of I equal to the Hilbert function of 6 points of \mathbb{P}^{2} in general position? No: the Hilbert function of 6 general points of \mathbb{P}^{2} is $[1,3,6,6 \ldots]$ and this would mean that $/$ does not contain conics, but this is false because the double line through P_{1} and P_{2} is contained in I.

SHGH Conjecture

Conjecture (Segre, 1961)

If $\mathcal{L}_{2, d}\left(-\sum_{i=1}^{s} m_{i} P_{i}\right)$ is a special linear system, then there is a fixed double component for all curves through the scheme defined by $\wp_{1}^{\alpha_{1}} \cap \cdots \cap \wp_{s}^{\alpha_{s}}$.

Conjecture (Gimigliano, 1987)

For the linear system $\mathcal{L}_{2, d}\left(-\sum_{i=1}^{s} m_{i} P_{i}\right)$ one has the following possibilities:
(1) the system is non-special and its general member is irreducible;
(2) the system is non-special, its general member is non-reduced, reducible, its fixed components are all rational curves, except for at most one (this may occur only if the system has dimension 0), and the general member of its movable part is either irreducible or composed of rational curves in a pencil;
(3) the system is non-special of dimension 0 and consists of a unique multiple elliptic curve;
(4) the system is special and it has some multiple rational curve as a fixed component.

SHGH Conjecture

This problem is related to the question of what self-intersections occur for reduced irreducible curves on the surface X_{s} obtained by blowing up the projective plane at the s points.

```
Blowing up the points introduces rational curves (infinitely many when
s>8) of self-intersection -1
Each curve C\subset Xs corresponds to a curve DC\subset 鋃 of some degree d
vanishing to orders m}\mp@subsup{m}{i}{}\mathrm{ at the s points:
```


the self-intersection $C^{2}=d^{2}-m_{1}^{2}$

SHGH Conjecture

This problem is related to the question of what self-intersections occur for reduced irreducible curves on the surface X_{s} obtained by blowing up the projective plane at the s points.
Blowing up the points introduces rational curves (infinitely many when $s>8$) of self-intersection -1 .
Each curve $C \subset X_{s}$ corresponds to a curve $D_{C} \subset \mathbb{P}^{2}$ of some degree d vanishing to orders m_{i} at the s points:

the self-intersection $C^{2}=d^{2}-m_{1}^{2}-\cdots-m_{n}^{2}$.

SHGH Conjecture

This problem is related to the question of what self-intersections occur for reduced irreducible curves on the surface X_{s} obtained by blowing up the projective plane at the s points.
Blowing up the points introduces rational curves (infinitely many when $s>8$) of self-intersection -1 .
Each curve $C \subset X_{s}$ corresponds to a curve $D_{C} \subset \mathbb{P}^{2}$ of some degree d vanishing to orders m_{i} at the s points:

$$
\begin{gathered}
X_{s} \rightarrow \mathbb{P}^{2} \\
C \mapsto D_{C}
\end{gathered}
$$

the self-intersection $C^{2}=d^{2}-m_{1}^{2}-\cdots-m_{n}^{2}$.

SHGH Conjecture

Example

An example of a curve D_{C} corresponding to a curve C s.t. $C^{2}=-1$ on X_{s} is the line through two of the points; in this case, $d=1, m_{1}=m_{2}=1$ and $m_{i}=0$ for $i>2$, so we have $d^{2}-m_{1}^{2}-m_{2}^{2}=1-1-1=-1$.

According to the (SHGH) Conjecture, these (-1)-curves should be the only reduced irreducible curves of negative self-intersection
but proving that there are no others turns out to be itself very hard and is still open.

SHGH Conjecture

Example

An example of a curve D_{C} corresponding to a curve C s.t. $C^{2}=-1$ on X_{s} is the line through two of the points; in this case, $d=1, m_{1}=m_{2}=1$ and $m_{i}=0$ for $i>2$, so we have $d^{2}-m_{1}^{2}-m_{2}^{2}=1-1-1=-1$.

According to the (SHGH) Conjecture, these (-1)-curves should be the only reduced irreducible curves of negative self-intersection
but proving that there are no others turns out to be itself very hard and is still open.

SHGH Conjecture

Blow-up $\pi: \widetilde{\mathbb{P}}^{2} \longrightarrow \mathbb{P}^{2}$ at P_{1}, \ldots, P_{s}. Let E_{1}, \ldots, E_{s} be the exceptional divisors and let H be the pull-back of a general line of \mathbb{P}^{2}. The strict transform of the system $\mathcal{L}:=\mathcal{L}_{2, d}\left(\sum_{i=1}^{s} m_{i} P_{i}\right)$ is the system $\widetilde{\mathcal{L}}=\left|d H-\sum_{i=1}^{s} m_{i} E_{i}\right|$.

Consider two linear systems $\mathcal{L}:=\mathcal{L}_{2, d}\left(\sum_{i=1}^{s} m_{i} P_{i}\right), \mathcal{L}^{\prime}:=\mathcal{L}_{2, d}\left(\sum_{i=1}^{s} m_{i}^{\prime} P_{i}\right)$.
Define intersection by using the intersection of their strict transforms on $\widetilde{\mathbb{P}}^{2}$:

$$
\mathcal{L} \cdot \mathcal{L}^{\prime}=\widetilde{\mathcal{L}} \cdot \widetilde{\mathcal{L}^{\prime}}=d d^{\prime}-\sum_{i=1}^{s} m_{i} m_{i}^{\prime} .
$$

Anticanonical class $-K:=-K_{\mathbb{\mathbb { N }}^{2}}^{2}$ of $\widetilde{\mathbb{P}}^{2}$ corresponding to the linear system $\mathcal{L}_{2,3}\left(-\sum_{i=1}^{s} P_{i}\right)$, which we also denote by $-K$. The adjunction formula gives arithmetic genus $p_{a}(\widetilde{\mathcal{L}})$ of a curve in $\widetilde{\mathcal{L}}$ is:
$p_{a}(\widetilde{\mathcal{L}})=\frac{\mathcal{L} \cdot(\mathcal{L}+K)}{2}+1=\binom{d-1}{2} \sum_{i=1}^{s}\binom{m_{i}}{2}$ which one defines to be $g_{\mathcal{L}}=$ the geometric genus of \mathcal{L}.

SHGH Conjecture

The theorem of Riemann-Roch then says that

$$
\begin{aligned}
& \operatorname{dim}(\mathcal{L})=\operatorname{dim}(\widetilde{\mathcal{L}})=\mathcal{L} \cdot(\mathcal{L}-K)+h^{1}\left(\widetilde{\mathbb{P}}^{2}, \widetilde{L}\right)-h^{2}\left(\widetilde{\mathbb{P}}^{2}, \widetilde{L}\right)= \\
& =\mathcal{L}^{2}-g_{\mathcal{L}}+1+h^{1}\left(\mathbb{P}^{2}, \widetilde{\mathcal{L}}\right)=\exp \operatorname{dim}(\mathcal{L})+h^{1}\left(\mathbb{P}^{2}, \widetilde{\mathcal{L}}\right)
\end{aligned}
$$

because clearly $h^{2}\left(\widetilde{\mathbb{P}}^{2}, \widetilde{\mathcal{L}}\right)=0$. Hence:
\mathcal{L} is non-special if and only if $h^{0}\left(\widetilde{\mathbb{P}}^{2}, \widetilde{\mathcal{L}}\right) \cdot h^{1}\left(\widetilde{\mathbb{P}}^{2}, \widetilde{\mathcal{L}}\right)=0$.

SHGH Conjecture

Now we can see how, in this setting, special systems naturally arise.
look for an irreducible curve C on \mathbb{P}^{2}, corresponding to a linear system \mathcal{L} on \mathbb{P}^{2}, which is expected to exist but (for ex) its double is not expected to exist. It translates in the following set of inequalities:

This system is equivalent to:

and it has the only solution:

which makes all the above inequalities equalities. Accordingly C is a rational curve, i.e. a curve of genus 0 , with self-intersection -1 . (i.e. (-1)-curves). A famous theorem of Castelnuovo's says that these are the only curves that can be contracted to smooth points via a birational morphism of the surface on which they lie to another surface. By abusing terminology the curve $\Gamma \subset \mathbb{P}^{2}$
corresponding to C is also called a (-1)-curve.

SHGH Conjecture

Now we can see how, in this setting, special systems naturally arise. Let us look for an irreducible curve C on $\widetilde{\mathbb{P}}^{2}$, corresponding to a linear system \mathcal{L} on \mathbb{P}^{2}, which is expected to exist but (for ex) its double is not expected to exist. translates in the following set of inequalities:

This system is equivalent to:

and it has the only solution:

which makes all the above inequalities equalities. Accordingly C is a rational curve, i.e. a curve of genus 0 , with self-intersection -1 . (i.e. (-1)-curves). A famous theorem of Castelnuovo's says that these are the only curves that can be contracted to smooth points via a birational morphism of the surface on which they lie to another surface. By abusing terminology the curve $\Gamma \subset \mathbb{P}^{2}$ corresponding to C is also called a (-1)-curve.

SHGH Conjecture

Now we can see how, in this setting, special systems naturally arise. Let us look for an irreducible curve C on $\widetilde{\mathbb{P}}^{2}$, corresponding to a linear system \mathcal{L} on \mathbb{P}^{2}, which is expected to exist but (for ex) its double is not expected to exist. It translates in the following set of inequalities:

$$
\left\{\begin{array}{l}
\exp \operatorname{dim}(\mathcal{L}) \geq 0 \\
g_{\mathcal{L}} \geq 0 \\
\exp \operatorname{dim}(2 \mathcal{L}) \leq-1
\end{array}\right.
$$

This system is equivalent to:

$$
\left\{\begin{array}{l}
C^{2}-C \cdot K \geq 0 \\
C^{2}+C \cdot K \geq-2 \\
2 C^{2}-C \cdot K \leq 0
\end{array}\right.
$$

and it has the only solution:

$$
C^{2}=C \cdot K=-1
$$

which makes all the above inequalities equalities. Accordingly C is a rational curve, i.e. a curve of genus 0 , with self-intersection -1 . (i.e. (-1)-curves).

SHGH Conjecture

Now we can see how, in this setting, special systems naturally arise. Let us look for an irreducible curve C on $\widetilde{\mathbb{P}}^{2}$, corresponding to a linear system \mathcal{L} on \mathbb{P}^{2}, which is expected to exist but (for ex) its double is not expected to exist. It translates in the following set of inequalities:

$$
\left\{\begin{array}{l}
\exp \operatorname{dim}(\mathcal{L}) \geq 0 \\
g_{\mathcal{L}} \geq 0 \\
\exp \operatorname{dim}(2 \mathcal{L}) \leq-1
\end{array}\right.
$$

This system is equivalent to:

$$
\left\{\begin{array}{l}
C^{2}-C \cdot K \geq 0 \\
C^{2}+C \cdot K \geq-2 \\
2 C^{2}-C \cdot K \leq 0
\end{array}\right.
$$

and it has the only solution:

$$
C^{2}=C \cdot K=-1
$$

which makes all the above inequalities equalities. Accordingly C is a rational curve, i.e. a curve of genus 0 , with self-intersection -1 . (i.e. (-1)-curves). A famous theorem of Castelnuovo's says that these are the only curves that can be contracted to smooth points via a birational morphism of the surface on which they lie to another surface. By abusing terminology the curve $\Gamma \subset \mathbb{P}^{2}$ corresponding to C is also called a (-1)-curve.

More than one Fat Point

Example

$H\left(K\left[x_{0}, \ldots, x_{n}\right] / \wp_{1}^{2} \cap \cdots \cap \wp_{s}^{2}, 2\right)$ is special if $s \leq n$. Actually, quadrics in \mathbb{P}^{n} singular at s independent points P_{1}, \ldots, P_{a} are cones with vertex the \mathbb{P}^{s-1} spanned by P_{1}, \ldots, P_{s}. Therefore the system is empty as soon as $s \geq n+1$, whereas, if $s \leq n$ one easily computes:

$$
\operatorname{dim}(\mathcal{L})=\exp \operatorname{dim}(\mathcal{L})+\binom{s}{2} .
$$

This corresponds to the fact that $\sigma_{s}\left(\nu_{2}\left(\mathbb{P}^{n}\right)\right)$ are defective for all $s \leq n$.

SHGH Conjecture

More generally, one has special linear systems in the following situation.

```
Let \mathcal{L}}\mathrm{ be a linear system on }\mp@subsup{\mathbb{P}}{}{2}\mathrm{ which is not empty, let C be a ( }-1\mathrm{ )-curve on
\widetilde{\mp@subsup{\mathbb{P}}{}{2}}\mathrm{ corresponding to a curve }\Gamma\mathrm{ on }\mp@subsup{\mathbb{P}}{}{2}\mathrm{ , such that }\widetilde{\mathcal{L}}\cdotC=-N<0.
```



```
Then \(C\) (resp. 「) splits off with multiplicity \(N\) as a fixed component from all curves of \(\mathcal{L}\) (resp. \(\mathcal{L})\), and one has:
\[
\widetilde{\mathcal{L}}=N C+\widetilde{\mathcal{M}},(\text { resp. } \mathcal{L}=N \Gamma+\mathcal{M})
\]
```

where $\mathcal{M}($ resp. $\mathcal{M})$ is the residual linear system.

SHGH Conjecture

More generally, one has special linear systems in the following situation.
Let \mathcal{L} be a linear system on \mathbb{P}^{2} which is not empty,
let C be a (-1)-curve on

Then C (resp. 「) splits off with multiplicity N as a fixed component from all curves of $\widetilde{\mathcal{L}}$ (resp. $\mathcal{L})$, and one has:

$$
\widetilde{\mathcal{L}}=N C+\widetilde{\mathcal{M}},(\text { resp. } \mathcal{L}=N \Gamma+\mathcal{M})
$$

where $\widetilde{\mathcal{M}}($ resp. $\mathcal{M})$ is the residual linear system.

SHGH Conjecture

More generally, one has special linear systems in the following situation. Let \mathcal{L} be a linear system on \mathbb{P}^{2} which is not empty, let C be a (-1)-curve on $\widetilde{\mathbb{P}^{2}}$ corresponding to a curve Γ on \mathbb{P}^{2}, such that $\widetilde{\mathcal{L}} \cdot C=-N<0$.

Then C (resp. 「) splits off with multiplicity N as a fixed component from all curves of $\widetilde{\mathcal{L}}$ (resp. $\mathcal{L})$, and one has:

$$
\widetilde{\mathcal{L}}=N C+\widetilde{\mathcal{M}},(\text { resp. } \mathcal{L}=N \Gamma+\mathcal{M})
$$

where $\widetilde{\mathcal{M}}($ resp. $\mathcal{M})$ is the residual linear system

More generally, one has special linear systems in the following situation. Let \mathcal{L} be a linear system on \mathbb{P}^{2} which is not empty, let C be a (-1)-curve on $\widetilde{\mathbb{P}^{2}}$ corresponding to a curve Γ on \mathbb{P}^{2}, such that $\widetilde{\mathcal{L}} \cdot C=-N<0$.

Then C (resp. Γ) splits off with multiplicity N as a fixed component from all curves of $\widetilde{\mathcal{L}}$ (resp. \mathcal{L}), and one has:

$$
\widetilde{\mathcal{L}}=N C+\widetilde{\mathcal{M}},(\text { resp. } \mathcal{L}=N \Gamma+\mathcal{M})
$$

where $\widetilde{\mathcal{M}}$ (resp. $\mathcal{M})$ is the residual linear system.

SHGH Conjecture

Then one computes:

$$
\operatorname{dim}(\mathcal{L})=\operatorname{dim}(\mathcal{M}) \geq \exp \operatorname{dim}(\mathcal{M})=\exp \operatorname{dim}(\mathcal{L})+\binom{N}{2}
$$

and therefore, if $N \geq 2$, then \mathcal{L} is special.
\square
Example
One immediately finds examples of special systems of this type by starting from the (-1)-curves of the previous example. For instance consider $\mathcal{L}:=\mathcal{L}_{2,2 d}\left(-\sum_{i=1}^{5} d P_{i}\right)$ which is not empty, consisting of the conic $\mathcal{L}_{2,2}\left(\sum_{i=1}^{d} P_{i}\right)$ counted d times, though it has virtual dimension $-\binom{d}{2}$

Then one computes:

$$
\operatorname{dim}(\mathcal{L})=\operatorname{dim}(\mathcal{M}) \geq \exp \operatorname{dim}(\mathcal{M})=\exp \operatorname{dim}(\mathcal{L})+\binom{N}{2}
$$

and therefore, if $N \geq 2$, then \mathcal{L} is special.

Example

One immediately finds examples of special systems of this type by starting from the (-1)-curves of the previous example. For instance consider $\mathcal{L}:=\mathcal{L}_{2,2 d}\left(-\sum_{i=1}^{5} d P_{i}\right)$ which is not empty, consisting of the conic $\mathcal{L}_{2,2}\left(\sum_{i=1}^{d} P_{i}\right)$ counted d times, though it has virtual dimension $-\binom{d}{2}$.

SHGH Conjecture

Even more generally, consider a linear system \mathcal{L} on \mathbb{P}^{2} not empty, C_{1}, \ldots, C_{k} some (-1)-curves on $\widetilde{\mathbb{P}}^{2}$ corresponding to curves $\Gamma_{1}, \ldots, \Gamma_{k}$ on \mathbb{P}^{2}, such that $\widetilde{\mathcal{L}} \cdot C_{i}=-N_{i}<0, i=1, \ldots, k$. Then:

and $\widetilde{M} \cdot C_{i}=0$, for $i=1, \ldots, k . \mathcal{L}$ is special if $N_{i} \geq 2$ for some i.

Furthermore $C_{i} \cdot C_{j}=\delta_{i, j}$, because the union of two (-1)-curves meeting moves, according to Riemann-Roch theorem, in a linear system of positive dimension on \mathbb{P}^{2}, and therefore it cannot be fixed for \mathcal{L}. The reducible curve $C:=\sum_{i=1}^{k} C_{i}\left(\right.$ resp $\left.. \Gamma:=\sum_{i=1}^{k} N_{i} \Gamma_{i}\right)$ is called a (-1)-configuration on \mathbb{P}^{2} resp

SHGH Conjecture

Even more generally, consider a linear system \mathcal{L} on \mathbb{P}^{2} not empty, C_{1}, \ldots, C_{k} some (-1)-curves on $\widetilde{\mathbb{P}}^{2}$ corresponding to curves $\Gamma_{1}, \ldots, \Gamma_{k}$ on \mathbb{P}^{2}, such that $\widetilde{\mathcal{L}} \cdot C_{i}=-N_{i}<0, i=1, \ldots, k$. Then:

$$
\mathcal{L}=\sum_{i=1}^{k} N_{i} \Gamma_{i}+\mathcal{M}, \widetilde{\mathcal{L}}=\sum_{i=1}^{k} N_{i} C_{i}+\widetilde{\mathcal{M}}
$$

and $\widetilde{\mathcal{M}} \cdot C_{i}=0$, for $i=1, \ldots, k . \mathcal{L}$ is special if $N_{i} \geq 2$ for some i.

Furthermore $C_{i} \cdot C_{j}=\delta_{i, j}$, because the union of two (-1)-curves meeting moves, according to Riemann-Roch theorem, in a linear system of positive dimension on \mathbb{P}^{2}, and therefore it cannot be fixed for \mathcal{L}. The reducible curve $C:=\sum_{i=1}^{k} C_{i}\left(\right.$ resp $\left.. \Gamma:=\sum_{i=1}^{k} N_{i} \Gamma_{i}\right)$ is called a (-1)-configuration on \mathbb{P}^{2}

SHGH Conjecture

Even more generally, consider a linear system \mathcal{L} on \mathbb{P}^{2} not empty, C_{1}, \ldots, C_{k} some (-1)-curves on $\widetilde{\mathbb{P}}^{2}$ corresponding to curves $\Gamma_{1}, \ldots, \Gamma_{k}$ on \mathbb{P}^{2}, such that $\widetilde{\mathcal{L}} \cdot C_{i}=-N_{i}<0, i=1, \ldots, k$. Then:

$$
\mathcal{L}=\sum_{i=1}^{k} N_{i} \Gamma_{i}+\mathcal{M}, \widetilde{\mathcal{L}}=\sum_{i=1}^{k} N_{i} C_{i}+\widetilde{\mathcal{M}}
$$

and $\widetilde{\mathcal{M}} \cdot C_{i}=0$, for $i=1, \ldots, k . \mathcal{L}$ is special if $N_{i} \geq 2$ for some i.

Furthermore $C_{i} \cdot C_{j}=\delta_{i, j}$, because the union of two (-1)-curves meeting moves, according to Riemann-Roch theorem, in a linear system of positive dimension on $\widetilde{\mathbb{P}}^{2}$, and therefore it cannot be fixed for $\widetilde{\mathcal{L}}$.

SHGH Conjecture

Even more generally, consider a linear system \mathcal{L} on \mathbb{P}^{2} not empty, C_{1}, , C_{k} some (- 1)-curves on $\widetilde{\mathbb{P}}^{2}$ corresponding to curves $\Gamma_{1}, \ldots, \Gamma_{k}$ on \mathbb{P}^{2}, such that $\widetilde{\mathcal{L}} \cdot C_{i}=-N_{i}<0, i=1, \ldots, k$. Then:

$$
\mathcal{L}=\sum_{i=1}^{k} N_{i} \Gamma_{i}+\mathcal{M}, \widetilde{\mathcal{L}}=\sum_{i=1}^{k} N_{i} C_{i}+\widetilde{\mathcal{M}}
$$

and $\widetilde{\mathcal{M}} \cdot C_{i}=0$, for $i=1, \ldots, k . \mathcal{L}$ is special if $N_{i} \geq 2$ for some i.

Furthermore $C_{i} \cdot C_{j}=\delta_{i, j}$, because the union of two (-1)-curves meeting moves, according to Riemann-Roch theorem, in a linear system of positive dimension on $\widetilde{\mathbb{P}}^{2}$, and therefore it cannot be fixed for $\widetilde{\mathcal{L}}$. The reducible curve $C:=\sum_{i=1}^{k} C_{i}\left(\right.$ resp. $\left.\Gamma:=\sum_{i=1}^{k} N_{i} \Gamma_{i}\right)$ is called a (-1)-configuration on $\widetilde{\mathbb{P}}^{2}$ (resp. on \mathbb{P}^{2}).

SHGH Conjecture

Definition

A linear system \mathcal{L} on \mathbb{P}^{2} is (-1)-reducible if $\widetilde{\mathcal{L}}=\sum_{i=1}^{k} N_{i} C_{i}+\widetilde{\mathcal{M}}$, where $C=\sum_{i=1}^{k} C_{i}$ is a (-1)-configuration, $\widetilde{\mathcal{M}} \cdot C_{i}=0$, for all $i=1, \ldots, k$, and virtualdim $(\mathcal{M}) \geq 0$.

The system \mathcal{L} is called (-1)-special if, in addition, there is an $i=1, \ldots, k$ such that $N_{i}>1$.

Conjecture (Harbourne 1986, - Hirschowitz, 1989)

A linear system of plane curves $\mathcal{L}_{2, d}\left(-\sum_{i=1}^{s} m_{i} P_{i}\right)$ with general multiple base points is

$$
\text { special if and only if it is }(-1) \text {-special, }
$$

i.e. it contains some multiple rational curve of self-intersection -1 in the base locus.

NO SPECIAL SYSTEM HAS BEEN DISCOVERED EXCEPT (-1)-SPECIAL SYSTEMS.

SHGH Conjecture

One could hope tho address a weaker version of this problem. Nagata, in connection with his negative solution of the 14-th Hilbert problem, made such a conjecture,

Conjecture (Nagata, 1960)
$\mathcal{L}_{2, d}\left(-\sum_{i=1}^{s} m_{i} P_{i}\right)$ is empty as soon as $s \geq 10$ and $d \leq \sqrt{s}$.
Nagata Conjecture is weaker than SHGH Conjecture yet still open for every non-square $s \geq 10$.

THIN PART

Rank and decomposition of the given element

- Find $\min r \in \mathbb{N}$ s.t. $[F] \in r$-secant space to $X_{n, d}$
- Find the minimal length of a 0 -dim'l smooth finite scheme $\Gamma \in \mathbb{P}\left(S_{1}\right)$ s.t. $T \in\left\langle\nu_{d}(\Gamma)\right\rangle$

Rank and decomposition of the given element

How to find the scheme Γ ?

$\operatorname{ker}\left(M_{d-k, k}\right):=\left(F^{\perp}\right)_{k}$ where $F^{\perp}=\{\varphi \in T \mid \varphi(F)=0\}=$ Apolar ideal
\square

Rank and decomposition of the given element

How to find the scheme Γ ?
APOLARITY

$$
M_{d-k, k}(F)
$$

$\operatorname{ker}\left(M_{d-k, k}\right):=\left(F^{\perp}\right)_{k}$ where $F^{\perp}=\{\varphi \in T \mid \varphi(F)=0\}=$ Apolar ideal
\square

Rank and decomposition of the given element

How to find the scheme Γ ?
APOLARITY

$$
M_{d-k, k}(F): \begin{array}{cl}
T^{k} V & \rightarrow S^{d-k} V \\
\frac{\partial^{k}}{\partial^{k} x_{1} \cdots \partial^{k} \partial_{n} x_{i_{h}}} & \mapsto \frac{\partial^{k}}{\partial^{k} x_{1} x_{i_{1}} \cdots \partial^{k} x_{x_{i n}}} F
\end{array}
$$

$\operatorname{ker}\left(M_{d-k, k}\right):=\left(F^{\perp}\right)_{k}$ where $F^{\perp}=\{\varphi \in T \mid \varphi(F)=0\}=$ Apolar ideal
\square

Rank and decomposition of the given element

How to find the scheme Γ ?
APOLARITY

$$
M_{d-k, k}(F): \begin{array}{ll}
T^{k} V & \rightarrow S^{d-k} V \\
\frac{\partial^{k}}{\partial^{k} x_{i_{1}} \cdots \partial^{k} x_{n} x_{i_{h}}} & \mapsto \frac{\partial^{k}}{\partial^{k} x_{i_{1}} \cdots \partial^{k} x_{x_{i n}}} F
\end{array}
$$

$$
\operatorname{ker}\left(M_{d-k, k}\right):=\left(F^{\perp}\right)_{k} \text { where } F^{\perp}=\{\varphi \in T \mid \varphi(F)=0\}=\text { Apolar ideal }
$$

Rank and decomposition of the given element

How to find the scheme Γ ?
APOLARITY

$$
M_{d-k, k}(F): \begin{array}{ll}
T^{k} V & \rightarrow S^{d-k} V \\
\frac{\partial^{k}}{\partial^{k} x_{i_{1}} \cdots \partial^{k} x_{n} x_{i_{h}}} & \mapsto \frac{\partial^{k}}{\partial^{k} x_{i_{1}} \cdots \partial^{k} x_{n} x_{i_{h}}} F
\end{array}
$$

$\operatorname{ker}\left(M_{d-k, k}\right):=\left(F^{\perp}\right)_{k}$ where $F^{\perp}=\{\varphi \in T \mid \varphi(F)=0\}=$ Apolar ideal
Lemma (Apolarity Lemma)
$\Gamma \subset \mathbb{P}\left(S_{1}\right)$ is apolar to $F\left(\right.$ i.e. $\left.I(\Gamma) \subset F^{\perp} \subset T\right)$ iff $[F] \in\left\langle\nu_{d}(\Gamma)\right\rangle$

Rank and decomposition of the given element [Ex: 2 vars]

$$
F \in S^{d} \mathbb{C}^{2}=\mathbb{C}\left[x_{0}, x_{1}\right]_{d}
$$

- $F \in \sigma_{r}\left(C_{d}\right)$? Equations of $\sigma_{r}\left(C_{d}\right)=(r \times r)$ minors of $M_{d-r, r}$
- $F \in \sigma_{r}^{0}\left(C_{d}\right):=\bigcup_{L d} \quad, \quad{ }_{d \in C_{d}}\left\langle L_{1}^{d}, \ldots, L_{r}^{d}\right\rangle$ or it is in the limit?

- $q \in \operatorname{ker}\left(M_{d-r, r}(F)\right)$, find the roots of q, the $\min r$ s.t. the roots are distinct is the rank of F and the roots are the "dual" of the the L_{i} 's.
- Sylvester XIX sec. -

Rank and decomposition of the given element [Ex: 2 vars]

$$
F \in S^{d} \mathbb{C}^{2}=\mathbb{C}\left[x_{0}, x_{1}\right]_{d}
$$

- $F \in \sigma_{r}\left(C_{d}\right)$? Equations of $\sigma_{r}\left(C_{d}\right)=(r \times r)$ minors of M_{d-r}
- $F \in \sigma_{r}^{0}\left(C_{d}\right):=\bigcup_{L_{1}^{d}, \ldots, L_{r}^{d} \in C_{d}}\left\langle L_{1}^{d}, \ldots, L_{r}^{d}\right\rangle$ or it is in the limit?

- $q \in \operatorname{ker}\left(M_{d-r, r}(F)\right)$, find the roots of q, the min r s.t. the roots are distinct is the rank of F and the roots are the "dual" of the the L_{i} 's.
- Sylvester XIX sec. -

Rank and decomposition of the given element [Ex: 2 vars]

$$
F \in S^{d} \mathbb{C}^{2}=\mathbb{C}\left[x_{0}, x_{1}\right]_{d}
$$

- $F \in \sigma_{r}\left(C_{d}\right)$? Equations of $\sigma_{r}\left(C_{d}\right)=(r \times r)$ minors of $M_{d-r, r}$
- $F \in \sigma_{r}^{0}\left(C_{d}\right):=\bigcup_{L_{1}^{d}, \ldots, L_{r}^{d} \in C_{d}}\left\langle L_{1}^{d}, \ldots, L_{r}^{d}\right\rangle$ or it is in the limit?

- $q \in \operatorname{ker}\left(M_{d-r, r}(F)\right)$, find the roots of q, the min r s.t. the roots are distinct is the rank of F and the roots are the "dual" of the the L_{i} 's.
- Sylvester XIX sec. -

Rank and decomposition of the given element [Ex: 2 vars]

$$
F \in S^{d} \mathbb{C}^{2}=\mathbb{C}\left[x_{0}, x_{1}\right]_{d}
$$

- $F \in \sigma_{r}\left(C_{d}\right)$? Equations of $\sigma_{r}\left(C_{d}\right)=(r \times r)$ minors of $M_{d-r, r}$
- $F \in \sigma_{r}^{0}\left(C_{d}\right):=\bigcup_{L_{1}^{d}, \ldots, L_{r}^{d} \in C_{d}}\left\langle L_{1}^{d}, \ldots, L_{r}^{d}\right\rangle$ or it is in the limit?

- $q \in \operatorname{ker}\left(M_{d-r, r}(F)\right)$, find the roots of q, the min r s.t. the roots are distinct is the rank of F and the roots are the "dual" of the the L_{i} 's.

Rank and decomposition of the given element [Ex: 2 vars]

$$
F \in S^{d} \mathbb{C}^{2}=\mathbb{C}\left[x_{0}, x_{1}\right]_{d}
$$

- $F \in \sigma_{r}\left(C_{d}\right)$? Equations of $\sigma_{r}\left(C_{d}\right)=(r \times r)$ minors of $M_{d-r, r}$
- $F \in \sigma_{r}^{0}\left(C_{d}\right):=\bigcup_{L_{1}^{d}, \ldots, L_{r}^{d} \in C_{d}}\left\langle L_{1}^{d}, \ldots, L_{r}^{d}\right\rangle$ or it is in the limit?

- $q \in \operatorname{ker}\left(M_{d-r, r}(F)\right)$, find the roots of q, the $\min r$ s.t. the roots are distinct is the rank of F and the roots are the "dual" of the the L_{i} 's.

Rank and decomposition of the given element [Ex: 2 vars]

$$
F \in S^{d} \mathbb{C}^{2}=\mathbb{C}\left[x_{0}, x_{1}\right]_{d}
$$

- $F \in \sigma_{r}\left(C_{d}\right)$? Equations of $\sigma_{r}\left(C_{d}\right)=(r \times r)$ minors of $M_{d-r, r}$
- $F \in \sigma_{r}^{0}\left(C_{d}\right):=\bigcup_{L_{1}^{d}, \ldots, L_{r}^{d} \in C_{d}}\left\langle L_{1}^{d}, \ldots, L_{r}^{d}\right\rangle$ or it is in the limit?

- $q \in \operatorname{ker}\left(M_{d-r, r}(F)\right)$, find the roots of q, the $\min r$ s.t. the roots are distinct is the rank of F and the roots are the "dual" of the the L_{i} 's.
- Sylvester XIX sec. -

Rank and decomposition of the given element [Ex: 2 vars]

$$
F \in S^{d} \mathbb{C}^{2}=\mathbb{C}\left[x_{0}, x_{1}\right]_{d}
$$

- $F \in \sigma_{r}\left(C_{d}\right)$? Equations of $\sigma_{r}\left(C_{d}\right)=(r \times r)$ minors of $M_{d-r, r}$
- $F \in \sigma_{r}^{0}\left(C_{d}\right):=\bigcup_{L_{1}^{d}, \ldots, L_{r}^{d} \in C_{d}}\left\langle L_{1}^{d}, \ldots, L_{r}^{d}\right\rangle$ or it is in the limit?

- $q \in \operatorname{ker}\left(M_{d-r, r}(F)\right)$, find the roots of q, the $\min r$ s.t. the roots are distinct is the rank of F and the roots are the "dual" of the the L_{i} 's.
- Sylvester XIX sec. -

Rank and decomposition of the given element [Ex: 2 vars]

$$
F \in S^{d} \mathbb{C}^{2}=\mathbb{C}\left[x_{0}, x_{1}\right]_{d}
$$

- $F \in \sigma_{r}\left(C_{d}\right)$? Equations of $\sigma_{r}\left(C_{d}\right)=(r \times r)$ minors of $M_{d-r, r}$
- $F \in \sigma_{r}^{0}\left(C_{d}\right):=\bigcup_{L_{1}^{d}, \ldots, L_{r}^{d} \in C_{d}}\left\langle L_{1}^{d}, \ldots, L_{r}^{d}\right\rangle$ or it is in the limit?

- $q \in \operatorname{ker}\left(M_{d-r, r}(F)\right)$, find the roots of q, the $\min r$ s.t. the roots are distinct is the rank of F and the roots are the "dual" of the the L_{i} 's.
- Sylvester XIX sec. -

Rank and decomposition of the given element [Ex: 2 vars]

$F \in S^{d} \mathbb{C}^{2}=\mathbb{C}\left[x_{0}, x_{1}\right]_{d}$

- $F \in \sigma_{r}\left(C_{d}\right)$? Equations of $\sigma_{r}\left(C_{d}\right)=(r \times r)$ minors of $M_{d-r, r}$
- $F \in \sigma_{r}^{0}\left(C_{d}\right):=\bigcup_{L_{1}^{d}, \ldots, L_{r}^{d} \in C_{d}}\left\langle L_{1}^{d}, \ldots, L_{r}^{d}\right\rangle$ or it is in the limit?

Is there any relation among the smooth and the non smooth scheme?

- $q \in \operatorname{ker}\left(M_{d-r, r}(F)\right)$, find the roots of q, the $\min r$ s.t. the roots are distinct is the rank of F and the roots are the "dual" of the the L_{i} 's.
- Sylvester XIX sec. -

Equations of secant varieties

- $I\left(\sigma_{2}\left(\nu_{d}\left(\mathbb{P}^{n}\right)\right)\right)$ given by 3×3 minors of catalecticant. ([Pucci] Set Theoretical, [Parolin] Ideally theoretical) Analogously for secant lines of Segre-Veronese (Flattenings)([-] SV '07, [R] $\left.\sigma_{2}(S V)\right)$
- Representation Theory[IM].
X_{λ} Homogeneous variety $\Rightarrow \exists$ highest weight vector v_{λ} whose orbit coincides with X_{λ}.

$$
\begin{gathered}
\text { Kostant } \sim 1960: I\left(X_{\lambda}\right)=I\left(X_{\lambda}\right)_{2}=V_{2 \lambda}^{*} \subset S^{2}\left(S^{d} V^{*}\right) \\
I\left(\sigma_{r}\left(X_{\lambda}\right)\right)_{r(d-1)+1}=\left(I\left(X_{\lambda}\right) \otimes S^{r d-r+1-d} V_{\lambda}^{*}\right) \cap S^{r(d-1)+1} V_{\lambda}^{*}
\end{gathered}
$$

- New results with this idea and combination of RT with generalization of Flattenings[LO].
- $I\left(\sigma_{2}\left(\nu_{d}\left(\mathbb{P}^{n}\right)\right)\right)$ given by 3×3 minors of catalecticant. ([Pucci] Set Theoretical, [Parolin] Ideally theoretical)
Analogously for secant lines of Segre-Veronese (Flattenings)([-] SV '07, [R] $\sigma_{2}(S V)$)
- Representation Theory[LM]:
X_{λ} Homogeneous variety $\Rightarrow \exists$ highest weight vector v_{λ} whose orbit coincides with X_{λ}

- New results with this idea and combination of RT with generalization of Flattenings[LO]
- $I\left(\sigma_{2}\left(\nu_{d}\left(\mathbb{P}^{n}\right)\right)\right)$ given by 3×3 minors of catalecticant. ([Pucci] Set Theoretical, [Parolin] Ideally theoretical) Analogously for secant lines of Segre-Veronese (Flattenings)([-] SV '07, [R] $\sigma_{2}(S V)$)

```
Representation Theory[LM];
X}\mathrm{ Homogeneous variety }=>\exists\mathrm{ highest weight vector v}\mp@subsup{v}{\lambda}{}\mathrm{ whose
orbit coincides with }\mp@subsup{X}{\lambda}{
```

Kostant $\sim 1960: I\left(X_{\lambda}\right)=I\left(X_{\lambda}\right)_{2}=V_{2 \lambda}^{*} \subset S^{2}\left(S^{d} V^{*}\right)$
New results with this idea and combination of RT with
generalization of Flattenings[LO]

- $I\left(\sigma_{2}\left(\nu_{d}\left(\mathbb{P}^{n}\right)\right)\right)$ given by 3×3 minors of catalecticant. ([Pucci] Set Theoretical, [Parolin] Ideally theoretical) Analogously for secant lines of Segre-Veronese (Flattenings)([-] SV '07, [R] $\sigma_{2}(S V)$)
- Representation Theory[LM]:
X_{λ} Homogeneous variety $\Rightarrow \exists$ highest weight vector v_{λ} whose orbit coincides with X_{λ}

$$
\text { Kostant } \sim 1960: I\left(X_{\lambda}\right)=I\left(X_{\lambda}\right)_{2}=V_{2 \lambda}^{*} \subset S^{2}\left(S^{d} V^{*}\right)
$$

$$
\begin{aligned}
& \text { New results with this idea and combination of RT with } \\
& \text { generalization of Flattenings[LO]. }
\end{aligned}
$$

- $I\left(\sigma_{2}\left(\nu_{d}\left(\mathbb{P}^{n}\right)\right)\right)$ given by 3×3 minors of catalecticant. ([Pucci] Set Theoretical, [Parolin] Ideally theoretical) Analogously for secant lines of Segre-Veronese (Flattenings)([-] SV '07, [R] $\sigma_{2}(S V)$)
- Representation Theory[LM]:
X_{λ} Homogeneous variety $\Rightarrow \exists$ highest weight vector v_{λ} whose orbit coincides with X_{λ}.

- $I\left(\sigma_{2}\left(\nu_{d}\left(\mathbb{P}^{n}\right)\right)\right)$ given by 3×3 minors of catalecticant. ([Pucci] Set Theoretical, [Parolin] Ideally theoretical)
Analogously for secant lines of Segre-Veronese
(Flattenings)([-] SV '07, [R] $\sigma_{2}(S V)$)
- Representation Theory[LM]:
X_{λ} Homogeneous variety $\Rightarrow \exists$ highest weight vector v_{λ} whose orbit coincides with X_{λ}.

$$
\text { Kostant } \sim \text { 1960: } I\left(X_{\lambda}\right)=I\left(X_{\lambda}\right)_{2}=V_{2 \lambda}^{*} \subset S^{2}\left(S^{d} V^{*}\right)
$$

New results with this idea and combination of RT with generalization of Flattenings[LO]

- $I\left(\sigma_{2}\left(\nu_{d}\left(\mathbb{P}^{n}\right)\right)\right)$ given by 3×3 minors of catalecticant. ([Pucci] Set Theoretical, [Parolin] Ideally theoretical)
Analogously for secant lines of Segre-Veronese
(Flattenings)([-] SV '07, [R] $\sigma_{2}(S V)$)
- Representation Theory[LM]:
X_{λ} Homogeneous variety $\Rightarrow \exists$ highest weight vector v_{λ} whose orbit coincides with X_{λ}.

$$
\begin{aligned}
& \text { Kostant } \sim \text { 1960: } I\left(X_{\lambda}\right)=I\left(X_{\lambda}\right)_{2}=V_{2 \lambda}^{*} \subset S^{2}\left(S^{d} V^{*}\right) \\
& I\left(\sigma_{r}\left(X_{\lambda}\right)\right)_{r(d-1)+1}=\left(I\left(X_{\lambda}\right) \otimes S^{r d-r+1-d} V_{\lambda}^{*}\right) \cap S^{r(d-1)+1} V_{\lambda}^{*} . \\
& \text { New results with this idea and combination of } R T \text { with } \\
& \text { generalization of Flattenings[LO]. }
\end{aligned}
$$

- $I\left(\sigma_{2}\left(\nu_{d}\left(\mathbb{P}^{n}\right)\right)\right)$ given by 3×3 minors of catalecticant. ([Pucci] Set Theoretical, [Parolin] Ideally theoretical)
Analogously for secant lines of Segre-Veronese
(Flattenings)([-] SV '07, [R] $\sigma_{2}(S V)$)
- Representation Theory[LM]:
X_{λ} Homogeneous variety $\Rightarrow \exists$ highest weight vector v_{λ} whose orbit coincides with X_{λ}.

$$
\begin{gathered}
\text { Kostant } \sim \text { 1960: } I\left(X_{\lambda}\right)=I\left(X_{\lambda}\right)_{2}=V_{2 \lambda}^{*} \subset S^{2}\left(S^{d} V^{*}\right) \\
I\left(\sigma_{r}\left(X_{\lambda}\right)\right)_{r(d-1)+1}=\left(I\left(X_{\lambda}\right) \otimes S^{r d-r+1-d} V_{\lambda}^{*}\right) \cap S^{r(d-1)+1} V_{\lambda}^{*} .
\end{gathered}
$$

- New results with this idea and combination of RT with generalization of Flattenings[LO].

Sylvester'method (1886)

Theorem

$T\left(x_{0}, x_{1}\right)=\sum_{i=0}^{d} c_{i}\binom{d}{i} x_{0}^{d-i} x_{1}^{i}$ can be decomposed as

$$
T=\sum_{k=1}^{r} \lambda_{k}\left(\alpha_{k} x_{0}+\beta_{k} x_{1}\right)^{d}
$$

iff there exists a polynomial q such that

$$
\left[\begin{array}{cccc}
c_{0} & c_{1} & \cdots & c_{r} \\
c_{1} & & & c_{r+1} \\
\vdots & & & \vdots \\
c_{d-r} & \cdots & c_{d-1} & c_{d}
\end{array}\right]\left[\begin{array}{c}
q_{0} \\
q_{1} \\
\vdots \\
q_{r}
\end{array}\right]=0
$$

and of the form

$$
q\left(x_{0}, x_{1}\right):=\mu \prod_{k=1}^{r}\left(\beta_{k} x_{0}-\alpha_{k} x_{1}\right)
$$

This is possible because

$$
I(Z) \subset\left(f^{\perp}\right)=\operatorname{ker}(C a t)=\left(G_{1}, G_{2}\right)
$$

where the scheme Z is the scheme defined by the zeros of q, G_{1}, G_{2} are the two generators of the apolar ideal to f and "Cat " is the $(d-r+1) \times(r+1)$ Catalecticant matrix.

Sylvester Algorithm
(1) Initialize $r=0$;
(2) Increment $r \leftarrow r+1$;
(3) If the rank of the matrix $M_{d-r, r}$ is maximum, then go to step (2);
(4) Else compute a basis $\left\{I_{1}, \ldots, I_{h}\right\}$ of the right kernel of $M_{d-r, r}$;
(5) Take a vector q in the kernel, e.g. $q=\sum_{i} \mu_{i} l_{i}$;

- Compute the roots of the associated polynomial $q\left(x_{0}, x_{1}\right)=\sum_{h=0}^{r} q_{h} x_{0}^{h} x_{1}^{r-h}$; Denote them by $\left(\alpha_{j}, \beta_{j}\right)$, where $\left|\alpha_{j}\right|^{2}+\left|\beta_{j}\right|^{2}=1 ;$
- If the roots are not distinct in \mathbb{P}^{1}, go to step (2);
- Else if $q\left(x_{0}, x_{1}\right)$ admits r distinct roots then compute coefficients $\lambda_{j}, 1 \leq j \leq r$, by solving the linear system below:

$$
\left(\begin{array}{ccc}
\alpha_{1}^{d} & \cdots & \alpha_{r}^{d} \\
\alpha_{1}^{d-1} \beta_{1} & \cdots & \alpha_{r}^{d-1} \beta_{r} \\
\alpha_{1}^{d-2} \beta_{1}^{2} & \cdots & \alpha_{r}^{d-2} \beta_{r}^{2} \\
\vdots & \vdots & \vdots \\
\beta_{1}^{d} & \cdots & \beta_{r}^{d}
\end{array}\right) \lambda=\left(\begin{array}{c}
a_{0} \\
1 / d a_{1} \\
\binom{d}{2}^{-1} a_{2} \\
\vdots \\
a_{d}
\end{array}\right) ;
$$

(6) $p\left(x_{0}, x_{1}\right)=\sum_{j=1}^{r} \lambda_{j} l_{j}\left(x_{0}, x_{1}\right)^{d}$, where $I_{j}\left(x_{0}, x_{1}\right)=\left(\alpha_{j} x_{1}+\beta_{j} x_{2}\right)$.

Improvement of Sylvester [-, Gimigliano, Idà]

Theorem

Let $C_{d} \subset \mathbb{P}^{d}$ be the rational normal curve of degree d, parameterizing decomposable symmetric tensors (i.e. $C_{d}=\left\{T \in \mathbb{P}\left(S^{d} \mathbb{C}^{2}\right) \mid r k(T)=1\right\}$), i.e. projective classes of homogeneous polynomials in $\mathbb{C}\left[t_{0}, t_{1}\right]_{d}$ which are d-th powers of linear forms. Then:

$$
\forall r, 2 \leq r \leq\left\lceil\frac{d+1}{2}\right\rceil: \quad \sigma_{r}\left(C_{d}\right) \backslash \sigma_{r-1}\left(C_{d}\right)=\sigma_{r, r}\left(C_{d}\right) \cup \sigma_{r, d-r+2}\left(C_{d}\right)
$$

where $\sigma_{r, r}\left(C_{d}\right)$ and $\sigma_{r, d-r+2}\left(C_{d}\right)$ are subsets of $\sigma_{r}\left(C_{d}\right)$ containing only elements of ranks r and $d-r+2$ respectively.

Improvement of Sylvester [-GI]

The (Sylvester) Symmetric Rank Algorithm:

Input: The projective class T of a symmetric tensor $t \in S^{d} V$ with $\operatorname{dim}(V)=2$
Output: $r k(t)$.
(1) Initialize $r=0$;
(2) Increment $r \leftarrow r+1$;

- Compute $M_{d-r, r}(t)$'s $(r+1)$-minors; if they are not all equal to zero then go to step (2); else, $T \in \sigma_{r}\left(C_{d}\right)$ (notice that this happens for $r \leq\left\lceil\frac{d+1}{2}\right\rceil$); go to step (4).
- Choose a solution $\left(\bar{u}_{0}, \ldots, \bar{u}_{d}\right)$ of the system $M_{d-r, r}(t) \cdot\left(u_{0}, \ldots, u_{r}\right)^{t}=0$. If the polynomial $\bar{u}_{0} t_{0}^{d}+\bar{u}_{1} t_{0}^{d-1} t_{1}+\cdots+\bar{u}_{r} t_{1}^{r}$ has distinct roots, then $r k(t)=r$, i.e. $T \in \sigma_{r, r}\left(C_{d}\right)$, otherwise $r k(t)=d-r+2$, i.e. $T \in \sigma_{r, d-r+2}\left(C_{d}\right)$.

Generalization [-GI]

Theorem

Any $T \in \sigma_{2}\left(X_{n, d}\right) \subset \mathbb{P}(V)$, with $\operatorname{dim}(V)=n+1$, can only have symmetric rank equal to 1,2 or d. More precisely:

$$
\sigma_{2}\left(X_{n, d}\right) \backslash X_{n, d}=\sigma_{2,2}\left(X_{n, d}\right) \cup \sigma_{2, d}\left(X_{n, d}\right)
$$

moreover $\sigma_{2, d}\left(X_{n, d}\right)=\tau\left(X_{n, d}\right) \backslash X_{n, d}$.
Since $r=2$, every $Z \in \operatorname{Hilb}_{2}\left(\mathbb{P}^{n}\right)$ is the complete intersection of a line and a quadric, so the structure of I_{Z} is well known: $I_{Z}=\left(I_{1}, \ldots, I_{n-1}, q\right)$, where $I_{i} \in R_{1}$, linearly independent, and $q \in R_{2}-\left(I_{1}, \ldots, I_{n-1}\right)_{2}$.
If $T \in \sigma_{2}\left(\nu_{d}\left(\mathbb{P}^{n}\right)\right)$ we have two possibilities; either $r k(T)=2$ (i.e.
$T \in \sigma_{2}^{0}\left(\nu_{2}\left(\mathbb{P}^{n}\right)\right)$), or $r k(T)>2$ i.e. T lies on a tangent line Π_{z} to the Veronese, which is given by the image of a scheme Z of degree 2 . We can view T in the projective linear space $H \cong \mathbb{P}^{d}$ in $\mathbb{P}\left(S^{d} V\right)$ generated by the rational normal curve $C_{d} \subset X_{n, d}$, which is the image of the line L defined by the ideal $\left(I_{1}, \ldots, I_{n-1}\right)$ in \mathbb{P}^{n} with $I_{1}, \ldots, I_{n-1} \in V^{*}$ (i.e. $L \subset \mathbb{P}^{n}$ is the unique line containing z); hence $r k(T)=d$.

Generalization [-GI]

Algorithm for the symmetric rank of an element of $\sigma_{\mathbf{2}}\left(\mathbf{X}_{\mathbf{n}, \mathrm{d}}\right)$ Input: The projective class T of a symmetric tensor $t \in S^{d} V$, with $\operatorname{dim}(V)=n+1$;
Output: $T \notin \sigma_{2}\left(X_{n, d}\right)$, or $T \in \sigma_{2,2}\left(X_{n, d}\right)$, or $T \in \sigma_{2, d}\left(X_{n, d}\right)$, or $T \in X_{n, d}$.
(1) Consider the homogeneous polynomial associated to t and rewrite it with the minimum possible number of variables if this is 1 then $T \in X_{n, d}$; if it is >2 then $T \notin \sigma_{2}\left(X_{n, d}\right)$, otherwise T can be viewed as a point in $\mathbb{P}\left(S^{d} W\right) \cong \mathbb{P}^{d} \subset \mathbb{P}\left(S^{d} V\right)$, and $\operatorname{dim}(W)=2$, so go to step 2 .
(2) Apply the algorithm in 2 vars to conclude.

Generalization [-GI]

This technique can be extend to $\sigma_{3}\left(X_{n, d}\right)$ because a form there can always be written by using only 3 vars, and there always exist a length 3 apolar scheme of \mathbb{P}^{2} (not necessary smooth).

Theorem

Let $\left.d \geq 3, X_{n, d} \subset \mathbb{P}^{(} V\right)$. Then:
$\sigma_{3}\left(X_{n, 3}\right) \backslash \sigma_{2}\left(X_{n, 3}\right)=\sigma_{3,3}\left(X_{n, 3}\right) \cup \sigma_{3,4}\left(X_{n, 3}\right) \cup \sigma_{3,5}\left(X_{n, 3}\right)$, while, for $d \geq 4$:
$\sigma_{3}\left(X_{n, d}\right) \backslash \sigma_{2}\left(X_{n, d}\right)=$
$\sigma_{3,3}\left(X_{n, d}\right) \cup \sigma_{3, d-1}\left(X_{n, d}\right) \cup \sigma_{3, d+1}\left(X_{n, d}\right) \cup \sigma_{3,2 d-1}\left(X_{n, d}\right)$.

Generalization

In [Ballico,-] we can do the analogous to classify the rank of $F \in \sigma_{4}\left(X_{n, d}\right)$ by using the minimal apolar scheme.

We cannot use the same technique for classifying the ranks in the case of $\sigma_{5}\left(\nu_{d}\left(\mathbb{P}^{n}\right)\right)$. In fact there is a famous contra-example due to W. Buczyńska, J. Buczyński that shows that in $\sigma_{5}\left(\nu_{3}\left(\mathbb{P}^{4}\right)\right)$ there is at least a polynomial for which it doesn't exist any 0-dimensional scheme contained in $\nu_{3}\left(\mathbb{P}^{4}\right)$ whose span contains it.

Generalization

In [Ballico,-] we can do the analogous to classify the rank of $F \in \sigma_{4}\left(X_{n, d}\right)$ by using the minimal apolar scheme.

We cannot use the same technique for classifying the ranks in the case of $\sigma_{5}\left(\nu_{d}\left(\mathbb{P}^{n}\right)\right)$. In fact there is a famous contra-example due to W. Buczyńska, J. Buczyński that shows that in $\sigma_{5}\left(\nu_{3}\left(\mathbb{P}^{4}\right)\right)$ there is at least a polynomial for which it doesn't exist any 0-dimensional scheme contained in $\nu_{3}\left(\mathbb{P}^{4}\right)$ whose span contains it.

Generalization

Example (W. Buczyńska, J. Buczyński)

The following polynomial has border rank ≤ 5 but it doesn't exist any degree 5 zero-dimensional scheme contained in $\nu_{3}\left(\mathbb{P}^{4}\right)$ whose span contains it:

$$
f=x_{0}^{2} x_{2}+6 x_{1}^{2} x_{3}-3\left(x_{0}+x_{1}\right)^{2} x_{4} .
$$

One can easily check that the following polynomial
\square
has rank 5 for $\epsilon>0$, and that $\lim _{\epsilon \rightarrow 0} \frac{1}{3 \epsilon} f_{\epsilon}=f$
Therefore f has border rank at most 5 .
Let us prove, by contradiction, that there is no saturated ideal $I \subset\left(f^{\perp}\right)$ of degree ≤ 5. Suppose on the contrary that I is such an ideal. Then $H_{R / I}(n) \geq H_{R /(f \perp)}(n)$ for all $n \in \mathbb{N}$ and $H_{R /(f \perp)}=[1,5,5,1,0, \ldots]$. As $H_{R / /}(n)$ is an increasing function of $n \in \mathbb{N}$ with $H_{R /(f \perp)}(n) \leq H_{R / I}(n) \leq 5$, we deduce that $H_{R / I}=[1,5,5,5, \ldots]$. This shows that $I_{1}=\{0\}$ and that $I_{2}=\left(f^{\perp}\right)_{2}$. As $/$ is saturated, $I_{2}:\left(x_{0}, \ldots, x_{4}\right)=I_{1}=\{0\}$ since $H_{R /(f \perp)}(1)=5$. But an explicit computation of $\left(\left(f^{\perp}\right)_{2}:\left(x_{0}, \ldots, x_{4}\right)\right)$ gives $\left\langle x_{2}, x_{3}, x_{4}\right\rangle$. Contradiction: there is no saturated ideal of degree ≤ 5 such that $I \subset\left(f^{\perp}\right)$. The minimal
zero-dimensional scheme contained in $\nu_{3}\left(\mathbb{P}^{4}\right)$ whose span contains f has deg. 6 .

Generalization

Example (W. Buczyńska, J. Buczyński)

The following polynomial has border rank ≤ 5 but it doesn't exist any degree 5 zero-dimensional scheme contained in $\nu_{3}\left(\mathbb{P}^{4}\right)$ whose span contains it:

$$
f=x_{0}^{2} x_{2}+6 x_{1}^{2} x_{3}-3\left(x_{0}+x_{1}\right)^{2} x_{4} .
$$

One can easily check that the following polynomial
$f_{\epsilon}=\left(x_{0}+\epsilon x_{2}\right)^{3}+6\left(x_{1}+\epsilon x_{3}\right)^{3}-3\left(x_{0}+x_{1}+\epsilon x_{4}\right)^{3}+3\left(x_{0}+2 x_{1}\right)^{3}-\left(x_{0}+3 x_{1}\right)^{3}$
has rank 5 for $\epsilon>0$, and that $\lim _{\epsilon \rightarrow 0} \frac{1}{3 \epsilon} f_{\epsilon}=f$.
Therefore f has border rank at most 5
Let us prove, by contradiction, that there is no saturated ideal $I \subset\left(f^{\perp}\right)$ of
degree ≤ 5. Suppose on the contrary that I is such an ideal. Then
$H_{R / I}(n) \geq H_{R /(f \perp)}(n)$ for all $n \in \mathbb{N}$ and $H_{R /(f \perp)}=[1,5,5,1,0, \ldots]$. As $H_{R / /}(n)$ is an increasing function of $n \in \mathbb{N}$ with $H_{R /(f \perp)}(n) \leq H_{R / I}(n) \leq 5$, we deduce that $H_{R / I}=[1,5,5,5, \ldots]$. This shows that $I_{1}=\{0\}$ and that $I_{2}=\left(f^{\perp}\right)_{2}$. As I is saturated, $I_{2}:\left(x_{0}, \ldots, x_{4}\right)=I_{1}=\{0\}$ since $H_{R /(f \perp)}(1)=5$. But an explicit

Generalization

Example (W. Buczyńska, J. Buczyński)

The following polynomial has border rank ≤ 5 but it doesn't exist any degree 5 zero-dimensional scheme contained in $\nu_{3}\left(\mathbb{P}^{4}\right)$ whose span contains it:

$$
f=x_{0}^{2} x_{2}+6 x_{1}^{2} x_{3}-3\left(x_{0}+x_{1}\right)^{2} x_{4} .
$$

One can easily check that the following polynomial
$f_{\epsilon}=\left(x_{0}+\epsilon x_{2}\right)^{3}+6\left(x_{1}+\epsilon x_{3}\right)^{3}-3\left(x_{0}+x_{1}+\epsilon x_{4}\right)^{3}+3\left(x_{0}+2 x_{1}\right)^{3}-\left(x_{0}+3 x_{1}\right)^{3}$
has rank 5 for $\epsilon>0$, and that $\lim _{\epsilon \rightarrow 0} \frac{1}{3 \epsilon} f_{\epsilon}=f$.
Therefore f has border rank at most 5 .
Let us prove, by contradiction, that there is no saturated ideal $I \subset\left(f^{\perp}\right)$ of
degree ≤ 5. Suppose on the contrary that I is such an ideal. Then
$H_{R / I}(n) \geq H_{R /(f \perp)}(n)$ for all $n \in \mathbb{N}$ and $H_{R /(f \perp)}=[1,5,5,1,0, \ldots]$. As $H_{R / /}(n)$ is an increasing function of $n \in \mathbb{N}$ with $H_{R /(f \perp)}(n) \leq H_{R / I}(n) \leq 5$, we deduce that $H_{R / I}=[1,5,5,5, \ldots]$. This shows that $I_{1}=\{0\}$ and that $I_{2}=\left(f^{\perp}\right)_{2}$. As $/$ is saturated, $I_{2}:\left(x_{0}, \ldots, x_{4}\right)=I_{1}=\{0\}$ since $H_{R /(f \perp)}(1)=5$. But an explicit

Generalization

Example (W. Buczyńska, J. Buczyński)

The following polynomial has border rank ≤ 5 but it doesn't exist any degree 5 zero-dimensional scheme contained in $\nu_{3}\left(\mathbb{P}^{4}\right)$ whose span contains it:

$$
f=x_{0}^{2} x_{2}+6 x_{1}^{2} x_{3}-3\left(x_{0}+x_{1}\right)^{2} x_{4} .
$$

One can easily check that the following polynomial
$f_{\epsilon}=\left(x_{0}+\epsilon x_{2}\right)^{3}+6\left(x_{1}+\epsilon x_{3}\right)^{3}-3\left(x_{0}+x_{1}+\epsilon x_{4}\right)^{3}+3\left(x_{0}+2 x_{1}\right)^{3}-\left(x_{0}+3 x_{1}\right)^{3}$
has rank 5 for $\epsilon>0$, and that $\lim _{\epsilon \rightarrow 0} \frac{1}{3 \epsilon} f_{\epsilon}=f$.
Therefore f has border rank at most 5 .
Let us prove, by contradiction, that there is no saturated ideal $I \subset\left(f^{\perp}\right)$ of degree ≤ 5. Suppose on the contrary that $/$ is such an ideal. Then

Generalization

Example (W. Buczyńska, J. Buczyński)

The following polynomial has border rank ≤ 5 but it doesn't exist any degree 5 zero-dimensional scheme contained in $\nu_{3}\left(\mathbb{P}^{4}\right)$ whose span contains it:

$$
f=x_{0}^{2} x_{2}+6 x_{1}^{2} x_{3}-3\left(x_{0}+x_{1}\right)^{2} x_{4} .
$$

One can easily check that the following polynomial
$f_{\epsilon}=\left(x_{0}+\epsilon x_{2}\right)^{3}+6\left(x_{1}+\epsilon x_{3}\right)^{3}-3\left(x_{0}+x_{1}+\epsilon x_{4}\right)^{3}+3\left(x_{0}+2 x_{1}\right)^{3}-\left(x_{0}+3 x_{1}\right)^{3}$
has rank 5 for $\epsilon>0$, and that $\lim _{\epsilon \rightarrow 0} \frac{1}{3 \epsilon} f_{\epsilon}=f$.
Therefore f has border rank at most 5 .
Let us prove, by contradiction, that there is no saturated ideal $I \subset\left(f^{\perp}\right)$ of degree ≤ 5. Suppose on the contrary that I is such an ideal.
is an increasing function of $n \in \mathbb{N}$ with $H_{R /(f \perp)}(n) \leq H_{R / I}(n) \leq 5$, we deduce that $H_{R / I}=\left[1,5,5,5 \ldots\right.$. . This shows that $I_{1}=\{0\}$ and that $l_{2}=\left(f^{\perp}\right)_{2}$. As I is saturated, $I_{2}:\left(x_{0}, \ldots, x_{4}\right)=I_{1}=\{0\}$ since $H_{R /(f \perp)}(1)=5$. But an explicit

Generalization

Example (W. Buczyńska, J. Buczyński)

The following polynomial has border rank ≤ 5 but it doesn't exist any degree 5 zero-dimensional scheme contained in $\nu_{3}\left(\mathbb{P}^{4}\right)$ whose span contains it:

$$
f=x_{0}^{2} x_{2}+6 x_{1}^{2} x_{3}-3\left(x_{0}+x_{1}\right)^{2} x_{4} .
$$

One can easily check that the following polynomial
$f_{\epsilon}=\left(x_{0}+\epsilon x_{2}\right)^{3}+6\left(x_{1}+\epsilon x_{3}\right)^{3}-3\left(x_{0}+x_{1}+\epsilon x_{4}\right)^{3}+3\left(x_{0}+2 x_{1}\right)^{3}-\left(x_{0}+3 x_{1}\right)^{3}$
has rank 5 for $\epsilon>0$, and that $\lim _{\epsilon \rightarrow 0} \frac{1}{3 \epsilon} f_{\epsilon}=f$.
Therefore f has border rank at most 5 .
Let us prove, by contradiction, that there is no saturated ideal $I \subset\left(f^{\perp}\right)$ of degree ≤ 5. Suppose on the contrary that I is such an ideal. Then
$H_{R / I}(n) \geq H_{R /(f \perp)}(n)$ for all $n \in \mathbb{N}$ and $H_{R /(f \perp)}=[1,5,5,1,0, \ldots]$.
is an increasing function of $n \in \mathbb{N}$ with $H_{R /(f \perp)}(n) \leq H_{R / /}(n) \leq 5$, we deduce
that $H_{R / I}=[1,5,5,5, \ldots]$. This shows that $I_{1}=\{0\}$ and that $I_{2}=\left(f^{\perp}\right)_{2}$. As $/$
is saturated, $I_{2}:\left(x_{0}, \ldots, x_{4}\right)=I_{1}=\{0\}$ since $H_{R /(f \perp)}(1)=5$. But an explicit
computation of $\left(\left(f^{\perp}\right)_{2}:\left(x_{0}, \ldots, x_{4}\right)\right)$ gives $\left\langle x_{2}, x_{3}, x_{4}\right\rangle$. Contradiction: there is
no saturated ideal of degree ≤ 5 such that $I \subset\left(f^{\perp}\right)$. The minimal

Generalization

Example (W. Buczyńska, J. Buczyński)

The following polynomial has border rank ≤ 5 but it doesn't exist any degree 5 zero-dimensional scheme contained in $\nu_{3}\left(\mathbb{P}^{4}\right)$ whose span contains it:

$$
f=x_{0}^{2} x_{2}+6 x_{1}^{2} x_{3}-3\left(x_{0}+x_{1}\right)^{2} x_{4} .
$$

One can easily check that the following polynomial
$f_{\epsilon}=\left(x_{0}+\epsilon x_{2}\right)^{3}+6\left(x_{1}+\epsilon x_{3}\right)^{3}-3\left(x_{0}+x_{1}+\epsilon x_{4}\right)^{3}+3\left(x_{0}+2 x_{1}\right)^{3}-\left(x_{0}+3 x_{1}\right)^{3}$
has rank 5 for $\epsilon>0$, and that $\lim _{\epsilon \rightarrow 0} \frac{1}{3 \epsilon} f_{\epsilon}=f$.
Therefore f has border rank at most 5 .
Let us prove, by contradiction, that there is no saturated ideal $I \subset\left(f^{\perp}\right)$ of degree ≤ 5. Suppose on the contrary that I is such an ideal. Then
$H_{R / I}(n) \geq H_{R /(f \perp)}(n)$ for all $n \in \mathbb{N}$ and $H_{R /(f \perp)}=[1,5,5,1,0, \ldots]$. As $H_{R / I}(n)$ is an increasing function of $n \in \mathbb{N}$ with $H_{R /(f \perp)}(n) \leq H_{R / I}(n) \leq 5$,

Generalization

Example (W. Buczyńska, J. Buczyński)

The following polynomial has border rank ≤ 5 but it doesn't exist any degree 5 zero-dimensional scheme contained in $\nu_{3}\left(\mathbb{P}^{4}\right)$ whose span contains it:

$$
f=x_{0}^{2} x_{2}+6 x_{1}^{2} x_{3}-3\left(x_{0}+x_{1}\right)^{2} x_{4} .
$$

One can easily check that the following polynomial
$f_{\epsilon}=\left(x_{0}+\epsilon x_{2}\right)^{3}+6\left(x_{1}+\epsilon x_{3}\right)^{3}-3\left(x_{0}+x_{1}+\epsilon x_{4}\right)^{3}+3\left(x_{0}+2 x_{1}\right)^{3}-\left(x_{0}+3 x_{1}\right)^{3}$
has rank 5 for $\epsilon>0$, and that $\lim _{\epsilon \rightarrow 0} \frac{1}{3 \epsilon} f_{\epsilon}=f$.
Therefore f has border rank at most 5 .
Let us prove, by contradiction, that there is no saturated ideal $I \subset\left(f^{\perp}\right)$ of degree ≤ 5. Suppose on the contrary that l is such an ideal. Then
$H_{R / I}(n) \geq H_{R /(f \perp)}(n)$ for all $n \in \mathbb{N}$ and $H_{R /(f \perp)}=[1,5,5,1,0, \ldots]$. As $H_{R / I}(n)$ is an increasing function of $n \in \mathbb{N}$ with $H_{R /(f \perp)}(n) \leq H_{R / I}(n) \leq 5$, we deduce that $H_{R / I}=[1,5,5,5, \ldots]$.

```
is saturated
```

computation of $\left(\left(f^{\perp}\right)_{2}:\left(x_{0}, \ldots, x_{4}\right)\right)$ gives $\left\langle x_{2}, x_{3}, x_{4}\right\rangle$. Contradiction: there is no saturated ideal of degree <5 such that $I \subset\left(f^{\perp}\right)$. The minimal

Generalization

Example (W. Buczyńska, J. Buczyński)

The following polynomial has border rank ≤ 5 but it doesn't exist any degree 5 zero-dimensional scheme contained in $\nu_{3}\left(\mathbb{P}^{4}\right)$ whose span contains it:

$$
f=x_{0}^{2} x_{2}+6 x_{1}^{2} x_{3}-3\left(x_{0}+x_{1}\right)^{2} x_{4} .
$$

One can easily check that the following polynomial
$f_{\epsilon}=\left(x_{0}+\epsilon x_{2}\right)^{3}+6\left(x_{1}+\epsilon x_{3}\right)^{3}-3\left(x_{0}+x_{1}+\epsilon x_{4}\right)^{3}+3\left(x_{0}+2 x_{1}\right)^{3}-\left(x_{0}+3 x_{1}\right)^{3}$
has rank 5 for $\epsilon>0$, and that $\lim _{\epsilon \rightarrow 0} \frac{1}{3 \epsilon} f_{\epsilon}=f$.
Therefore f has border rank at most 5 .
Let us prove, by contradiction, that there is no saturated ideal $I \subset\left(f^{\perp}\right)$ of degree ≤ 5. Suppose on the contrary that l is such an ideal. Then $H_{R / I}(n) \geq H_{R /(f \perp)}(n)$ for all $n \in \mathbb{N}$ and $H_{R /(f \perp)}=[1,5,5,1,0, \ldots]$. As $H_{R / I}(n)$ is an increasing function of $n \in \mathbb{N}$ with $H_{R /\left(f^{\perp}\right)}(n) \leq H_{R / I}(n) \leq 5$, we deduce that $H_{R / I}=[1,5,5,5, \ldots]$. This shows that $I_{1}=\{0\}$ and that $I_{2}=\left(f^{\perp}\right)_{2}$. is saturated,
computation of $\left(\left(f^{\perp}\right)_{2}:\left(x_{0}, \ldots, x_{4}\right)\right)$ gives $\left\langle x_{2}, x_{3}, x_{4}\right\rangle$. Contradiction: there is no saturated ideal of degree <5 such that $I \subset\left(f^{\perp}\right)$. The minimal

Generalization

Example (W. Buczyńska, J. Buczyński)

The following polynomial has border rank ≤ 5 but it doesn't exist any degree 5 zero-dimensional scheme contained in $\nu_{3}\left(\mathbb{P}^{4}\right)$ whose span contains it:

$$
f=x_{0}^{2} x_{2}+6 x_{1}^{2} x_{3}-3\left(x_{0}+x_{1}\right)^{2} x_{4} .
$$

One can easily check that the following polynomial
$f_{\epsilon}=\left(x_{0}+\epsilon x_{2}\right)^{3}+6\left(x_{1}+\epsilon x_{3}\right)^{3}-3\left(x_{0}+x_{1}+\epsilon x_{4}\right)^{3}+3\left(x_{0}+2 x_{1}\right)^{3}-\left(x_{0}+3 x_{1}\right)^{3}$
has rank 5 for $\epsilon>0$, and that $\lim _{\epsilon \rightarrow 0} \frac{1}{3 \epsilon} f_{\epsilon}=f$.
Therefore f has border rank at most 5 .
Let us prove, by contradiction, that there is no saturated ideal $I \subset\left(f^{\perp}\right)$ of degree ≤ 5. Suppose on the contrary that I is such an ideal. Then $H_{R / I}(n) \geq H_{R /(f \perp)}(n)$ for all $n \in \mathbb{N}$ and $H_{R /(f \perp)}=[1,5,5,1,0, \ldots]$. As $H_{R / I}(n)$ is an increasing function of $n \in \mathbb{N}$ with $H_{R /\left(f^{\perp}\right)}(n) \leq H_{R / I}(n) \leq 5$, we deduce that $H_{R / I}=[1,5,5,5, \ldots]$. This shows that $I_{1}=\{0\}$ and that $I_{2}=\left(f^{\perp}\right)_{2}$. As I is saturated, $I_{2}:\left(x_{0}, \ldots, x_{4}\right)=I_{1}=\{0\}$ since $H_{R /(f \perp)}(1)=5$.

Generalization

Example (W. Buczyńska, J. Buczyński)

The following polynomial has border rank ≤ 5 but it doesn't exist any degree 5 zero-dimensional scheme contained in $\nu_{3}\left(\mathbb{P}^{4}\right)$ whose span contains it:

$$
f=x_{0}^{2} x_{2}+6 x_{1}^{2} x_{3}-3\left(x_{0}+x_{1}\right)^{2} x_{4} .
$$

One can easily check that the following polynomial
$f_{\epsilon}=\left(x_{0}+\epsilon x_{2}\right)^{3}+6\left(x_{1}+\epsilon x_{3}\right)^{3}-3\left(x_{0}+x_{1}+\epsilon x_{4}\right)^{3}+3\left(x_{0}+2 x_{1}\right)^{3}-\left(x_{0}+3 x_{1}\right)^{3}$
has rank 5 for $\epsilon>0$, and that $\lim _{\epsilon \rightarrow 0} \frac{1}{3 \epsilon} f_{\epsilon}=f$.
Therefore f has border rank at most 5 .
Let us prove, by contradiction, that there is no saturated ideal $I \subset\left(f^{\perp}\right)$ of degree ≤ 5. Suppose on the contrary that I is such an ideal. Then $H_{R / I}(n) \geq H_{R /(f \perp)}(n)$ for all $n \in \mathbb{N}$ and $H_{R /(f \perp)}=[1,5,5,1,0, \ldots]$. As $H_{R / I}(n)$ is an increasing function of $n \in \mathbb{N}$ with $H_{R /\left(f^{\perp}\right)}(n) \leq H_{R / I}(n) \leq 5$, we deduce that $H_{R / I}=[1,5,5,5, \ldots]$. This shows that $I_{1}=\{0\}$ and that $I_{2}=\left(f^{\perp}\right)_{2}$. As I is saturated, $I_{2}:\left(x_{0}, \ldots, x_{4}\right)=I_{1}=\{0\}$ since $H_{R /\left(f^{\perp}\right)}(1)=5$. But an explicit computation of $\left(\left(f^{\perp}\right)_{2}:\left(x_{0}, \ldots, x_{4}\right)\right)$ gives $\left\langle x_{2}, x_{3}, x_{4}\right\rangle$. Contradiction:

Generalization

Example (W. Buczyńska, J. Buczyński)

The following polynomial has border rank ≤ 5 but it doesn't exist any degree 5 zero-dimensional scheme contained in $\nu_{3}\left(\mathbb{P}^{4}\right)$ whose span contains it:

$$
f=x_{0}^{2} x_{2}+6 x_{1}^{2} x_{3}-3\left(x_{0}+x_{1}\right)^{2} x_{4} .
$$

One can easily check that the following polynomial
$f_{\epsilon}=\left(x_{0}+\epsilon x_{2}\right)^{3}+6\left(x_{1}+\epsilon x_{3}\right)^{3}-3\left(x_{0}+x_{1}+\epsilon x_{4}\right)^{3}+3\left(x_{0}+2 x_{1}\right)^{3}-\left(x_{0}+3 x_{1}\right)^{3}$
has rank 5 for $\epsilon>0$, and that $\lim _{\epsilon \rightarrow 0} \frac{1}{3 \epsilon} f_{\epsilon}=f$.
Therefore f has border rank at most 5 .
Let us prove, by contradiction, that there is no saturated ideal $I \subset\left(f^{\perp}\right)$ of degree ≤ 5. Suppose on the contrary that I is such an ideal. Then $H_{R / I}(n) \geq H_{R /(f \perp)}(n)$ for all $n \in \mathbb{N}$ and $H_{R /(f \perp)}=[1,5,5,1,0, \ldots]$. As $H_{R / I}(n)$ is an increasing function of $n \in \mathbb{N}$ with $H_{R /\left(f^{\perp}\right)}(n) \leq H_{R / I}(n) \leq 5$, we deduce that $H_{R / I}=[1,5,5,5, \ldots]$. This shows that $I_{1}=\{0\}$ and that $I_{2}=\left(f^{\perp}\right)_{2}$. As I is saturated, $I_{2}:\left(x_{0}, \ldots, x_{4}\right)=I_{1}=\{0\}$ since $H_{R /\left(f^{\perp}\right)}(1)=5$. But an explicit computation of $\left(\left(f^{\perp}\right)_{2}:\left(x_{0}, \ldots, x_{4}\right)\right)$ gives $\left\langle x_{2}, x_{3}, x_{4}\right\rangle$. Contradiction: there is no saturated ideal of degree ≤ 5 such that $I \subset\left(f^{\perp}\right)$. The minimal zero-dimensional scheme contained in $\nu_{3}\left(\mathbb{P}^{4}\right)$ whose span contains f has deg. 6.

Generalization

Since the Apolarity Lemma is true for any number of variables, what can we say about a possible relation between $I(Z),\left(f^{\perp}\right)$ and $\operatorname{ker}(C a t)$?
Moreover, which is the best catalecticant matrix to use in order to
control this relation?
Obviously, by definition, we have that $I(Z) \subset\left(f^{\perp}\right)$, but in general the equality $\left(f^{\perp}\right)=\operatorname{ker}(C a t)$ is not true anymore, or better, it doesn't exist
any catalecticant matrix for which this equality holds
In particular this happens when $r k(f) \geq \max \{r k C a t\}$ for the catalecticant matrix with maximum rank.
Therefore if we are in the case of rk(f) $\leq \max \{r k C a t\}$ we can still use Catalecticant matrices to construct the apolar ideal $\left(f^{-}\right)$in order to find the linear forms for a decomposition of f (that is what is shown above by the algorithm of larrobino and Kanev), but out of that range
Catalecticant matrices are not sufficient anymore.

Generalization

Since the Apolarity Lemma is true for any number of variables, what can we say about a possible relation between $I(Z),\left(f^{\perp}\right)$ and $\operatorname{ker}(C a t)$? Moreover, which is the best catalecticant matrix to use in order to control this relation?

```
Obviously, by definition, we have that I}(Z)\subset(\mp@subsup{f}{}{-})\mathrm{ , but in general the
equality (f+)}=\operatorname{ker(Cat) is not true anymore, or better, it doesn't exist
any catalecticant matrix for which this equality holds.
In particular this happens when rk(f)\geqmax{rkCat} for the catalecticant
matrix with maximum rank.
Therefore if we are in the case of rk(f)\leqmax{rkCat} we can still use
Catalecticant matrices to construct the apolar ideal ( }f-)\mathrm{ ) in order to find
the linear forms for a decomposition of f}\mathrm{ (that is what is shown above by
the algorithm of larrobino and Kanev), but out of that range
Catalecticant matrices are not sufficient anymore.
```


Generalization

Since the Apolarity Lemma is true for any number of variables, what can we say about a possible relation between $I(Z),\left(f^{\perp}\right)$ and $\operatorname{ker}(C a t)$? Moreover, which is the best catalecticant matrix to use in order to control this relation?
Obviously, by definition, we have that $I(Z) \subset\left(f^{\perp}\right)$, but in general the equality $\left(f^{\perp}\right)=\operatorname{ker}(C a t)$ is not true anymore, or better, it doesn't exist any catalecticant matrix for which this equality holds.
In particular this happens when $r k(f) \geq \max \{r k C a t\}$ for the catalecticant
matrix with maximum rank.
Therefore if we are in the case of $r k(f) \leq \max \{r k C a t\}$ we can still use Catalecticant matrices to construct the apolar ideal (f^{-}) in order to find the linear forms for a decomposition of f (that is what is shown above by the algorithm of larrobino and Kanev), but out of that range
Catalecticant matrices are not sufficient anymore.

Generalization

Since the Apolarity Lemma is true for any number of variables, what can we say about a possible relation between $I(Z),\left(f^{\perp}\right)$ and $\operatorname{ker}(C a t)$? Moreover, which is the best catalecticant matrix to use in order to control this relation?
Obviously, by definition, we have that $I(Z) \subset\left(f^{\perp}\right)$, but in general the equality $\left(f^{\perp}\right)=\operatorname{ker}(C a t)$ is not true anymore, or better, it doesn't exist any catalecticant matrix for which this equality holds.
In particular this happens when $r k(f) \geq \max \{r k C a t\}$ for the catalecticant matrix with maximum rank.

> Therefore if we are in the case of $r k(f) \leq \max \{r k C a t\}$ we can still use
Catalecticant matrices to construct the apolar ideal $\left(f f^{\perp}\right)$ in order to find
the linear forms for a decomposition of f (that is what is shown above by the algorithm of larrobino and Kanev), but out of that range

Catalecticant matrices are not sufficient anymore.

Generalization

Since the Apolarity Lemma is true for any number of variables, what can we say about a possible relation between $I(Z),\left(f^{\perp}\right)$ and $\operatorname{ker}(C a t)$? Moreover, which is the best catalecticant matrix to use in order to control this relation?
Obviously, by definition, we have that $I(Z) \subset\left(f^{\perp}\right)$, but in general the equality $\left(f^{\perp}\right)=\operatorname{ker}(C a t)$ is not true anymore, or better, it doesn't exist any catalecticant matrix for which this equality holds.
In particular this happens when $r k(f) \geq \max \{r k C a t\}$ for the catalecticant matrix with maximum rank.
Therefore if we are in the case of $r k(f) \leq \max \{r k C a t\}$ we can still use Catalecticant matrices to construct the apolar ideal (f^{\perp}) in order to find the linear forms for a decomposition of f (that is what is shown above by the algorithm of larrobino and Kanev), but out of that range Catalecticant matrices are not sufficient anymore.

Generalization

A generalization of Sylvester's algorithm to any number of variables that uses this techniques is given by larrobino and Kanev only under the hypothesis $r k(f)=\max \{r k C a t\}$.
[Algorithm, larrobino and Kanev]
Input: $f \in S^{d} V$, where $\operatorname{dim} V=n+1$.
(1) Construct the most square possible catalecticant $C_{f}^{m}=C_{f}$ with $m=\left\lceil\frac{d}{2}\right\rceil$.
(2) Compute ker C_{f}. If $r k(f)=r k\left(C_{f}\right)$ then continue, otherwise stop here.
(3) Find the zero-set $Z^{\prime}=\left\{\left[L_{1}\right], \ldots,\left[L_{s}\right]\right\}$ of the polynomials in $\operatorname{ker} C_{f}$.
(9) Solve the linear system defined by $f=\sum_{i=1}^{s} c_{i} L_{i}^{d}$ in the unknowns C_{i}.

Output: Waring decomposition of f.

Generalization

Example

Compute a Waring decomposition of $f=$
$3 x^{4}+12 x^{2} y^{2}+2 y^{4}-12 x^{2} y z+12 x y^{2} z-4 y^{3} z+12 x^{2} z^{2}-12 x y z^{2}+6 y^{2} z^{2}-4 y z^{3}+2 z^{4}$.
The most square Catalecticant matrix is the one associated to the map $K\left[\partial_{x}, \partial_{y}, \partial_{z}\right]_{2} \rightarrow K[x, y, z]_{2}$ that is

$$
M_{2,2}=\left(\begin{array}{rrrrrr}
3 & 0 & 0 & 2 & -1 & 2 \\
0 & 2 & -1 & 0 & 1 & -1 \\
0 & -1 & 2 & 1 & -1 & 0 \\
2 & 0 & 1 & 2 & -1 & 1 \\
-1 & 1 & -1 & -1 & 1 & -1 \\
2 & -1 & 0 & 1 & -1 & 2
\end{array}\right)
$$

Now compute the Kernel of $M_{2,2}$ that is $K=\langle(1,0,0,-1,-1,-1)$, $(0,1,0,-1,-2,0),(0,0,1,0,2,1)\rangle \subset K\left[\partial_{x}, \partial_{y}, \partial_{z}\right]_{2}$, hence the rank of $M_{2,2}$ is
3. Write for simplicity $X=\partial_{x}, Y=\partial_{y}$ and $Z=\partial_{z}$. Now $K=\left\langle X^{2}-Y^{2}-Y Z-Z^{2}, X Y-Y^{2}-2 Y Z, X Z+2 Y Z+Z^{2}\right\rangle$ and it is not difficult to see that the set of points $\{(1,1,0),(1,0,-1),(1,-1,1)\}$ vanishes on K. Hence we can take $L_{1}=(1,1,0)=x+1, L_{2}=(1,0,-1)=x-z$ and $L_{3}=(1,-1,1)=x-y+z$ and our original polynomial f turns out to be a linear combinations of those forms, in particular

Generalization

This method works only if $r k(f)=\max \{r k C a t\}$. Unfortunately, as already observed, Catalecticant matrices are not always working. Nowadays the best
idea to generalize the method of catalectican matrices is due to Brachat, Comon, Mourrain and Tsidgaridas that developed an algorithm that get rid of the restrictions imposed by the usage of catalecticant matrices. The idea developed is to use the so called Henkel matrix that in a way encode all the informations of all the catalecticant matrices. Let the Henkel matrix is the matrix associated to the following map:

$$
H_{f}: S^{*} \rightarrow S \text {, such that } \partial \mapsto \partial(f) .
$$

Such an application is linear, where the entries of an associated matrix coincide with the entries of catalecticant matrices, but they are not all known.

Proposition

$\operatorname{Ker}\left(H_{f}\right)$ is an ideal.

Generalization

This method works only if $r k(f)=\max \{r k C a t\}$. Unfortunately, as already observed, Catalecticant matrices are not always working. Nowadays the best idea to generalize the method of catalectican matrices is due to Brachat, Comon, Mourrain and Tsidgaridas that developed an algorithm that get rid of the restrictions imposed by the usage of catalecticant matrices.

developed is to use the so called Henkel matrix that in a way encode all the
 informations of all the catalecticant matrices.
 Let the Henkel matrix is the matrix associated to the following map

$H_{f}: S^{*} \rightarrow S$, such that $\partial \mapsto \partial(f)$.
Such an application is linear, where the entries of an associated matrix coincide with the entries of catalecticant matrices, but they are not all known.

Proposition

$\operatorname{Ker}\left(H_{f}\right)$ is an ideal.

Generalization

This method works only if $r k(f)=\max \{r k C a t\}$. Unfortunately, as already observed, Catalecticant matrices are not always working. Nowadays the best idea to generalize the method of catalectican matrices is due to Brachat, Comon, Mourrain and Tsidgaridas that developed an algorithm that get rid of the restrictions imposed by the usage of catalecticant matrices. The idea developed is to use the so called Henkel matrix that in a way encode all the informations of all the catalecticant matrices.
Let the Henkel matrix is the matrix associated to the following map:

Such an application is linear, where the entries of an associated matrix coincide with the entries of catalecticant matrices, but they are not all known.

Proposition

Ker(H) is an ideal.

Generalization

This method works only if $r k(f)=\max \{r k C a t\}$. Unfortunately, as already observed, Catalecticant matrices are not always working. Nowadays the best idea to generalize the method of catalectican matrices is due to Brachat, Comon, Mourrain and Tsidgaridas that developed an algorithm that get rid of the restrictions imposed by the usage of catalecticant matrices. The idea developed is to use the so called Henkel matrix that in a way encode all the informations of all the catalecticant matrices.
Let the Henkel matrix is the matrix associated to the following map:

$$
H_{f}: S^{*} \rightarrow S, \text { such that } \partial \mapsto \partial(f)
$$

Such an application is linear, where the entries of an associated matrix coincide with the entries of catalecticant matrices, but they are not all known.

Proposition

$\operatorname{Ker}\left(H_{f}\right)$ is an ideal.

Does $\operatorname{ker}\left(M_{d-r, r}\right)$ define the apolar ideal?

Hankel operators

$$
\begin{aligned}
H_{\Lambda}: R & \rightarrow R^{*} \\
p & \mapsto p \cdot \Lambda
\end{aligned}
$$

Catalecticant Matrices
where $p \cdot \Lambda: q \mapsto \Lambda(p q)$.

$$
\begin{aligned}
M_{d-k, k}(F): & T^{k} V
\end{aligned} \rightarrow S^{d-k} V .
$$

$r k H_{\Lambda}=r$ iff $\operatorname{ker} H_{\Lambda}=I_{\Lambda}$ is a radical ideal. $\Lambda=\sum_{i=1}^{r} \gamma_{i} \mathbf{1}_{z_{i}}$ with $\gamma_{i}>0$ and z_{i} are distinct points of T_{1}.

