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Secant Varieties



Waring

The classic Waring'’s problem (1770)

Lagrange
@ every natural number is the sum of at most 4 squares.

Waring in Meditationes Algebricae
@ every natural number is the sum of at most 9 cubes;

@ every natural number is the sum of at most 19 forth
powers.

Waring proposed a generalization of Lagrange’s four-square

theorem

@ every natural number is the sum of at most g(d) d*
powers of natural numbers.
S0 9(2) =4,9(3) =9, g(4) =19.
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Waring

The classic Waring’s problem

Only in 1909 Hilbert proved that g(d) exists for all d. |

Note that:

g(3) = 9 but only 23 e 239 actually need 9 cubes, while 8 cubes
suffice for all other natural numbers.

Even more is true, and only few natural numbers require 8
cubes and 7 cubes are enough for all large enough natural
numbers.
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Waring

The Waring Problem for Polynomials

Given a degree d form F in n variables, the

Waring Problem for Polynomials
asks for the least value of s for which there exist linear forms
Ly, ..., Ls such that

F=019+...+19

This value of s is called the Waring rank of F and will be
denoted by rk(F), so

tk(F)=min{s | F=L9+... + L9}.
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Waring

Veronese Variety

A Veronese Variety is the image of the embedding
Vg P"— PN
d
N= () -
via the forms of degree d of the homogeneous coordinate ring

R = Clxo, ..., Xn].
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vo i P2 — PO

(a,b,c) — (&, ab, ac, b?, bc, ¢?)
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Waring

Veronese Variety

A Veronese Variety is the image of the embedding

P"=P(Ry) — PN =P(Ry)

(L] — L]
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VQ:IP’Z—HP’S

[ax+ by + cz] — [@®Xx?+2abxy +2acxz+ b?y? +2bcyz + c222].

Hence, if we use as a basis for Ry the monomial of degree d
and order them lexicographically and write things with respect
to coordinates, we get that the map is defined by

(a,b,c) — (&, 2ab, 2ac, b2, 2bc, c¢?).
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Waring

Veronese Variety

It is clear that the two methods of describing the Veronese

embeddings are equivalent in characteristic zero.

The second method gives us a bridge between the
Waring problem for forms

and the
higher secant varieties of the Veronese variety.

Recall that
the Waring rank of F = min{s | F = L + ...+ L9}.

Example
4xy = (x + )2 + (ix — iy)?

(0,4,0) =(1,2,1)+(—-1,2,-1)
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Sigma s

Definition of higher secant variety

Let X c PN be a reduced, irreducible, non-degenerate
projective variety, i.e., X arises as the set of zeros of a prime
homogeneous ideal which does not contain any linear forms
(i.e. X does not lie in any projective linear subspace of PV).

The s!" secant variety of X, denoted by os(X), is the closure of
the union of all linear spaces spanned by s linearly independent
points of X, that is

Us(X):: U <P1,...,Ps>
PiexX

When s = 2 we refer to 05(X) as the secant line variety,
when s = 3 the secant plane variety and so on.
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Sigma s

General forms

Example.

If Fis a general form of degree d in n+ 1 variables, then the
rank of F is the minimum s such that o4(X) fiills the ambient
space, where X is the Veronese variety v4(P").
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Sigma s

Problem

Important questions to answer about os(X).

@ What is the minimal free resolution of the ideal of o5(X)?
@ What is the degree of o5(X) ?
@ What are the equations defining os(X) ?

What is the dimension of o4(X) ?
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Sigma s

Dimension of Secant Variety

By a parameter count we get

‘expdim 0s(X) = min{sdimX +s—1; N} ‘

If 05(X) does not have the expected dimension, we say that X
is defective.

Note that, for
s(dimX+1)> N+ 1

we expect o5(X) to fill PN, and it is not a coincidence that:

dimX + 1 is the degree of a double point on X.
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Sigma s

Motivation

Strong motivation for studying the secant varieties

@ connections to questions in
Representation Theory,
Coding Theory,
Algebraic Complexity Theory,
Statistics,
Phylogenetics ,
Data Analysis,
Electrical Engineering (Antenna Array Processing and
Telecommunications),
etc
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Sigma s

Secant Varieties and Tensor decomposition

@ Connection with the problem of how to minimally represent
certain kinds of tensors as a sum of decomposable ones:

Rank of Tensors
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Sigma s

Example:
The Segre-Veronese Variety is the image of the mapping
Yy P(V4) % ... x B(Vy) — P(S" Vi @ ... S*Vy)

] % ..ox [vi] — V&% @ .. @ vP%,

hence parameterizes partially symmetric tensors.
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Sigma s

Segre Variety

A Segre Variety is the image of the embedding
V1,1 P ox L x Pt es PN

N:I'I(n,-+1)—1

via the forms of multi-degree (1,..., 1) of the multi-graded
homogeneous coordinate ring

(C[XOJ y oo Xng 15 X0,25 -5 Xnp 25 o X0Oot5 -5 tht].
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Sigma s

Example

va1) P x P x P! — P
(X0, X1) X (Yo, ¥1) x (20,21) —

(Xo¥Y0Z0, XoYoZ1, Xo¥12Z0, XoY1Z1, X1Y0Z0, X1Y0Z1, X1Y120, X1Y12Z1).
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Sigma s

Segre-Veronese Variety

A Segre-Veronese Variety is the image of the embedding
Udy,...d) - P™ X o x Py PN

N =N - 1

via the forms of multi-degree (di, . . ., d;) of the multi-graded
homogeneous coordinate ring

(C[XOJ ) eeny Xn1’1 ; X0’2, ceey Xn2,2; cee) XO,t: ey Xn,,t]-

@ Fort =1, X is a Veronese Variety.
@ Fordi =---=d=1,Xis a Segre Variety.
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Sigma s

Example

Y12y P2 x PT — P®

(X0, X1, X2) X (Yo, 1) —

2 2 2 2 2 2
(X0¥5s XoYoY1, Xo¥1, X1¥5, X1YoY1, X1Y1, Xo¥5, XoYoY1. Xo¥7).
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Sigma s

Varieties of A\-reducible forms

In 1954, Mammana introduced the varieties of reducible plane
curves:

consider the space Sy of forms of degree d in 3 variables and
let A\ = (dy, ..., dr) be a partition of d.

Xon CPN, N= (2;‘:!) —1

is the variety parameterizing forms F which are the product of r
forms F; with deg F; = d}, that is,

F=F ---FcS,.
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Sigma s

Varieties of A\-reducible forms

The varieties of reducible hypersurfaces are an obvious
generalization:

consider the space Sy of forms of degree d in n+ 1 variables
and let A = (di, ..., d;) be a partition of d.

Xpa CPN) N = (”;d> —1

is the variety parameterizing forms F which are the product of r
forms F; with deg F; = 0}

F=F ---FcS,
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Meth x SV

24/103 M.V. Catalis:



Meth x SV

Method for Segre-Veronese

The problem of determining the dimension of o5(X) is related
(via the theory of inverse systems or, equivalently, apolarity) to
determining the Hilbert Function of a
0-dimensional scheme made by
the first infinitesimal neighbourhoods
of s generic points
(this is equivalent to what is classically known as Terracini’s
Lemma).

25/103 M.V. Catalisano Secant Varieties



Meth x SV

Step 1 - Terracini’'s Lemma

Let P € 04(X) be a generic point
Pe<Py, ....Ps>, (PieXcPN).
@ Then by Terracini's Lemma :
Tp(0s(X)) =< Tp,(X), ccvcvvcees, Tp(X) >

=< 2P1‘X+ .......... +2P3’X >
@ hence
dimos(X) = dim Ta(os(X))

=dim < 2P; |X+ .......... +2PS|X>

=N - dim(lgp1 [ — +2Ps|3§)1'
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Meth x SV

Step 2 : Segre-Veronese map

Let
V(dy,....dp) - (P’H X ... X ]P)nf) X C ]P)N

Q eP™ x ... x P™: PieX
Q,' — P,'
the scheme of double points
2P1 bg—l— .......... +2P3|X Cc X

corresponds to the scheme

2Q1 + ... +2Qs CPM x ... x P,
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Meth x SV

Step 2 : Segre-Veronese map

and we have

dim(bap, ... +2Ps|, )1 = AiM(bgy 4 ... +20.) (...

hence

dimos(X) = N —dim(kp,

=N —dim(kq,+.....+20:)(d,,....d)
= HF (201 + o —I—QQS,(d1,...,dt))—1
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Meth x SV

Veronese Varieties

Thus, in case X is the Veronese Variety, we have

dimog(X) ==N—dim(kq, ... 120.)d
fy HF (201 + ....... + 203, d) - 1
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Meth x SV

Veronese Varieties

The work by J. Alexander and A. Hirschowitz (1995) confirmed
that apart from the quadratic Veronese varieties and a (few)
well known exceptions, all the Veronese varieties X = vy4(P")
have higher secant varieties of the expected dimension. More
precisely, o5(X) is defective only in the following cases:

@ed=2and2<s<nm
en=2,d=4,s=5;
en=3,d=4,5s=09;
en=4,d=38,5s=7;
e n=4,d=4,s=14.
Hence if X is a Veronese Variety the problem of finding
the dimension of o5(X)

is solved and the Waring Problem for a generic polynomial is
solved also.
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Meth x SV

Veronese Varieties

Except the cases listed above, if
@ Fis a generic form of degree d in n+ 1 variables.

d+n
rk(F) = {f”liﬂ

(Alexander - Hirschowitz , 1995).
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Meth x SV

Example of a defective Segre variety

X = the Segre embedding of P! x P? x P° ¢ P%°

is defective for s =5
expdimos(X) =min{5-8 +4; N} =min{44;35} =35=N

that is, we expect o5(X) = PV, i.e., we expect that the ideal of 5
double points in degree (1,1, 1) is zero.

But there exist F; of degree (1,1,0), and F, of degree (0,0, 1)
in the ideal of 5 points, hence

F=FF

is a form of degree (1,1, 1) in the ideal of 5 double points.
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Meth x SV

Step 3: the Multiprojective-Affine-Projective Method

@ Let
T = k[XOJ./ vy Xny 11 X0,25 +-y Xnp 25 -+ X0t ooy Xn[,t]

be the multigraded homogeneus coordinate ring of
PM x ... x P,

o Let

S = k[t/ X115 Xn 10 X125 s Xnp 20 o0 X9ty oy Xnt-,f]

be the coordinate ring of P71 +--+"
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Meth x SV

Step 3: the Multiprojective-Affine-Projective Method

dim T(d1 _____ dy) = dim(lW)(dﬁerdt)

where
Toh,.....c)
is the vector space of the forms of multidegree (ds, ..., d;) of T;

W= (n2+...+nt)/\1 +(n1 +n3+...+nt)/\2+ ..... +(n1 +...+nt,1)/\t

and the
Aj =~ PN~

are generic linear spaces of P +-+",
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Meth x SV

Step 3: the Multiprojective-Affine-Projective Method

Then

dim(bq,+.....+20s)(dh,....d) = AMIwi2p 4 ... 4+2P ) dy +.. 40y

where
W+2P; +....... +2Pg C Pt

Py, , Ps are generic points
W= (no+..+n)\ +.... + (M4 .o+ )N
Aj ~ P~ c P+ are generic linear spaces
thus

dimog(X) =N - d?m(IZOﬁ- ....... +2Q5)(dy..,dh)
=N —dim(lwi2p,+.....+2Ps)dy+..+d

imposes to the forms of (Iw)d,+..+a,

= —1+ number of conditions that 2P; + ....... + 2P
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Meth x SV

Notation

PM x ... x PNt

(di,...,dr)

instead of v, q)(P™ x ... x P™).
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Meth x SV

Example of a defective Segre-Veronese variety

P! x P° x P5

is defective for 7 < s < 11

@ N=3x6x6—-1=107; expdimo7(X) =7x12 -1 =83;

@ W =2A; +3As +3A;3 C P where Ay ~ P9, A, ~ P4,
A3 ~ P* i.e., W is a subscheme of P'" formed by one
double point and two triple linear spaces of dimension 4;

@ there exists an r.n.c. C maximally intersecting the
configuration Az + Az+ 8 points (—, Carlini (2009));

@ degC-deg F = 11-4 =44, where F € (lwiop,+..12P;)4;

@ degree
(CN(W+2Py+...+2P7))=2x2x542x8=46.

Then we conclude that our variety is 7-defective.

(2,1,1)
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Meth x SV

Example of a defective Segre-Veronese variety

@ expdimoq1(X) =107; N =107;
hence we expect that 011 (X) = P17 or, equivalently, that
there are not forms of degree 4 in (lw,2p,+.. +2p,,), Where
W is as above, that is, W is a subscheme of P'! formed by
one double point and two triple linear spaces Ay and A, of
dimension 4.

But there is a quadric S; through 2A1 + Ao+ the 12 points, and,
analogously, there is a quadric S, through Ay + 2A>+ the 12
points. (In fact the quadrics of P! “are” 78, and the conditions
given to the quadrics by 2A1 + Ao+ 12 points are

50 + 15+ 12 = 77). The form corresponding to the quartic

S1S2isin (Iw2p;+..+2p;; -
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Meth x SV

Example of a non defective Segre-Veronese variety

P? x P!
(2,1)
expdimog(X) = min{4s—1;11}

hence we expect o3(X) to fill PV and dim o(X) = 7.
W c P is formed by a line, say L, and one double point, say
2Py. Since

dim(/Ly2py+2p,+2pP,)3 = 4
dim(/L2py1 2P, +2P,+2P,)3 = 0

we have
dimox(X)=11-4=7

dim o3(X) = 11.
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Meth x SV

Example of a defective Segre-Veronese variety

P2 x P is defective iff s =5

(2,1)
Let
X=vpn(P?xP°) CP®; ¥ =yqq)(P°xP°) P

By a direct computation, we get 04(X) = 04(Y)=31. Hence
0s(X) = o5(Y) for s > 4.
Since

dimoys(Y) =31  expdimoy(X) = 31

dim U5(Y) =34, dim JG(Y) =35
exp dim o5(X) = expdim og(X) = 35

we have that X is defective iff s = 5.
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Step4

Step 4: Specialization and méthode d’'Horace

Recall that:

let Z C P" be a scheme corresponding to the ideal sheaf Z,
and let H C P" be a hyperplane.
The trace of Z with respect to H is the schematic intersection
Try(Z) =Z N H.
The Residual Resy(Z) of Z with respect to H is defined by the
ideal sheaf Z7 : Opn(—H).
Taking the global sections of the exact sequence

0 = ZResyz(d — 1) = Zz(d) — Ig,,(z)(d) — 0,
we obtain the so called Castelnuovo exact sequence

0 = (lresyz)a—1 — (Iz)a — (ITfH(Z))d

from which we get the following inequality

dim(/z)g < dim(/HesHZ)dA + dim(leH(Z))d'
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Step4

Step 4: Specialization and méthode d’'Horace

@ In order to compute dim(/w.2p,+...+2P;)d,+..+d, » SPecialize
the scheme Y = W + 2P; + ... + 2Ps by placing some of
the P; on a hyperplane. Let Y be the specialized scheme.

@ In some cases, specialize Y in such a way that new linear
spaces are in the base locus for the hypersurfaces defined
by the forms of (/5)d,+...+q;-

@ then use Castelnuovo Lemma

dlm(/?)d < dim(IResHY/)d*1 + dim(/ﬁH?)d

(where H is a hyperplane)
@ or Horace Differential Lemma
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P! x .... x P! (t times)

we have to compute dim(/x); where
X=t-1)Qi+ ..+ (t—1)Q+2P1 + ... + 2Pop.

Example:
for t =7 and s = 16 we have to compute

dim(le@, +..+6Q+2P; +...+2P;)7
(Note that 2’ = 128 = 16 - 8))
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@ Specialize on a hyperplane H the points
Qo,...,Q7, Py, ..., Ps.

@ The 8lines Ly = Q1 Py, ..., Lg = QP4 are in the base
locus of the hypersurfaces defined by the forms of (/x)7,

@ hence
(Ix)7 = (lv)7

where
Y:X+L1 +...+L8.

@ Now use Castelnuovo Lemma:

dim(ly)7 < dim(/ResHY)6 + dim(/TfHY)7

and induction.
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@ Since the hypersurfaces defined by the forms of (/ges,,v)e
are cones with vertex in Q; we have

dim(/res, v)s = diM(l5q, 1. 150, P+t Ps+2Py+..42P;5)6-

@ Since < Q, ..., Q; > is in the base locus of the
hypersurfaces defined by the forms of (/7,y)7, we get

dim(fm,v)7 = dim(lsq, . 50,42p,+. 1218 simple points)s

@ and now we are in

P! x ... x P! (6 times )
(1,...,1)
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S.2

Segre of two factors

P x P everything is well known
(1,1)

The case for Segre varieties with two factors is very well
understood since all of the theory is in terms of ranks of
matrices and that is understood very well from both an
algebraic and geometric standpoint.
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S.2

Segre of two factors

ALL THE THEORY IS IN TERMS OF RANKS OF MATRICES

P2 x P3 — P,
ap ap bo ao b4 ao bo ap b3
a| x [bo by bo b3] = | &1 bo aiby ajbo a4 b3
as as bo ao b1 ao b2 aos b3

The product of the two projective spaces (P x P") can be
identified with the (m+ 1) x (n+ 1) matrices of rank 1 and the
general points on o5(X) are the sums of s matrices of rank 1.
(A matrix has rank < s if and only if it is the sum of s matrices
of rank 1.)
In the example

dimoy(X)=11-2=9
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By our method

P2 x P3 — P,
expdimos(X) = min{6s —1;11}

hence
expdimop(X) = 11

dim UQ(X) =11 - dim(/W+2p1+2p2)2
W c PS is formed by a line and a plane. By projecting from the
two points P; and P, we get
dim(lw+2p;+2p,)2 = dim(/w)2

where W’ c P8 is still formed by a line and a plane,
hence
dimos(X) =11 -2=09.
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Sv2

Segre-Veronese of two factors

P x P there are only partial results
(a,b)
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Segre-Veronese of two factors with b = 1

PM x P7
(a,1)
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Sv2

Segre-Veronese of two factors with b = 1

is defective for s =5

(3,1) London (1890); Dionisi, Fontanari (2001); Carlini ,
Chipalkatti(2001)
P2 x P! is defective only fora=3,s=5 (§
(a1) Dionisi, Fontanari (2001)
P3 x P2 is defective fors =5 (6 = 1)
(2,1) Carlini, Chipalkatti(2001)
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Sv2

Segre-Veronese of two factors with b = 1

is defective fors =6 (5 = 1)

(2,1) Carlini, Chipalkatti(2001)
P5 x P2 is defective for s =8 (6 = 2)
(2,1) Carlini, Chipalkatti(2001)
P! x PN is never defective
(a,1) Chiantini, Ciliberto (2002)
P x P" is never defective
(n+1,1) -, Geramita, Gimigliano (2005)
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is not defective for

where:
1)(m+a
sp<q(n+1) < {WJ (g eN);

(n+1)(m;—a)-" (t = N)

so>Hn+1) > [ (m+n+1)

Bernardi, Carlini, - (2010)
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Sv2

Segre-Veronese of two factors with b = 1

is defective for s = 3k + 2
Ottaviani (2008)

is not defective for s < sy and n < m + 2; or for
S > S, where:

S = (n+ 1) L
sy=(n+1)

(n—2)(n+1)
2

if mis even;
— (1=3)1) it m and n are odd ;
(1=8)0+DE1 if p is even and m

ISERSERSE

[ [ I T T

+1 if mis even;
+ 3 otherwise.

Abo, Brambilla (2009)

r | e—

ISERSE]
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Sv2

Segre-Veronese of two factors with b = 1

P™ x P™ is never defective
(2,1) Abo (2010)
P7 x Pm-1 is defective only for (m,m —1) = (4,3)and s =6

(2,1) Abo (2010)
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(2,1)

is never defective, except for

1) n> (™33 — m (i.e., it is unbalanced) and
(M2 —m<s< mln{n+ 1, (™53}

2) (m,n,s)=(2k+1,2,3k+2)con k > 1,
3) (m,n,s) =(3,4,6).

Abo, Brambilla (2012)
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Segre-Veronese of two factors with n = 1
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Sv2

Segre-Veronese of two factors with n = 1

P! x P! is defective only for (a, b) = (2,2d) and s = 2d + 1
(a,b) -, Geramita, Gimigliano (2005)

P2 x P! is defective only for (a, b) = (3,1), (a,b) = (2,2d)
(a,b) Baur, Draisma (2007)
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Sv2

Segre-Veronese of two factors with n = 1

PM x P! is defective iff dm+1)+1<s<d(m+1)+m
(2,2d) Abrescia (2008)
P™ x P! is never defective

(2,2d + 1) Abrescia (2008)

P™ x P! is defective only for m=2,b =1
(3,b) Abrescia (2008)
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Sv2

Segre-Veronese of two factors with n = 1

if b > 3, it is defective only for
(a,b) =(2,2d), dim+1)+1<s<d(m+1)+m
Abo, Brambilla (2009)

is defective only for
m=2, (a,b)=(3,1), s=5 and for
(a,b) =(2,2d), dim+1)+1<s<d(m+1)+m

Ballico, Bernardi, - (2011)
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Sv2

Segre-Veronese of two factors

P2 x P2 is defective for s = 8

(2,2) -, Geramita, Gimigliano (2005)
P" x P? is defectivefor s = 3n+ 2

(2,2) -, Geramita, Gimigliano (2005)

Bocci (2005)

P3 x P3 is defective for s = 15

(2,2) -, Geramita, Gimigliano (2005)
P2 x P4 is defective for s = 19

(2,2) Bocci (2005)
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is never defective, except for
1) b=1, m> 2 and it is unbalanced ;
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P™ x P" for (a, b) > (8, 3), it is never defective
(a,b) Abo, Brambilla (2009)
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The unbalanced case

is defective for
N— 30 ni+1 < s <min{n; N} where
N = I'If:1(n,~+1) —1

C. - Geramita - Gimigliano (2005)

is defective for
N - n+1<s<min{n; N}, where

N = (")
C. - Geramita - Gimigliano (2008)
Abo - Ottaviani - Peterson (2009)
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P! x P2 x P/

is 4 and 5-defective

(1,1,1)

Let X denote this unbalanced Segre Variety. We have:
X C P¥, expdim o4(X) = 43, exp dim o5(X) = 47,
dim(kp, y2p,+2P3+2R,)(1,1,1)) = (6 —4)(8 - 4) =8
dim(kp, 12p,12Ps+2P,+2Ps)(1,1,1)) > (6 —5)(8 = 5) =3
hence dim o4(X) < 47 — 8 = 39, dimo5(X) < 47 — 3 = 44,

68/103 M.V. Catalisano Secant Varieties



SeSVmany

Segre - many copies of P”

P" x .... x P (t times ) § has the expected dimension for s = p(n+ 1)

(1, e 1) for n=1, and some t,

Sloane(1982), Hill (1986), Roman (1992);
for n =1, C. - Geramita - Gimigliano (2005);
for n > 1, Abo - Ottaviani - Peterson (2009).
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Many copies of P

P! x ... x P! (t times ) )] is never defective if t > 5

t = 6: Draisma (2008);

t > 7: C. - Geramita - Gimigliano
(2011)

| A\

is never defective if t > 5

Laface - Postinghel
(2013)

v
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for Segre Varieties (true for s < 6)

71/103

is never defective, except

1) unbalanced;

2) P2 x P? x P3,fors =565 = 1;

2) P2 x P" x P", with n even,
fors =30 +1;6s=1;

3) P! x P! x P" x P",
fors=2n+1;d00n.1=1.

Abo - Ottaviani - Peterson (2009)

M.V. Catalisano Secant Varieties



SeSVmany

P! x ... xP" (9 times)

We have to compute dim(/x)g
where

X=8Qi+..+8Qy+2P; +..+2Ps; Cc P°

@ Specialize on a hyperplane H the points
Qg, ceny Qg, P1 yeeny P25;
specialize Py on < Qy, Qo, Qs, Pog >= My ~ P3,
specialize Pag on < Qq, Q4, Qs, Pog >= My ~ P3.

@ 1y and I, are in the base locus of the hypersurfaces
defined by the forms of (/x)s.
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@ The 26 lines L; =< @y, P; > (i = 26, ...,51) are in the base
locus of the hypersurfaces defined by the forms of (/x)g.

@ Let
Y=T41+4+ Mo+ Log+... + Lg; + X.

@ Now use Castelnuovo Lemma:

dim(ly)g < dim(/ResHY)B + dim(/Tr,_,)g-
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Method for varieties of reducible forms

Recall that

Xpa CPV, N= (”;d> 1

is the variety parameterizing forms F which are the product of
r forms F; with deg F; = @}, that is,

F=F - F.
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Varieties of A\-reducible forms

Very little is known about the secant varieties of the varieties of
reducible forms.

2011 - Arrondo -Bernardi

@ A= (1,...,1) (Split hypersurfaces)

@ Secant line variety to the varieties of split plane curves
2014 - Abo
@ All the higher secant varieties of split plane curves

76/103 M.V. Catalisano Secant Varieties



Varieties of A\-reducible forms

Conjecture (Arrondo, Bernardi)

@ The higher secant varieties for split hypersurfaces always
have the expected dimension
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Step 1 - Terracini’'s Lemma

Let Q € 05(X) be a generic point
Qe< Py, ...,Ps>,  (PieX,\cPN).

Then by

that is, the dimension of 05(Xp ) is the dimension of the linear
span of Tp, (Xn ), .-, Tp(Xn)-
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Step 2- The tangent space to X, at a general point

Let P = [F] € X\ be a general point,
F=F - F

and let /p be the following ideal
e (£ F
P=\Fv " F,

Tp = P((Ip)q)-

then
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Step 3- The dimension of 05(Xp, )

Let P4, ..., Ps be general points of X, », and let
I=1p, + -+ Ip,

then
dimos(X, ) =dim (/)g — 1.

Note that, if s =2

dim (/)¢ = dim(lp,)d + dim(lp,)d — dim(/p, N Ip,)q.
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Varieties of A\-reducible forms

2014 - - Geramita, Gimigliano, Shin

@ All the higher secant line variety to the varieties of
A-reducible curves

2015 - - Geramita, Gimigliano, Harbourn, Migliore, Nagel, Shin

@ Many higher secant line variety to the varieties of
A-reducible hypersurfaces
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F specific

Answers

The problem of finding rk(F) is solved in few cases:

@ F has degree 2.
rk(F) = rk(M)

where M is the symmetric matrix associated to F .
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Answers

@ Fis abinary form, thatis, F € C[x, y].

We have the Sylvester’s algorithm (Sylvester 1886; Comas
Seiguer 2001; Brachat, Comon, Mourrain,Tsigaridas 2009;
Bernardi, Gimigliano, Ida (2011)).

Let
FL ={0eC[X,Y]|OF =0}.
In this case F+ = (f;, &) . If deg f; < deg f, we have

_ [degfi if f; is square free
k(F) = {deg f otherwise
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Answers

@ If some algorithms work.

(larrobino, Kanev; Landsberg, Teitler; Buczynska,
Buczynski; Brachat, Comon, Mourrain, Tsigaridas;
Bernardi, Gimigliano, lda; Oeding, Ottaviani)
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F specific

Answers

@ F € Clx,y, z] has degree 3, i.e. F represents a cubic
curve.

We have an explicit algorithm (Comon, Mourrain, Reznick;
1996).

In particular we have that :

the maximum rank for a ternary cubic is 5.
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Maximum rank

A natural question arises:

What is the maximum rank

for a form of degree d in n variables?.
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Answers

@ The maximum rank for ternary quartics is 7.

@ The maximum rank for ternary quintics is 10.
(De Paris, 2015)
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Answers

@ Fis a monomial.

where1 < gy < .. <ap

(Carlini, - , Geramita, 2011)
(Buczynska, Buczynski, Teitler, 2012)
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Answers

@ some reducible forms (b > 2):

o F=xg(x+xp)

rk(F) = {2(

o F=x3(x¢+xP+ x2)

rk(F) = {2(

(Carlini - Geramita, 2012)
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F specific

Answers

@ F=x3xP+ - +xb)

tk(F) = (a+1)m if a+1>b

@ F=x3(x0+xP+- +xb)

rtk(F)=(a+1)m if a+1>b

(Carlini, - , Geramita, 2012)
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F specific

Answers

@ the Vandemonde determinant

Vh = H1§i<j§n(xi - Xj) € C[x1, ..., Xn]

tk(Vp) = (n+1)!

(Carlini, -, Chiantini, Geramita, Woo, 2015)
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Answers

@ F=x5G(xq,..., Xn)

If G- = (g1,...,9n) is a complete intersection and
degg; > a+1, then

rk(F) =NY degg;

(Carlini, - , Chiantini, Geramita, Woo, 2015)
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MethxFspecific
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MethxFspecific

@ Apolarity Lemma
Let
S:C[XO,,Xn] T:C[XO..Xn]

FGSd,
FLt={0eT|doF=0}.

LetLy,..., L, be pairwise linearly independent linear forms,
with L; corresponding to the point P;, and X = {Px, ..., P},
then

F=al9+ +al% kcF*
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@ Letrk(F) = r, let X be a set of points apolar to F.
Let t € T be a linear form corresponding to the linear
space I1, and let

Iyzlxi(t), (SOY:X\H)

Since t is a non-zero divisor inT/ky, we have the following
exact sequence

0 — (T/h)iets =5 (T/ k)i — (T/(ky + (1))); — 0,

fort >> 0, we get

Y| = HF(T/k,1) ZHF(T/ k + (1)), 1) = €(T /(K + (1)))-
i=0
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MethxFspecific

Hence , since Ik C F-, we get
X > Y| =T /(k +(8)) = (T/(h = (£) + (1))

> UT/FH (1) + (1),

and so we have a lower bound for rk(F).
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F =x?y?2% € C[x, y, 2]
Let N = {X = 0}. Since
Fhe(X) = (Xo F): = (2022%)
— (X2, Y3, 2%,
we have FL: (X) + (X) = (X, Y3,Z%) and so
AHF(T/(Ff:(X)+(X))=1 2 3 3 2 1

Hence
rk(F) > 12.
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Now since
FL _ (X2y223)l _ (XS, Y3,Z4),

the ideal
(X*—2zZ4 Y -z c Ft

is the ideal of 12 distinct points.
It follows that
rk(F) < 12.
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Final observation

Now note that

F = x(y? + 22) = xy? + xZ°.

rk(xy?) =3; rk(xz?) =3;

rk(F) = 4 < rk(xy?) + rk(xz?).
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But if we consider
F = Xy2 7LZW2 S (C[X~,yaza W]
since

rk(xy?) =3; rk(zw?)=3; rk(F) =8,

we have
rk(F) = rk(xy?) + rk(zw?).
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Strassen

Strassen’s Additivity Conjecture

Let F and G be homogeneous polynomials
in different sets of variables.

rk(F + G) = rk(F) + rk(G)?
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