Singular loci of 3rd secant varieties of Veronese embeddings

Han, Kangjin

Daegu-Gyeongbuk Institute of Science \& Technology (DGIST)

> Research station on Commutative Algebra Yang-pyeong 2016.6

Background : tensors and tensor rank

The tensor product $V_{1} \otimes \cdots \otimes V_{d}$ of d vector spaces V_{1}, \cdots, V_{d} is a basic mathematical object which is fundamental in natural sciences and useful in many applications, including Signal Processing, Phylogenetics, Quantum Information Theory and Complexity Theory, etc. We call an element $t \in V_{1} \otimes \cdots \otimes V_{d}$ a tensor.

We call a tensor t simple if $t=v_{1} \otimes v_{2} \otimes \cdots \otimes v_{d}$ with each $v_{i} \in V_{i}$
\square
$t=e_{1} \otimes e_{2}+e_{2} \otimes e_{1}$ (Not simple)
The rank of a given tensor $t, R(t)$ is defined as the minimum number of simple tensors needed to express it as the sum.
\square

Background : tensors and tensor rank

The tensor product $V_{1} \otimes \cdots \otimes V_{d}$ of d vector spaces V_{1}, \cdots, V_{d} is a basic mathematical object which is fundamental in natural sciences and useful in many applications, including Signal Processing, Phylogenetics, Quantum Information Theory and Complexity Theory, etc. We call an element $t \in V_{1} \otimes \cdots \otimes V_{d}$ a tensor.

We call a tensor t simple if $t=v_{1} \otimes v_{2} \otimes \cdots \otimes v_{d}$ with each $v_{i} \in V_{i}$.

of simple tensors needed to express it as the sum.
e.g.) $R\left(e_{1} \otimes e_{2}+e_{1} \otimes e_{3}\right)=1, R\left(e_{1} \otimes e_{2}+e_{2} \otimes e_{1}\right)=2$

Background : tensors and tensor rank

The tensor product $V_{1} \otimes \cdots \otimes V_{d}$ of d vector spaces V_{1}, \cdots, V_{d} is a basic mathematical object which is fundamental in natural sciences and useful in many applications, including Signal Processing, Phylogenetics, Quantum Information Theory and Complexity Theory, etc. We call an element $t \in V_{1} \otimes \cdots \otimes V_{d}$ a tensor.

We call a tensor t simple if $t=v_{1} \otimes v_{2} \otimes \cdots \otimes v_{d}$ with each $v_{i} \in V_{i}$.

$$
\text { e.g.) } t=e_{1} \otimes e_{2}+e_{1} \otimes e_{3}=e_{1} \otimes\left(e_{2}+e_{3}\right)(\therefore \text { simple })
$$

The rank of a given tensor $t, R(t)$ is defined as the minimum number of simple tensors needed to express it as the sum.

Background : tensors and tensor rank

The tensor product $V_{1} \otimes \cdots \otimes V_{d}$ of d vector spaces V_{1}, \cdots, V_{d} is a basic mathematical object which is fundamental in natural sciences and useful in many applications, including Signal Processing, Phylogenetics, Quantum Information Theory and Complexity Theory, etc. We call an element $t \in V_{1} \otimes \cdots \otimes V_{d}$ a tensor.

We call a tensor t simple if $t=v_{1} \otimes v_{2} \otimes \cdots \otimes v_{d}$ with each $v_{i} \in V_{i}$.

$$
\begin{aligned}
& \text { e.g.) } t=e_{1} \otimes e_{2}+e_{1} \otimes e_{3}=e_{1} \otimes\left(e_{2}+e_{3}\right)(\therefore \text { simple }) \\
& t=e_{1} \otimes e_{2}+e_{2} \otimes e_{1} \text { (Not simple) }
\end{aligned}
$$

Background : tensors and tensor rank

The tensor product $V_{1} \otimes \cdots \otimes V_{d}$ of d vector spaces V_{1}, \cdots, V_{d} is a basic mathematical object which is fundamental in natural sciences and useful in many applications, including Signal Processing, Phylogenetics, Quantum Information Theory and Complexity Theory, etc. We call an element $t \in V_{1} \otimes \cdots \otimes V_{d}$ a tensor.

We call a tensor t simple if $t=v_{1} \otimes v_{2} \otimes \cdots \otimes v_{d}$ with each $v_{i} \in V_{i}$.
e.g.) $t=e_{1} \otimes e_{2}+e_{1} \otimes e_{3}=e_{1} \otimes\left(e_{2}+e_{3}\right)(\therefore$ simple $)$ $t=e_{1} \otimes e_{2}+e_{2} \otimes e_{1}$ (Not simple)

The rank of a given tensor $t, R(t)$ is defined as the minimum number of simple tensors needed to express it as the sum.

Background : tensors and tensor rank

The tensor product $V_{1} \otimes \cdots \otimes V_{d}$ of d vector spaces V_{1}, \cdots, V_{d} is a basic mathematical object which is fundamental in natural sciences and useful in many applications, including Signal Processing, Phylogenetics, Quantum Information Theory and Complexity Theory, etc. We call an element $t \in V_{1} \otimes \cdots \otimes V_{d}$ a tensor.

We call a tensor t simple if $t=v_{1} \otimes v_{2} \otimes \cdots \otimes v_{d}$ with each $v_{i} \in V_{i}$.
e.g.) $t=e_{1} \otimes e_{2}+e_{1} \otimes e_{3}=e_{1} \otimes\left(e_{2}+e_{3}\right)(\therefore$ simple $)$ $t=e_{1} \otimes e_{2}+e_{2} \otimes e_{1}$ (Not simple)

The rank of a given tensor $t, R(t)$ is defined as the minimum number of simple tensors needed to express it as the sum.
e.g.) $R\left(e_{1} \otimes e_{2}+e_{1} \otimes e_{3}\right)=1$,

Background : tensors and tensor rank

The tensor product $V_{1} \otimes \cdots \otimes V_{d}$ of d vector spaces V_{1}, \cdots, V_{d} is a basic mathematical object which is fundamental in natural sciences and useful in many applications, including Signal Processing, Phylogenetics, Quantum Information Theory and Complexity Theory, etc. We call an element $t \in V_{1} \otimes \cdots \otimes V_{d}$ a tensor.

We call a tensor t simple if $t=v_{1} \otimes v_{2} \otimes \cdots \otimes v_{d}$ with each $v_{i} \in V_{i}$.
e.g.) $t=e_{1} \otimes e_{2}+e_{1} \otimes e_{3}=e_{1} \otimes\left(e_{2}+e_{3}\right)(\therefore$ simple $)$ $t=e_{1} \otimes e_{2}+e_{2} \otimes e_{1}$ (Not simple)

The rank of a given tensor $t, R(t)$ is defined as the minimum number of simple tensors needed to express it as the sum.

$$
\text { e.g.) } R\left(e_{1} \otimes e_{2}+e_{1} \otimes e_{3}\right)=1, R\left(e_{1} \otimes e_{2}+e_{2} \otimes e_{1}\right)=2
$$

Geometry of Tensors : Border rank

In $V_{1} \otimes V_{2}$, the set $\{t \mid R(t) \leq k\}$ is Zariski-closed. But in case of 3-way tensors and of more factors, it does not hold any more.

Note that $R(t)=3$. But, $\underline{R}(t)=2$, because $t=\lim _{\epsilon \rightarrow 0} t(\epsilon)$, where $t(\epsilon)=\frac{1}{\epsilon}\left\{(\epsilon-1) a_{1} \otimes b_{1} \otimes c_{1}+\left(a_{1}+\epsilon a_{2}\right) \otimes\left(b_{1}+\epsilon b_{2}\right) \otimes\left(c_{1}+\epsilon c_{2}\right)\right.$
and $R(t(\epsilon))=2$.

Geometry of Tensors : Border rank

In $V_{1} \otimes V_{2}$, the set $\{t \mid R(t) \leq k\}$ is Zariski-closed. But in case of 3-way tensors and of more factors, it does not hold any more.

Notion of Border rank : a tensor t has border rank r if $r=\min \left\{s \mid t=\lim _{\epsilon \rightarrow 0} t_{\epsilon}, R\left(t_{\epsilon}\right)=s\right\}$. Denote this by $\underline{R}(t)$.

Example
Let A, B, C be 3 -dimensional vector spaces and a_{i}, b_{j}, c_{k} be basis
elements for each vector space. Say

Note that $R(t)=3$. But, $\underline{R}(t)=2$, because $t=\lim _{\epsilon \rightarrow 0} t(\epsilon)$, where $t(\epsilon)=\frac{1}{\epsilon}\left\{(\epsilon-1) a_{1} \otimes b_{1} \otimes c_{1}+\left(a_{1}+\epsilon a_{2}\right) \otimes\left(b_{1}+\epsilon b_{2}\right) \otimes\left(c_{1}+\epsilon c_{2}\right)\right.$
and $R(t(\epsilon))=2$.

Geometry of Tensors : Border rank

In $V_{1} \otimes V_{2}$, the set $\{t \mid R(t) \leq k\}$ is Zariski-closed. But in case of 3-way tensors and of more factors, it does not hold any more.

Notion of Border rank : a tensor t has border rank r if $r=\min \left\{s \mid t=\lim _{\epsilon \rightarrow 0} t_{\epsilon}, R\left(t_{\epsilon}\right)=s\right\}$. Denote this by $\underline{R}(t)$.
Example
Let A, B, C be 3 -dimensional vector spaces and a_{i}, b_{j}, c_{k} be basis elements for each vector space. Say

$$
t=a_{1} \otimes b_{1} \otimes c_{1}+a_{1} \otimes b_{1} \otimes c_{2}+a_{1} \otimes b_{2} \otimes c_{1}+a_{2} \otimes b_{1} \otimes c_{1}
$$

Note that $R(t)=3$. But, $\underline{R}(t)=2$, because $t=\lim _{\epsilon \rightarrow 0} t(\epsilon)$, where
$t(\epsilon)=\frac{1}{\epsilon}\left\{(\epsilon-1) a_{1} \otimes b_{1} \otimes c_{1}+\left(a_{1}+\epsilon a_{2}\right) \otimes\left(b_{1}+\epsilon b_{2}\right) \otimes\left(c_{1}+\epsilon c_{2}\right)\right.$
and $R(t(\epsilon))=2$.

Geometry of Tensors : Higher secant variety

For tensor product $A \otimes B \otimes C$, there is the algebraic variety parametrizing decomposable (rank 1) tensors, which is Segre variety $X=\mathbb{P}(A) \times \mathbb{P}(B) \times \mathbb{P}(C)$. For instance, tensors of rank 2, like $a_{0} \otimes b_{0} \otimes c_{0}+a_{1} \otimes b_{1} \otimes c_{1}$, lie in the line joining $a_{0} \otimes b_{0} \otimes c_{0}$ and $a_{1} \otimes b_{1} \otimes c_{1}$ on X. Tensors of rank k lie in the span of honest k points on the Segre variety.

The k-th secant variety of $X \subset \mathbb{P} W$, which is denoted by $\sigma_{k}(X)$, is defined by

Geometry of Tensors : Higher secant variety

For tensor product $A \otimes B \otimes C$, there is the algebraic variety parametrizing decomposable (rank 1) tensors, which is Segre variety $X=\mathbb{P}(A) \times \mathbb{P}(B) \times \mathbb{P}(C)$. For instance, tensors of rank 2, like $a_{0} \otimes b_{0} \otimes c_{0}+a_{1} \otimes b_{1} \otimes c_{1}$, lie in the line joining $a_{0} \otimes b_{0} \otimes c_{0}$ and $a_{1} \otimes b_{1} \otimes c_{1}$ on X. Tensors of rank k lie in the span of honest k points on the Segre variety.

The k-th secant variety of $X \subset \mathbb{P} W$, which is denoted by $\sigma_{k}(X)$, is defined by

$$
\begin{equation*}
\sigma_{k}(X)=\overline{\bigcup_{x_{1} \cdots x_{k} \in X} \mathbb{P}\left\langle x_{1} \cdots x_{k}\right\rangle} \subset \mathbb{P} W \tag{1}
\end{equation*}
$$

where $\left\langle x_{1} \cdots x_{k}\right\rangle \subset W$ denotes the linear span of the points $x_{1} \cdots x_{k}$ and the overline denotes Zariski closure.

Geometry of Tensors : Higher secant variety

For tensor product $A \otimes B \otimes C$, there is the algebraic variety parametrizing decomposable (rank 1) tensors, which is Segre variety $X=\mathbb{P}(A) \times \mathbb{P}(B) \times \mathbb{P}(C)$. For instance, tensors of rank 2, like $a_{0} \otimes b_{0} \otimes c_{0}+a_{1} \otimes b_{1} \otimes c_{1}$, lie in the line joining $a_{0} \otimes b_{0} \otimes c_{0}$ and $a_{1} \otimes b_{1} \otimes c_{1}$ on X. Tensors of rank k lie in the span of honest k points on the Segre variety.

The k-th secant variety of $X \subset \mathbb{P} W$, which is denoted by $\sigma_{k}(X)$, is defined by

$$
\begin{equation*}
\sigma_{k}(X)=\overline{\bigcup_{x_{1} \cdots x_{k} \in X} \mathbb{P}\left\langle x_{1} \cdots x_{k}\right\rangle} \subset \mathbb{P} W \tag{1}
\end{equation*}
$$

where $\left\langle x_{1} \cdots x_{k}\right\rangle \subset W$ denotes the linear span of the points $x_{1} \cdots x_{k}$ and the overline denotes Zariski closure. It is the algebraic variety containing all tensors t with $\underline{R}(t) \leq k$.

Geometry of Tensors : Higher secant variety

For tensor product $A \otimes B \otimes C$, there is the algebraic variety parametrizing decomposable (rank 1) tensors, which is Segre variety $X=\mathbb{P}(A) \times \mathbb{P}(B) \times \mathbb{P}(C)$. For instance, tensors of rank 2, like $a_{0} \otimes b_{0} \otimes c_{0}+a_{1} \otimes b_{1} \otimes c_{1}$, lie in the line joining $a_{0} \otimes b_{0} \otimes c_{0}$ and $a_{1} \otimes b_{1} \otimes c_{1}$ on X. Tensors of rank k lie in the span of honest k points on the Segre variety.

The k-th secant variety of $X \subset \mathbb{P} W$, which is denoted by $\sigma_{k}(X)$, is defined by

$$
\begin{equation*}
\sigma_{k}(X)=\overline{\bigcup_{x_{1} \cdots x_{k} \in X} \mathbb{P}\left\langle x_{1} \cdots x_{k}\right\rangle} \subset \mathbb{P} W \tag{1}
\end{equation*}
$$

where $\left\langle x_{1} \cdots x_{k}\right\rangle \subset W$ denotes the linear span of the points $x_{1} \cdots x_{k}$ and the overline denotes Zariski closure. It is the algebraic variety containing all tensors t with $\underline{R}(t) \leq k$.

Geometry of parameter spaces of tensors

Similarly, Veronese variety can also be served as parameter space of symmetric tensors.

Let V be an $(n+1)$-dimensional complex vector space and consider a $t \in V \otimes V \otimes \cdots \otimes V$ (d-times). We call t symmetric tensor if t is invariant under permuting factors.
Let $W=S^{d} V$ be the d-th symmetric power of V. We can also think of
W as the space of homogeneous polynomials of degree d in $n+1$
variables. The d-th Veronese embedding is the map

$$
v_{d}: \mathbb{P} V \rightarrow \mathbb{P} W, \quad v_{d}([x])=\left[x^{d}\right]
$$

> In char $0, W=S^{d} V$ can also be thought as the subspace of symmetric d-way tensors in $V^{\otimes d}$. Say $X=v_{d}(\mathbb{P} V)$.

Then,

Geometry of parameter spaces of tensors

Similarly, Veronese variety can also be served as parameter space of symmetric tensors.
Let V be an $(n+1)$-dimensional complex vector space and consider a $t \in V \otimes V \otimes \cdots \otimes V$ (d-times). We call t symmetric tensor if t is invariant under permuting factors.
W as the space of homogeneous polynomials of degree d in $n+1$ variables. The d-th Veronese embedding is the map $v_{d}: \mathbb{P} V \rightarrow \mathbb{P} W, \quad v_{d}([x])=\left[x^{d}\right]$

> In char $0, W=S^{d} V$ can also be thought as the subspace of symmetric d-way tensors in $V^{\otimes d}$. Say $X=v_{d}(\mathbb{P} V)$.

Then,
$X=v_{d}(\mathbb{P} V) \longleftrightarrow\{$ rank one symmetric d-way tensors $\}$
$\sigma_{k}(X) \longleftrightarrow$ \{symmetric d-way tensors of border rank at most $\left.k\right\}$

Geometry of parameter spaces of tensors

Similarly, Veronese variety can also be served as parameter space of symmetric tensors.
Let V be an $(n+1)$-dimensional complex vector space and consider a $t \in V \otimes V \otimes \cdots \otimes V$ (d-times). We call t symmetric tensor if t is invariant under permuting factors.
Let $W=S^{d} V$ be the d-th symmetric power of V. We can also think of W as the space of homogeneous polynomials of degree d in $n+1$ variables.

In char $0, W=S^{d} V$ can also be thought as the subspace of symmetric d-way tensors in $V^{\otimes d}$. Say $X=v_{d}(\mathbb{P} V)$.

Then,
$X=v_{d}(\mathbb{P} V) \longleftrightarrow\{$ rank one symmetric d-way tensors $\}$
$\sigma_{k}(X) \longleftrightarrow$ \{symmetric d-way tensors of border rank at most $\left.k\right\}$

Geometry of parameter spaces of tensors

Similarly, Veronese variety can also be served as parameter space of symmetric tensors.
Let V be an $(n+1)$-dimensional complex vector space and consider a $t \in V \otimes V \otimes \cdots \otimes V$ (d-times). We call t symmetric tensor if t is invariant under permuting factors.
Let $W=S^{d} V$ be the d-th symmetric power of V. We can also think of W as the space of homogeneous polynomials of degree d in $n+1$ variables. The d-th Veronese embedding is the map

$$
v_{d}: \mathbb{P} V \rightarrow \mathbb{P} W, \quad v_{d}([x])=\left[x^{d}\right] .
$$

In char $0, W=S^{d} V$ can also be thought as the subspace of symmetric d-way tensors in $V^{\otimes d}$. Say $X=v_{d}(\mathbb{P} V)$.

Then,
$X=v_{d}(\mathbb{P} V) \longleftrightarrow\{$ rank one symmetric d-way tensors $\}$
$\sigma_{k}(X) \longleftrightarrow$ \{symmetric d-way tensors of border rank at most $\left.k\right\}$

Geometry of parameter spaces of tensors

Similarly, Veronese variety can also be served as parameter space of symmetric tensors.
Let V be an $(n+1)$-dimensional complex vector space and consider a $t \in V \otimes V \otimes \cdots \otimes V$ (d-times). We call t symmetric tensor if t is invariant under permuting factors.
Let $W=S^{d} V$ be the d-th symmetric power of V. We can also think of W as the space of homogeneous polynomials of degree d in $n+1$ variables. The d-th Veronese embedding is the map

$$
v_{d}: \mathbb{P} V \rightarrow \mathbb{P} W, \quad v_{d}([x])=\left[x^{d}\right] .
$$

In char $0, W=S^{d} V$ can also be thought as the subspace of symmetric d-way tensors in $V^{\otimes d}$. Say $X=v_{d}(\mathbb{P} V)$.

Then,
$X=v_{d}(\mathbb{P} V) \longleftrightarrow$ \{rank one symmetric d-way tensors $\}$
$\sigma_{k}(X)$

Geometry of parameter spaces of tensors

Similarly, Veronese variety can also be served as parameter space of symmetric tensors.
Let V be an $(n+1)$-dimensional complex vector space and consider a $t \in V \otimes V \otimes \cdots \otimes V$ (d-times). We call t symmetric tensor if t is invariant under permuting factors.
Let $W=S^{d} V$ be the d-th symmetric power of V. We can also think of W as the space of homogeneous polynomials of degree d in $n+1$ variables. The d-th Veronese embedding is the map

$$
v_{d}: \mathbb{P} V \rightarrow \mathbb{P} W, \quad v_{d}([x])=\left[x^{d}\right] .
$$

In char $0, W=S^{d} V$ can also be thought as the subspace of symmetric d-way tensors in $V^{\otimes d}$. Say $X=v_{d}(\mathbb{P} V)$.

Then,
$X=v_{d}(\mathbb{P} V) \longleftrightarrow\{$ rank one symmetric d-way tensors $\}$
$\sigma_{k}(X) \longleftrightarrow\{$ symmetric d-way tensors of border rank at most $k\}$

Geometry of parameter spaces of tensors

Thus, it's natural to study geometry of higher secant variety of Veronese $\sigma_{k}\left(v_{d} \mathbb{P} V\right)$ (i.e. geometry of symmetric tensors of border rank at most k) for symmetric tensor problem.

Today, we consider singular loci of $\sigma_{k}\left(v_{d} \mathbb{P} V\right), \operatorname{Sing}\left(\sigma_{k}\left(v_{d} \mathbb{P} V\right)\right)$.

Geometry of parameter spaces of tensors

Thus, it's natural to study geometry of higher secant variety of Veronese $\sigma_{k}\left(v_{d} \mathbb{P} V\right)$ (i.e. geometry of symmetric tensors of border rank at most k) for symmetric tensor problem.

Today, we consider singular loci of $\sigma_{k}\left(v_{d} \mathbb{P} V\right)$, $\operatorname{Sing}\left(\sigma_{k}\left(v_{d} \mathbb{P} V\right)\right)$.

Singular loci of secant variety

Q: What is known for the singular locus of secant variety?
A: $\operatorname{Sing}\left(\sigma_{k+1}(X)\right) \supset \sigma_{k}(X)$ unless $\sigma_{k+1}(X)$ is linear (using Terracini lemma).

Terracini lemma For irreducible varieties $X, Y \subset \mathbb{P} V$ and for any $x \in X, y \in Y, z \in\langle x, y\rangle$, we have

$$
T_{z} J(X, Y) \supset\left\langle T_{x} X, T_{y} Y\right\rangle
$$

and "=" holds for general choices of x, y, z.
pf. Choose any $y \in \sigma_{k}(X)$. Then, for any $x \in X$

$$
\begin{aligned}
& T_{y} \sigma_{k+1}(X) \supset\left\langle T_{y} \sigma_{k}(X), T_{x} X\right\rangle \\
& \Rightarrow T_{y} \sigma_{k+1}(X) \supset\langle y, X\rangle \supset\langle X\rangle=\left\langle\sigma_{k+1}(X)\right\rangle
\end{aligned}
$$

Since $\sigma_{k+1}(X)$ is not linear, $\operatorname{dim} T_{y} \sigma_{k+1}(X)>\operatorname{dim} \sigma_{k+1}(X)$ for any $y \in \sigma_{k}(X)$

Singular loci of secant variety

Q: What is known for the singular locus of secant variety?
A: $\operatorname{Sing}\left(\sigma_{k+1}(X)\right) \supset \sigma_{k}(X)$ unless $\sigma_{k+1}(X)$ is linear (using Terracini lemma).

Terracini lemma For irreducible varieties $X, Y \subset \mathbb{P} V$ and for any $x \in X, y \in Y, z \in\langle x, y\rangle$, we have

$$
T_{z} J(X, Y) \supset\left\langle T_{x} X, T_{y} Y\right\rangle
$$

and " $=$ " holds for general choices of x, y, z.
pf. Choose any $y \in \sigma_{k}(X)$. Then, for any $x \in X$

$$
\begin{aligned}
& T_{y} \sigma_{k+1}(X) \supset\left\langle T_{y} \sigma_{k}(X), T_{x} X\right\rangle \\
& \Rightarrow T_{y} \sigma_{k+1}(X) \supset\langle y, X\rangle \supset\langle X\rangle=\left\langle\sigma_{k+1}(X)\right\rangle
\end{aligned}
$$

Since $\sigma_{k+1}(X)$ is not linear, $\operatorname{dim} T_{y} \sigma_{k+1}(X)>\operatorname{dim} \sigma_{k+1}(X)$ for any

Singular loci of secant variety

Q: What is known for the singular locus of secant variety?
A: $\operatorname{Sing}\left(\sigma_{k+1}(X)\right) \supset \sigma_{k}(X)$ unless $\sigma_{k+1}(X)$ is linear (using Terracini lemma).

Terracini lemma For irreducible varieties $X, Y \subset \mathbb{P} V$ and for any $x \in X, y \in Y, z \in\langle x, y\rangle$, we have

$$
T_{z} J(X, Y) \supset\left\langle T_{x} X, T_{y} Y\right\rangle
$$

and " $="$ holds for general choices of x, y, z.
pf. Choose any $y \in \sigma_{k}(X)$. Then, for any $x \in X$

$$
\begin{aligned}
& T_{y} \sigma_{k+1}(X) \supset\left\langle T_{y} \sigma_{k}(X), T_{x} X\right\rangle \\
& \Rightarrow T_{y} \sigma_{k+1}(X) \supset\langle y, X\rangle \supset\langle X\rangle=\left\langle\sigma_{k+1}(X)\right\rangle
\end{aligned}
$$

Singular loci of secant variety

Q: What is known for the singular locus of secant variety?
A: $\operatorname{Sing}\left(\sigma_{k+1}(X)\right) \supset \sigma_{k}(X)$ unless $\sigma_{k+1}(X)$ is linear (using Terracini lemma).

Terracini lemma For irreducible varieties $X, Y \subset \mathbb{P} V$ and for any $x \in X, y \in Y, z \in\langle x, y\rangle$, we have

$$
T_{z} J(X, Y) \supset\left\langle T_{x} X, T_{y} Y\right\rangle
$$

and " $=$ " holds for general choices of x, y, z.
pf. Choose any $y \in \sigma_{k}(X)$. Then, for any $x \in X$

$$
\begin{aligned}
& T_{y} \sigma_{k+1}(X) \supset\left\langle T_{y} \sigma_{k}(X), T_{x} X\right\rangle \\
& \Rightarrow T_{y} \sigma_{k+1}(X) \supset\langle y, X\rangle \supset\langle X\rangle=\left\langle\sigma_{k+1}(X)\right\rangle
\end{aligned}
$$

Since $\sigma_{k+1}(X)$ is not linear, $\operatorname{dim} T_{y} \sigma_{k+1}(X)>\operatorname{dim} \sigma_{k+1}(X)$ for any $y \in \sigma_{k}(X)$.

Singular loci of secant variety

Problem Let $V=\mathbb{C}^{n+1}$. Determine for which triple (k, d, n) it does hold that the singular locus

$$
\operatorname{Sing}\left(\sigma_{k}\left(v_{d}(\mathbb{P} V)\right)\right)=\sigma_{k-1}\left(v_{d}(\mathbb{P} V)\right)
$$

for every $k \geq 2, d \geq 2$ and $n \geq 1$ or describe $\operatorname{Sing}\left(\sigma_{k}\left(v_{d}(\mathbb{P} V)\right)\right)$ if it is not the case.

Known results The following is known:

- First, it is classical that " $=$ " is true for the binary case (i.e. $n=1$)
- Also true for symmetric matrices (the case of quadratic forms
(i.e. $d=2$)
- Kanev proved that this holds for $k=2$ and any d, n.
Thus, we only need to take care of the cases of $k \geq 3, d \geq 3$ and $n \geq 2$. From now on, $X=v_{d}(\mathbb{P} V)$.

Singular loci of secant variety

Problem Let $V=\mathbb{C}^{n+1}$. Determine for which triple (k, d, n) it does hold that the singular locus

$$
\operatorname{Sing}\left(\sigma_{k}\left(v_{d}(\mathbb{P} V)\right)\right)=\sigma_{k-1}\left(v_{d}(\mathbb{P} V)\right)
$$

for every $k \geq 2, d \geq 2$ and $n \geq 1$ or describe $\operatorname{Sing}\left(\sigma_{k}\left(v_{d}(\mathbb{P} V)\right)\right)$ if it is not the case.

Known results The following is known:
$\begin{aligned} & \text { First, it is classical that } "=" \text { is true for the binary case }(\text { i.e. } n=1) \\ > & \text { Also true for symmetric matrices (the case of quadratic forms } \\ & (\text { i.e. } d=2) \\ > & \text { Kanev proved that this holds for } k=2 \text { and any } d, n .\end{aligned}$

Thus, we only need to take care of the cases of $k \geq 3, d \geq 3$ and $n \geq 2$. From now on, $X=v_{d}(\mathbb{P} V)$.

Singular loci of secant variety

Problem Let $V=\mathbb{C}^{n+1}$. Determine for which triple (k, d, n) it does hold that the singular locus

$$
\operatorname{Sing}\left(\sigma_{k}\left(v_{d}(\mathbb{P} V)\right)\right)=\sigma_{k-1}\left(v_{d}(\mathbb{P} V)\right)
$$

for every $k \geq 2, d \geq 2$ and $n \geq 1$ or describe $\operatorname{Sing}\left(\sigma_{k}\left(v_{d}(\mathbb{P} V)\right)\right)$ if it is not the case.

Known results The following is known:

- First, it is classical that "=" is true for the binary case (i.e. $n=1$)
- Also true for symmetric matrices (the case of quadratic forms (i.e. $d=2$)
- Kanev proved that this holds for $k=2$ and any d, n.

Thus, we only need to take care of the cases of $k \geq 3, d \geq 3$ and $n \geq 2$. From now on, $X=v_{d}(\mathbb{P} V)$.

Singular loci of secant variety

Problem Let $V=\mathbb{C}^{n+1}$. Determine for which triple (k, d, n) it does hold that the singular locus

$$
\operatorname{Sing}\left(\sigma_{k}\left(v_{d}(\mathbb{P} V)\right)\right)=\sigma_{k-1}\left(v_{d}(\mathbb{P} V)\right)
$$

for every $k \geq 2, d \geq 2$ and $n \geq 1$ or describe $\operatorname{Sing}\left(\sigma_{k}\left(v_{d}(\mathbb{P} V)\right)\right)$ if it is not the case.

Known results The following is known:

- First, it is classical that "=" is true for the binary case (i.e. $n=1$)
- Also true for symmetric matrices (the case of quadratic forms (i.e. $d=2$)
- Kanev proved that this holds for $k=2$ and any d, n.

Singular loci of secant variety

Problem Let $V=\mathbb{C}^{n+1}$. Determine for which triple (k, d, n) it does hold that the singular locus

$$
\operatorname{Sing}\left(\sigma_{k}\left(v_{d}(\mathbb{P} V)\right)\right)=\sigma_{k-1}\left(v_{d}(\mathbb{P} V)\right)
$$

for every $k \geq 2, d \geq 2$ and $n \geq 1$ or describe $\operatorname{Sing}\left(\sigma_{k}\left(v_{d}(\mathbb{P} V)\right)\right)$ if it is not the case.

Known results The following is known:

- First, it is classical that "=" is true for the binary case (i.e. $n=1$)
- Also true for symmetric matrices (the case of quadratic forms (i.e. $d=2$)
- Kanev proved that this holds for $k=2$ and any d, n.

Singular loci of secant variety

Problem Let $V=\mathbb{C}^{n+1}$. Determine for which triple (k, d, n) it does hold that the singular locus

$$
\operatorname{Sing}\left(\sigma_{k}\left(v_{d}(\mathbb{P} V)\right)\right)=\sigma_{k-1}\left(v_{d}(\mathbb{P} V)\right)
$$

for every $k \geq 2, d \geq 2$ and $n \geq 1$ or describe $\operatorname{Sing}\left(\sigma_{k}\left(v_{d}(\mathbb{P} V)\right)\right)$ if it is not the case.

Known results The following is known:

- First, it is classical that "=" is true for the binary case (i.e. $n=1$)
- Also true for symmetric matrices (the case of quadratic forms (i.e. $d=2$)
- Kanev proved that this holds for $k=2$ and any d, n.

Thus, we only need to take care of the cases of $k \geq 3, d \geq 3$ and $n \geq 2$. From now on, $X=v_{d}(\mathbb{P} V)$.

Degenerate forms and Non-degenerate forms

For any form $f \in S^{d} V$, following Landsberg-Teitler, we define the span of f to be $\langle f\rangle:=\left\{\partial \in V^{\vee} \mid \partial(f)=0\right\}^{\perp}$ in V.

So, f belongs to $S^{d}\langle f\rangle \subset S^{d} V$ and $\operatorname{dim}\langle f\rangle$ is the minimal number of variables in which we can express f as a homogeneous polynomial of degree d.

Note that $\operatorname{dim}\langle f\rangle=1$ means $f \in v_{d}(\mathbb{P} V)$ by definition. We say a form $f \in \sigma_{3}(X) \backslash \sigma_{2}(X)$ to be degenerate if $\operatorname{dim}\langle f\rangle=2$ and non-degenerate otherwise. Let's denote the locus of all degenerate forms in $\sigma_{3}(X) \backslash \sigma_{2}(X)$ by D.

In our case, by the equations from symmetric flattenings we know that for any $f \in \sigma_{3}(X) \backslash \sigma_{2}(X)$

Degenerate forms and Non-degenerate forms

For any form $f \in S^{d} V$, following Landsberg-Teitler, we define the span of f to be $\langle f\rangle:=\left\{\partial \in V^{\vee} \mid \partial(f)=0\right\}^{\perp}$ in V.

So, f belongs to $S^{d}\langle f\rangle \subset S^{d} V$ and $\operatorname{dim}\langle f\rangle$ is the minimal number of variables in which we can express f as a homogeneous polynomial of degree d.

Note that $\operatorname{dim}\langle f\rangle=1$ means $f \in v_{d}(\mathbb{P} V)$ by definition. We say a form $f \in \sigma_{3}(X) \backslash \sigma_{2}(X)$ to be degenerate if $\operatorname{dim}\langle f\rangle=2$ and non-degenerate otherwise. Let's denote the locus of all degenerate forms in $\sigma_{3}(X)$

In our case, by the equations from symmetric flattenings we know that for any $f \in \sigma_{3}(X) \backslash \sigma_{2}(X)$

Degenerate forms and Non-degenerate forms

For any form $f \in S^{d} V$, following Landsberg-Teitler, we define the span of f to be $\langle f\rangle:=\left\{\partial \in V^{\vee} \mid \partial(f)=0\right\}^{\perp}$ in V.

So, f belongs to $S^{d}\langle f\rangle \subset S^{d} V$ and $\operatorname{dim}\langle f\rangle$ is the minimal number of variables in which we can express f as a homogeneous polynomial of degree d.

Note that $\operatorname{dim}\langle f\rangle=1$ means $f \in v_{d}(\mathbb{P} V)$ by definition. We say a form $f \in \sigma_{3}(X) \backslash \sigma_{2}(X)$ to be degenerate if $\operatorname{dim}\langle f\rangle=2$ and non-degenerate otherwise. Let's denote the locus of all degenerate forms in $\sigma_{3}(X) \backslash \sigma_{2}(X)$ by D.

In our case, by the equations from symmetric flattenings we know that for any $f \in \sigma_{3}(X) \backslash \sigma_{2}(X)$

Degenerate forms and Non-degenerate forms

For any form $f \in S^{d} V$, following Landsberg-Teitler, we define the span of f to be $\langle f\rangle:=\left\{\partial \in V^{\vee} \mid \partial(f)=0\right\}^{\perp}$ in V.

So, f belongs to $S^{d}\langle f\rangle \subset S^{d} V$ and $\operatorname{dim}\langle f\rangle$ is the minimal number of variables in which we can express f as a homogeneous polynomial of degree d.

Note that $\operatorname{dim}\langle f\rangle=1$ means $f \in v_{d}(\mathbb{P} V)$ by definition. We say a form $f \in \sigma_{3}(X) \backslash \sigma_{2}(X)$ to be degenerate if $\operatorname{dim}\langle f\rangle=2$ and non-degenerate otherwise. Let's denote the locus of all degenerate forms in $\sigma_{3}(X) \backslash \sigma_{2}(X)$ by D.

In our case, by the equations from symmetric flattenings we know that for any $f \in \sigma_{3}(X) \backslash \sigma_{2}(X)$

$$
2 \leq \operatorname{dim}\langle f\rangle \leq 3
$$

SL_{n+1}-orbits for $\sigma_{3}(X) \backslash \sigma_{2}(X)$ and their normal forms

Since there is a natural $\mathrm{SL}_{n+1}(\mathbb{C})$-group action on $\sigma_{3}(X)$, we may use the $\mathrm{SL}_{n+1}(\mathbb{C})$-orbits inside $\sigma_{3}(X)$ for our study of singularity.

```
First, suppose }f\in\mp@subsup{\sigma}{3}{}(X)\\mp@subsup{\sigma}{2}{}(X)\mathrm{ is non-degenerate (i.e. }\operatorname{dim}\langlef\rangle=3)
There are 3 normal forms for such forms (by Landsberg-Teitler)
* (Fermat type) }\mp@subsup{x}{0}{d}+\mp@subsup{x}{1}{d}+\mp@subsup{x}{2}{d
* (Unmixed type) }\mp@subsup{x}{0}{d-1}\mp@subsup{x}{1}{}+\mp@subsup{x}{2}{d
- (Mixed type) }\mp@subsup{x}{0}{d-2}\mp@subsup{x}{1}{2}+\mp@subsup{x}{0}{d-1}\mp@subsup{x}{2}{
There are also degenerate forms \(D\). So, we have roughly 4 types of forms we need to consider.
```

Note that for a general $f \in D$, we have a normal form $x_{0}^{d}+\alpha x_{1}^{d}+\beta\left(x_{0}+x_{1}\right)^{d}$ for some nonzero $\alpha, \beta \in \mathbb{C}$.

SL_{n+1}-orbits for $\sigma_{3}(X) \backslash \sigma_{2}(X)$ and their normal forms

Since there is a natural $\mathrm{SL}_{n+1}(\mathbb{C})$-group action on $\sigma_{3}(X)$, we may use the $\mathrm{SL}_{n+1}(\mathbb{C})$-orbits inside $\sigma_{3}(X)$ for our study of singularity.

First, suppose $f \in \sigma_{3}(X) \backslash \sigma_{2}(X)$ is non-degenerate (i.e. $\operatorname{dim}\langle f\rangle=3$). There are 3 normal forms for such forms (by Landsberg-Teitler)

- (Fermat type) $x_{0}^{d}+x_{1}^{d}+x_{2}^{d}$
\square

There are also degenerate forms D. So, we have roughly forms we need to consider.

Note that for a general $f \in D$, we have a normal form $x_{0}^{d}+\alpha x_{1}^{d}+\beta\left(x_{0}+x_{1}\right)^{d}$ for some nonzero $\alpha, \beta \in \mathbb{C}$.

SL_{n+1}-orbits for $\sigma_{3}(X) \backslash \sigma_{2}(X)$ and their normal forms

Since there is a natural $\mathrm{SL}_{n+1}(\mathbb{C})$-group action on $\sigma_{3}(X)$, we may use the $\mathrm{SL}_{n+1}(\mathbb{C})$-orbits inside $\sigma_{3}(X)$ for our study of singularity.

First, suppose $f \in \sigma_{3}(X) \backslash \sigma_{2}(X)$ is non-degenerate (i.e. $\operatorname{dim}\langle f\rangle=3$). There are 3 normal forms for such forms (by Landsberg-Teitler)

- (Fermat type) $x_{0}^{d}+x_{1}^{d}+x_{2}^{d}$
- (Unmixed type) $x_{0}^{d-1} x_{1}+x_{2}^{d}$
- (Mixed type) $x_{0}^{d-2} x_{1}^{2}+x_{0}^{d-1} x_{2}$

There are also degenerate forms D. So, we have roughly 4 types of forms we need to consider.

SL_{n+1}-orbits for $\sigma_{3}(X) \backslash \sigma_{2}(X)$ and their normal forms

Since there is a natural $\mathrm{SL}_{n+1}(\mathbb{C})$-group action on $\sigma_{3}(X)$, we may use the $\mathrm{SL}_{n+1}(\mathbb{C})$-orbits inside $\sigma_{3}(X)$ for our study of singularity.

First, suppose $f \in \sigma_{3}(X) \backslash \sigma_{2}(X)$ is non-degenerate (i.e. $\operatorname{dim}\langle f\rangle=3$).
There are 3 normal forms for such forms (by Landsberg-Teitler)

- (Fermat type) $x_{0}^{d}+x_{1}^{d}+x_{2}^{d}$
- (Unmixed type) $x_{0}^{d-1} x_{1}+x_{2}^{d}$
- (Mixed type) $x_{0}^{d-2} x_{1}^{2}+x_{0}^{d-1} x_{2}$

There are also degenerate forms D. So, we have roughly 4 types of forms we need to consider.

Note that for a general $f \in D$, we have a normal form $x_{0}^{d}+\alpha x_{1}^{d}+\beta\left(x_{0}+x_{1}\right)^{d}$ for some nonzero $\alpha, \beta \in \mathbb{C}$.

Reduction to the case $n=2$ by fibration

For the locus of non-degenerate orbits in $\sigma_{3}(X) \backslash \sigma_{2}(X)$, we may consider a useful reduction method through the following arguments:

3-dimensional subspace U such that $f \in \sigma_{3}\left(v_{d}(\mathbb{P} U)\right)$.

- Thus, $\sigma_{3}\left(v v_{d}\left(\mathbb{P}^{n}\right)\right) \backslash\left(D \cup \sigma_{2}\left(v,\left(\mathbb{P}^{n}\right)\right)\right)$ is smooth if
$\sigma_{3}\left(v_{d}\left(\mathbb{P}^{2}\right)\right) \backslash\left(D \cup \sigma_{2}\left(v_{d}\left(\mathbb{P}^{2}\right)\right)\right)$ is smooth for every $n \geq 2$ and
$d \geq 3$, because the following map
$\sigma_{3}\left(v_{d}\left(\mathbb{P}^{n}\right)\right) \backslash\left(D \cup \sigma_{2}\left(v_{d}\left(\mathbb{P}^{n}\right)\right)\right) \xrightarrow{-} \operatorname{Gr}\left(\mathbb{P} U, \mathbb{P}^{n}\right)$ with $\operatorname{dim} \mathbb{P} U=2$.
is well defined and each fiber $\pi^{-1}(\mathbb{P} U)$ is isomorphic to
$\sigma_{3}\left(v_{d}(\mathbb{P} U)\right) \backslash\left(D \cup \sigma_{2} v_{d}(\mathbb{P} U)\right)$. So, π becomes a fibration over a smooth variety with isomorphic fibers.

Reduction to the case $n=2$ by fibration

For the locus of non-degenerate orbits in $\sigma_{3}(X) \backslash \sigma_{2}(X)$, we may consider a useful reduction method through the following arguments:

- For each $f \in \sigma_{3}\left(v_{d}\left(\mathbb{P}^{n}\right)\right) \backslash\left(D \cup \sigma_{2}\left(v_{d}\left(\mathbb{P}^{n}\right)\right)\right), \exists$ a unique 3 -dimensional subspace U such that $f \in \sigma_{3}\left(v_{d}(\mathbb{P} U)\right)$.
$\sigma_{3}\left(v_{d}\left(\mathbb{P}^{2}\right)\right) \backslash\left(D \cup \sigma_{2}\left(v_{d}\left(\mathbb{P}^{2}\right)\right)\right)$ is smooth for every $n \geq 2$ and $d \geq 3$, because the following map
$\sigma_{3}\left(v_{d}\left(\mathbb{P}^{n}\right)\right) \backslash\left(D \cup \sigma_{2}\left(v_{d}\left(\mathbb{P}^{n}\right)\right)\right) \xrightarrow{\pi} \operatorname{Gr}\left(\mathbb{P} U, \mathbb{P}^{n}\right) \quad$ with $\operatorname{dim} \mathbb{P} U=2$.
is well defined and each fiber $\pi^{-1}(\mathbb{P} U)$ is isomorphic to $\sigma_{3}\left(v_{d}(\mathbb{P} U)\right) \backslash\left(D \cup \sigma_{2} v_{d}(\mathbb{P} U)\right)$. So, π becomes a fibration over a smooth variety with isomorphic fibers.

Reduction to the case $n=2$ by fibration

For the locus of non-degenerate orbits in $\sigma_{3}(X) \backslash \sigma_{2}(X)$, we may consider a useful reduction method through the following arguments:

- For each $f \in \sigma_{3}\left(v_{d}\left(\mathbb{P}^{n}\right)\right) \backslash\left(D \cup \sigma_{2}\left(v_{d}\left(\mathbb{P}^{n}\right)\right)\right), \exists$ a unique 3-dimensional subspace U such that $f \in \sigma_{3}\left(v_{d}(\mathbb{P} U)\right)$.
- Thus, $\sigma_{3}\left(v_{d}\left(\mathbb{P}^{n}\right)\right) \backslash\left(D \cup \sigma_{2}\left(v_{d}\left(\mathbb{P}^{n}\right)\right)\right)$ is smooth if $\sigma_{3}\left(v_{d}\left(\mathbb{P}^{2}\right)\right) \backslash\left(D \cup \sigma_{2}\left(v_{d}\left(\mathbb{P}^{2}\right)\right)\right)$ is smooth for every $n \geq 2$ and $d \geq 3$, because the following map
$\sigma_{3}\left(v_{d}\left(\mathbb{P}^{n}\right)\right) \backslash\left(D \cup \sigma_{2}\left(v_{d}\left(\mathbb{P}^{n}\right)\right)\right) \xrightarrow{\pi} \operatorname{Gr}\left(\mathbb{P} U, \mathbb{P}^{n}\right) \quad$ with $\operatorname{dim} \mathbb{P} U=2$.
is well defined and each fiber $\pi^{-1}(\mathbb{P} U)$ is isomorphic to $\sigma_{3}\left(v_{d}(\mathbb{P} U)\right) \backslash\left(D \cup \sigma_{2} v_{d}(\mathbb{P} U)\right)$. So, π becomes a fibration over a smooth variety with isomorphic fibers.

Case of $k=3, d=3, n=2$: Aronhold hypersurface

For the first case $(k, d, n)=(3,3,2)$, note that D is empty when $d=3$ (from equations of symmetric flattenings).

Classically, $\sigma_{3}\left(\nu_{3}\left(\mathbb{P}^{2}\right)\right)$ in \mathbb{P}^{9} is known as 'Aronhold hypersurface' and is defined by Pfaffian of the Young flattening

The singular locus of the Aronhold hypersurface $\sigma_{3}\left(v_{3}\left(\mathbb{P}^{2}\right)\right)$ in \mathbb{P}^{9} is equal to $\sigma_{2}\left(\nu_{3}\left(\mathbb{P}^{2}\right)\right)$. It can be checked via several ways (e.g. using Macaulay2).
When $d=3$, we also have an immediate corollary using fibration reduction:

Corollary ($d=3$ case)
For every $n \geq 2$ and $d=3, \sigma_{3}\left(v_{3}\left(\mathbb{P}^{n}\right)\right) \backslash \sigma_{2}\left(v_{3}\left(\mathbb{P}^{n}\right)\right)$ is smooth.

Case of $k=3, d=3, n=2$: Aronhold hypersurface

For the first case $(k, d, n)=(3,3,2)$, note that D is empty when $d=3$ (from equations of symmetric flattenings).

Classically, $\sigma_{3}\left(v_{3}\left(\mathbb{P}^{2}\right)\right)$ in \mathbb{P}^{9} is known as 'Aronhold hypersurface' and is defined by Pfaffian of the Young flattening

$$
S_{(2,1)}\left(\mathbb{C}^{3}\right) \rightarrow S_{(3,2,1)}\left(\mathbb{C}^{3}\right)
$$

The singular locus of the Aronhold hypersurface $\sigma_{3}\left(v_{3}\left(\mathbb{P}^{2}\right)\right)$ in \mathbb{P}^{9} is equal to $\sigma_{2}\left(v_{3}\left(\mathbb{P}^{2}\right)\right)$. It can be checked via several ways (e.g. using Macaulay2).
When $d=3$, we also have an immediate corollary using fibration reduction:

For every $n \geq 2$ and $d=3, \sigma_{3}\left(v_{3}\left(\mathbb{P}^{n}\right)\right) \backslash \sigma_{2}\left(v_{3}\left(\mathbb{P}^{n}\right)\right)$ is smooth.

Case of $k=3, d=3, n=2$: Aronhold hypersurface

For the first case $(k, d, n)=(3,3,2)$, note that D is empty when $d=3$ (from equations of symmetric flattenings).

Classically, $\sigma_{3}\left(v_{3}\left(\mathbb{P}^{2}\right)\right)$ in \mathbb{P}^{9} is known as 'Aronhold hypersurface' and is defined by Pfaffian of the Young flattening

$$
S_{(2,1)}\left(\mathbb{C}^{3}\right) \rightarrow S_{(3,2,1)}\left(\mathbb{C}^{3}\right)
$$

The singular locus of the Aronhold hypersurface $\sigma_{3}\left(v_{3}\left(\mathbb{P}^{2}\right)\right)$ in \mathbb{P}^{9} is equal to $\sigma_{2}\left(v_{3}\left(\mathbb{P}^{2}\right)\right)$. It can be checked via several ways (e.g. using Macaulay2).
When $d=3$, we also have an immediate corollary using fibration reduction:

Corollary ($d=3$ case)
For every $n \geq 2$ and $d=3, \sigma_{3}\left(v_{3}\left(\mathbb{P}^{n}\right)\right) \backslash \sigma_{2}\left(v_{3}\left(\mathbb{P}^{n}\right)\right)$ is smooth.

Symmetric flattening and Equations of $\sigma_{3}\left(v_{d}\left(\mathbb{P}^{n}\right)\right)$

Consider the polynomial ring $S^{\bullet} V=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ (we call this ring S) and consider another polynomial ring $T=S^{\bullet} V^{\vee}=\mathbb{C}\left[y_{0}, \ldots, y_{n}\right]$, where V^{\vee} is the dual space of V. Define the differential action of T on S as follows: for any $g \in T_{d-k}, f \in S_{d}$, we set

$$
\begin{equation*}
g \cdot f=g\left(\partial_{0}, \partial_{1}, \ldots, \partial_{n}\right) f \in S_{k} \tag{2}
\end{equation*}
$$

Let us take bases for S_{k} and T_{d-k} as

$$
\begin{equation*}
\mathbf{X}^{I}=\frac{1}{i_{0}!\cdots i_{n}!} x_{0}^{i_{0}} \cdots x_{n}^{i_{n}} \quad \text { and } \quad \mathbf{Y}^{J}=y_{0}^{j_{0}} \cdots y_{n}^{j_{n}} \tag{3}
\end{equation*}
$$

with $|I|=i_{0}+\cdots+i_{n}=k$ and $|J|=j_{0}+\cdots+j_{n}=d-k$. For a given $f=\sum_{|I|=d} a_{I} \cdot \mathbf{X}^{I}$ in S_{d}, we have a linear map

$$
\phi_{d-k, k}(f): T_{d-k} \rightarrow S_{k}, \quad g \mapsto g \cdot f
$$

for any k with $1 \leq k \leq d-1$, which can be represented by the following $\binom{k+n}{n} \times\binom{ d-k+n}{n}$-matrix.

Symmetric flattening and Equations of $\sigma_{3}\left(v_{d}\left(\mathbb{P}^{n}\right)\right)$

We call this the symmetric flattening (or catalecticant) of f.
It is obvious that if f has rank 1 , then any symmetric flattening $\phi_{d-k, k}(f)$ has rank 1. By subadditivity of matrix rank, we also know that rank $\phi_{d-k, k}(f) \leq r$ if $\underline{R}(f) \leq r$. Landsberg-Ottaviani showed

Proposition (Defining equations of $\sigma_{3}\left(v_{d}\left(\mathbb{P}^{n}\right)\right)$)
Let X be the n-dimensional Veronese variety $v_{d}(\mathbb{P V})$ in \mathbb{P}^{N} with $N=\binom{n+d}{n}-1$. For any (d, n) with $d \geq 4, n \geq 2, \sigma_{3}(X)$ is defined scheme-theoretically by the 4×4-minors of the two symmetric flattenings

where F is the form $\sum a_{I} \cdot \mathbf{X}^{I}$ of degree d as considering the

Symmetric flattening and Equations of $\sigma_{3}\left(v_{d}\left(\mathbb{P}^{n}\right)\right)$

We call this the symmetric flattening (or catalecticant) of f.
It is obvious that if f has rank 1 , then any symmetric flattening $\phi_{d-k, k}(f)$ has rank 1 . By subadditivity of matrix rank, we also know that rank $\phi_{d-k, k}(f) \leq r$ if $\underline{R}(f) \leq r$. Landsberg-Ottaviani showed
Proposition (Defining equations of $\sigma_{3}\left(\nu_{d}\left(\mathbb{P}^{n}\right)\right)$)
Let X be the n-dimensional Veronese variety $v_{d}(\mathbb{P} V)$ in \mathbb{P}^{N} with $N=\binom{n+d}{n}-1$. For any (d, n) with $d \geq 4, n \geq 2, \sigma_{3}(X)$ is defined scheme-theoretically by the 4×4-minors of the two symmetric flattenings $\phi_{d-1,1}(F): S^{d-1} V^{V} \rightarrow V$ and

Symmetric flattening and Equations of $\sigma_{3}\left(v_{d}\left(\mathbb{P}^{n}\right)\right)$

We call this the symmetric flattening (or catalecticant) of f.
It is obvious that if f has rank 1 , then any symmetric flattening $\phi_{d-k, k}(f)$ has rank 1. By subadditivity of matrix rank, we also know that rank $\phi_{d-k, k}(f) \leq r$ if $\underline{R}(f) \leq r$. Landsberg-Ottaviani showed Proposition (Defining equations of $\sigma_{3}\left(v_{d}\left(\mathbb{P}^{n}\right)\right)$)
Let X be the n-dimensional Veronese variety $v_{d}(\mathbb{P} V)$ in \mathbb{P}^{N} with $N=\binom{n+d}{n}-1$. For any (d, n) with $d \geq 4, n \geq 2, \sigma_{3}(X)$ is defined scheme-theoretically by the 4×4-minors of the two symmetric flattenings

$$
\phi_{d-1,1}(F): S^{d-1} V^{\vee} \rightarrow V \quad \text { and } \quad \phi_{d-\left\lfloor\frac{d}{2}\right\rfloor,\left\lfloor\frac{d}{2}\right\rfloor}(F): S^{d-\left\lfloor\frac{d}{2}\right\rfloor} V^{\vee} \rightarrow S^{\left\lfloor\frac{d}{2}\right\rfloor} V
$$

where F is the form $\sum_{I \in \mathbb{N}^{n+1}} a_{I} \cdot \mathbf{X}^{I}$ of degree d as considering the coefficients a_{I} 's indeterminate.

Apolar ideal and Conormal space of $\sigma_{3}(X)$

For any given form $f \in S^{d} V$, we call $\partial \in T_{t}$ apolar to f if the differentiation $\partial(f)$ gives zero (i.e. $\partial \in \operatorname{ker} \phi_{t, d-t}(f)$). And we define the apolar ideal $f^{\perp} \subset T$ as $f^{\perp}:=\{\partial \in T \mid \partial(f)=0\}$.
straightforward to see that f^{-}is indeed an ideal of T. Moreover, it is
well-known that the quotient ring $T_{f}:=T / f^{\perp}$ is an Artinian
Gorenstein algebra with socle degree d.

In our case, we have a nice description of the conormal space in terms
of this apolar ideal as follows:
Proposition
Suppose any form f in $S^{d} V$ corresponds to a (closed) point of
$\sigma_{3}(X) \backslash \sigma_{2}(X)$ and that $\operatorname{rank} \phi_{d-1,1}(f)=3$, $\operatorname{rank} \phi_{d-\left|\frac{d}{2}\right|,\left|\frac{d}{2}\right|}(f)=3$.
Then, for any (d, n) with $d \geq 4, n \geq 2$ we have

$$
\begin{equation*}
\hat{N}_{f}^{\vee} \sigma_{3}(X)=\left(f^{\perp}\right)_{1} \cdot\left(f^{\perp}\right)_{d-1}+\left(f^{\perp}\right)_{\left\lfloor\frac{d}{2}\right\rfloor} \cdot\left(f^{\perp}\right)_{d-\left\lfloor\frac{d}{2}\right\rfloor} \tag{4}
\end{equation*}
$$

where the sum is taken as a \mathbb{C}-subspace in $T_{d}=S^{d} V$

Apolar ideal and Conormal space of $\sigma_{3}(X)$

For any given form $f \in S^{d} V$, we call $\partial \in T_{t}$ apolar to f if the differentiation $\partial(f)$ gives zero (i.e. $\partial \in \operatorname{ker} \phi_{t, d-t}(f)$). And we define the apolar ideal $f^{\perp} \subset T$ as $f^{\perp}:=\{\partial \in T \mid \partial(f)=0\}$. It is straightforward to see that f^{\perp} is indeed an ideal of T. Moreover, it is well-known that the quotient ring $T_{f}:=T / f^{\perp}$ is an Artinian Gorenstein algebra with socle degree d.

In our case, we have a nice description of the conormal space in terms of this apolar ideal as follows:

Proposition

Suppose any form f in $S^{d} V$ corresponds to a (closed) point of

Then, for any (d, n) with $d \geq 4, n \geq 2$ we have

Apolar ideal and Conormal space of $\sigma_{3}(X)$

For any given form $f \in S^{d} V$, we call $\partial \in T_{t}$ apolar to f if the differentiation $\partial(f)$ gives zero (i.e. $\partial \in \operatorname{ker} \phi_{t, d-t}(f)$). And we define the apolar ideal $f^{\perp} \subset T$ as $f^{\perp}:=\{\partial \in T \mid \partial(f)=0\}$. It is straightforward to see that f^{\perp} is indeed an ideal of T. Moreover, it is well-known that the quotient ring $T_{f}:=T / f^{\perp}$ is an Artinian Gorenstein algebra with socle degree d.

In our case, we have a nice description of the conormal space in terms of this apolar ideal as follows:

where the sum is taken as a \mathbb{C}-subspace in $T_{d}=S^{d} V$

Apolar ideal and Conormal space of $\sigma_{3}(X)$

For any given form $f \in S^{d} V$, we call $\partial \in T_{t}$ apolar to f if the differentiation $\partial(f)$ gives zero (i.e. $\partial \in \operatorname{ker} \phi_{t, d-t}(f)$). And we define the apolar ideal $f^{\perp} \subset T$ as $f^{\perp}:=\{\partial \in T \mid \partial(f)=0\}$. It is straightforward to see that f^{\perp} is indeed an ideal of T. Moreover, it is well-known that the quotient ring $T_{f}:=T / f^{\perp}$ is an Artinian Gorenstein algebra with socle degree d.

In our case, we have a nice description of the conormal space in terms of this apolar ideal as follows:

Proposition

Suppose any form f in $S^{d} V$ corresponds to a (closed) point of $\sigma_{3}(X) \backslash \sigma_{2}(X)$ and that rank $\phi_{d-1,1}(f)=3$, rank $\phi_{\left.d-\left\lfloor\frac{d}{2}\right\rfloor\right\rfloor\left\lfloor\frac{d}{2}\right\rfloor}(f)=3$.
Then, for any (d, n) with $d \geq 4, n \geq 2$ we have

$$
\begin{equation*}
\hat{N}_{f}^{\vee} \sigma_{3}(X)=\left(f^{\perp}\right)_{1} \cdot\left(f^{\perp}\right)_{d-1}+\left(f^{\perp}\right)_{\left\lfloor\frac{d}{2}\right\rfloor} \cdot\left(f^{\perp}\right)_{d-\left\lfloor\frac{d}{2}\right\rfloor}, \tag{4}
\end{equation*}
$$

where the sum is taken as a \mathbb{C}-subspace in $T_{d}=S^{d} V^{\vee}$.

Idea for the proposition

As a simple case, consider a form

$$
f \in S_{k}:=\{g \in V \otimes W \mid \operatorname{rank}(g) \leq k\} \subseteq \operatorname{Hom}\left(V^{\vee}, W\right)
$$

Then, $T_{f} S_{k}=\{g \in V \otimes W \mid g(\operatorname{ker} f) \subseteq \operatorname{im} f\}$

Cor.) $\hat{N}_{f}^{\bigvee} S_{k}=\left(T_{f} S_{k}\right)^{\perp}=(\operatorname{ker} f) \otimes(\operatorname{im} f)^{\perp} \subseteq V^{\vee} \otimes W^{\vee}$.
In the symmetric tensor case, similarly, we have
\square
Here, we have $\left(\operatorname{ker} \phi_{d-k, k}(f)\right)=(f) \frac{1}{d}$ and

Idea for the proposition

As a simple case, consider a form

$$
f \in S_{k}:=\{g \in V \otimes W \mid \operatorname{rank}(g) \leq k\} \subseteq \operatorname{Hom}\left(V^{\vee}, W\right)
$$

Then, $T_{f} S_{k}=\{g \in V \otimes W \mid g(\operatorname{ker} f) \subseteq \operatorname{im} f\}$
pf.) Write $f=\sum_{i=1}^{k} v_{i} \otimes w_{i}$. Then, $\operatorname{ker} f=\left\langle v_{1}, \cdots, v_{k}\right\rangle^{\perp}$ and $\operatorname{im} f=\left\langle w_{1}, \cdots, w_{k}\right\rangle$. We know $T_{f} S_{k}=\sum_{i=1}^{k} v_{i} \otimes W+V \otimes w_{i}$. So, for any $g \in T_{f} S_{k}, g(\operatorname{ker} f) \subseteq \operatorname{im} f$. The other way by dimension count.

Cor.) $\hat{N}_{f}^{\vee} S_{k}=\left(T_{f} S_{k}\right)^{\perp}=(\operatorname{ker} f) \otimes(\operatorname{im} f)^{\perp} \subseteq V^{\vee} \otimes W^{\vee}$.
In the symmetric tensor case, similarly, we have
$\hat{N}_{f}^{\prime} Z\left(M_{4}\left(\phi_{d-k, k}(F)\right)\right)=\left(\operatorname{ker} \phi_{d-k, k}(f)\right) \otimes\left(\operatorname{im} \phi_{d-k, k}(f)\right)$ Here, we have $\left(\operatorname{ker} \phi_{d-k, k}(f)\right)=(f) \frac{\perp}{d-k}$ and

Idea for the proposition

As a simple case, consider a form

$$
f \in S_{k}:=\{g \in V \otimes W \mid \operatorname{rank}(g) \leq k\} \subseteq \operatorname{Hom}\left(V^{\vee}, W\right)
$$

Then, $T_{f} S_{k}=\{g \in V \otimes W \mid g(\operatorname{ker} f) \subseteq \operatorname{im} f\}$
pf.) Write $f=\sum_{i=1}^{k} v_{i} \otimes w_{i}$. Then, $\operatorname{ker} f=\left\langle v_{1}, \cdots, v_{k}\right\rangle^{\perp}$ and $\operatorname{im} f=\left\langle w_{1}, \cdots, w_{k}\right\rangle$. We know $T_{f} S_{k}=\sum_{i=1}^{k} v_{i} \otimes W+V \otimes w_{i}$. So, for any $g \in T_{f} S_{k}, g(\operatorname{ker} f) \subseteq \operatorname{im} f$. The other way by dimension count.

Cor.) $\hat{N}_{f}^{\vee} S_{k}=\left(T_{f} S_{k}\right)^{\perp}=(\operatorname{ker} f) \otimes(\operatorname{im} f)^{\perp} \subseteq V^{\vee} \otimes W^{\vee}$.
In the symmetric tensor case, similarly, we have

$$
\hat{N}_{f}^{\vee} Z\left(M_{4}\left(\phi_{d-k, k}(F)\right)\right)=\left(\operatorname{ker} \phi_{d-k, k}(f)\right) \otimes\left(\operatorname{im} \phi_{d-k, k}(f)\right)^{\perp}
$$

Here, we have $\left(\operatorname{ker} \phi_{d-k, k}(f)\right)=(f)_{d-k}^{\perp}$ and

$$
\left(\operatorname{im} \phi_{d-k, k}(f)\right)^{\perp}=\left(\operatorname{ker} \phi_{d-k, k}(f)^{T}\right)=\left(\operatorname{ker} \phi_{k, d-k}(f)\right)=(f)_{k}^{\perp} .
$$

Computation conormal space I

We remark that for $n=2$ case

$$
\begin{equation*}
\hat{N}_{f}^{\vee} \sigma_{3}(X)=\left(f^{\perp}\right)_{\left\lfloor\frac{d}{2}\right\rfloor} \cdot\left(f^{\perp}\right)_{d-\left\lfloor\frac{d}{2}\right\rfloor} . \tag{5}
\end{equation*}
$$

First, consider 3 different normal forms for non-degenerate forms.
Case (i) It is well-known that this Fermat-type $f_{1}=x_{0}^{d}+x_{1}^{d}+x_{2}^{d}$
becomes an almost transitive $\mathrm{SL}_{3}(\mathbb{C})$-orbit, thus, smooth here.
Case (ii) $f_{2}=x_{0}^{d-1} x_{1}+x_{2}^{d}$ (Unmixed-type). Say $s:=\left\lfloor\frac{d}{2}\right\rfloor$. For $d \geq 4$, we have $2 \leq s \leq d-s \leq d-2$. Since the summands of f_{2} separate the variables (i.e. unmixed-type),
$f_{2}^{\perp}=\left(\left\{Q_{1}=y_{0} y_{2}, Q_{2}=y_{1}^{2}, Q_{3}=y_{1} y_{2}\right\} \bigcup\{\right.$ other generators in degree $\left.\geq d\}\right)$
So, we have

$$
\hat{N}_{f_{2}}^{\vee} \sigma_{3}(X)=\left(f_{2}^{\perp}\right)_{s} \cdot\left(f_{2}^{\perp}\right)_{d-s}=\left\{h^{\prime \prime} \cdot Q_{i} Q_{j} \mid \forall h^{\prime \prime} \in T_{d-4}, i, j=1,2,3\right\}
$$

Thus, if we denote the ideal $\left(Q_{1}, Q_{2}, Q_{3}\right)$ by I, then $\operatorname{dim} \hat{N}_{\hbar}^{\vee} \sigma_{3}(X)$ is equal to the value of Hilbert function $H\left(I^{2}, t\right)$ at $t=d$.

Computation conormal space I

We remark that for $n=2$ case

$$
\begin{equation*}
\hat{N}_{f}^{\vee} \sigma_{3}(X)=\left(f^{\perp}\right)_{\left\lfloor\frac{d}{2}\right\rfloor} \cdot\left(f^{\perp}\right)_{d-\left\lfloor\frac{d}{2}\right\rfloor} . \tag{5}
\end{equation*}
$$

First, consider 3 different normal forms for non-degenerate forms.
Case (i) It is well-known that this Fermat-type $f_{1}=x_{0}^{d}+x_{1}^{d}+x_{2}^{d}$ becomes an almost transitive $\mathrm{SL}_{3}(\mathbb{C})$-orbit, thus, smooth here.
we have $2 \leq s \leq d-s \leq d-2$. Since the summands of f_{2} separate
the variables (i.e. unmixed-type),
$f_{2}^{\perp}=\left(\left\{Q_{1}=y_{0} y_{2}, Q_{2}=y_{1}^{2}, Q_{3}=y_{1} y_{2}\right\} \bigcup\{\right.$ other generators in degree $\left.\geq d\}\right)$
So, we have

$$
\hat{N}_{2}^{V} \sigma_{3}(X)=\left(f_{2}^{\perp}\right)_{s} \cdot\left(f_{2}^{L}\right)_{d-s}=\left\{h^{\prime \prime} \cdot Q_{i} Q_{j} \mid \forall h^{\prime \prime} \in T_{d-4}, i, j=1,2,3\right\}
$$

Thus, if we denote the ideal $\left(Q_{1}, Q_{2}, Q_{3}\right)$ by I, then $\operatorname{dim} \hat{N}_{f_{2}}^{\vee} \sigma_{3}(X)$ is equal to the value of Hilbert function $H\left(I^{2}, t\right)$ at $t=d$.

Computation conormal space I

We remark that for $n=2$ case

$$
\begin{equation*}
\hat{N}_{f}^{\vee} \sigma_{3}(X)=\left(f^{\perp}\right)_{\left\lfloor\frac{d}{2}\right\rfloor} \cdot\left(f^{\perp}\right)_{d-\left\lfloor\frac{d}{2}\right\rfloor} \tag{5}
\end{equation*}
$$

First, consider 3 different normal forms for non-degenerate forms.
Case (i) It is well-known that this Fermat-type $f_{1}=x_{0}^{d}+x_{1}^{d}+x_{2}^{d}$ becomes an almost transitive $\mathrm{SL}_{3}(\mathbb{C})$-orbit, thus, smooth here. Case (ii) $f_{2}=x_{0}^{d-1} x_{1}+x_{2}^{d}$ (Unmixed-type). Say $s:=\left\lfloor\frac{d}{2}\right\rfloor$. For $d \geq 4$, we have $2 \leq s \leq d-s \leq d-2$. Since the summands of f_{2} separate the variables (i.e. unmixed-type),
$f_{2}^{\perp}=\left(\left\{Q_{1}=y_{0} y_{2}, Q_{2}=y_{1}^{2}, Q_{3}=y_{1} y_{2}\right\} \bigcup\{\right.$ other generators in degree $\left.\geq d\}\right)$.
So, we have

$$
\hat{N}_{f_{2}}^{\vee} \sigma_{3}(X)=\left(f_{2}^{\perp}\right)_{s} \cdot\left(f_{2}^{\perp}\right)_{d-s}=\left\{h^{\prime \prime} \cdot Q_{i} Q_{j} \mid \forall h^{\prime \prime} \in T_{d-4}, i, j=1,2,3\right\} .
$$

Thus, if we denote the ideal $\left(Q_{1}, Q_{2}, Q_{3}\right)$ by I, then $\operatorname{dim} \hat{N}_{f_{2}}^{\vee} \sigma_{3}(X)$ is equal to the value of Hilbert function $H\left(I^{2}, t\right)$ at $t=d$.

Computation conormal space I

But, it is easy to see that I^{2} has a minimal free resolution as

$$
0 \rightarrow T(-6) \rightarrow T(-5)^{6} \rightarrow T(-4)^{6} \rightarrow I^{2} \rightarrow 0
$$

which shows the Hilbert function of I^{2} can be computed as

This implies that $\operatorname{dim} \hat{N}_{f_{2}}^{\vee} \sigma_{3}(X)=\binom{d+2}{2}-9$ for any $d \geq 4$, which means that our $\sigma_{3}(X)$ is smooth at f_{2}.

Computation conormal space I

But, it is easy to see that I^{2} has a minimal free resolution as

$$
0 \rightarrow T(-6) \rightarrow T(-5)^{6} \rightarrow T(-4)^{6} \rightarrow I^{2} \rightarrow 0
$$

which shows the Hilbert function of I^{2} can be computed as

$$
\begin{aligned}
H\left(I^{2}, d\right) & =6\binom{d-4+2}{2}-6\binom{d-5+2}{2}+\binom{d-6+2}{2} \\
& = \begin{cases}0 & (d \leq 3) \\
\binom{d+2}{2}-9 & (d \geq 4)\end{cases}
\end{aligned}
$$

This implies that $\operatorname{dim} \hat{N}_{f_{2}}^{\vee} \sigma_{3}(X)=\binom{d+2}{2}-9$ for any $d \geq 4$, which means that our $\sigma_{3}(X)$ is smooth at f_{2}.

Computation conormal space I

But, it is easy to see that I^{2} has a minimal free resolution as

$$
0 \rightarrow T(-6) \rightarrow T(-5)^{6} \rightarrow T(-4)^{6} \rightarrow I^{2} \rightarrow 0
$$

which shows the Hilbert function of I^{2} can be computed as

$$
\begin{aligned}
H\left(I^{2}, d\right) & =6\binom{d-4+2}{2}-6\binom{d-5+2}{2}+\binom{d-6+2}{2} \\
& = \begin{cases}0 & (d \leq 3) \\
\binom{d+2}{2}-9 & (d \geq 4)\end{cases}
\end{aligned}
$$

This implies that $\operatorname{dim} \hat{N}_{f_{2}}^{\vee} \sigma_{3}(X)=\binom{d+2}{2}-9$ for any $d \geq 4$, which means that our $\sigma_{3}(X)$ is smooth at f_{2}.

Computation conormal space I

$f_{3}=x_{0}^{d-2} x_{1}^{2}+x_{0}^{d-1} x_{2}$ (Mixed-type). In this case, we similarly use a computation of $\operatorname{dim} \hat{N}_{f_{3}}^{\vee} \sigma_{3}(X)$ via $\left(f_{3}^{\perp}\right)_{s} \cdot\left(f_{3}^{\perp}\right)_{d-s}$ to show the smoothness of f_{3}.

Let $Q_{1}:=y_{0} y_{2}-\frac{d-1}{2} y_{1}^{2} \in T_{2}$. We easily see that
$f_{3}^{\perp}=\left(\left\{Q_{1}, Q_{2}=y_{1} y_{2}, Q_{3}=y_{2}^{2}\right\} \bigcup\{\right.$ other generators in degree $\left.\geq d-1\}\right)$
Let I be the ideal generated by three quadrics Q_{1}, Q_{2}, Q_{3}. By the same reasoning as (ii), we have

because in this case I^{2} also has the same minimal free resolution
$0 \rightarrow T(-6) \rightarrow T(-5)^{6} \rightarrow T(-4)^{6} \rightarrow I^{2} \rightarrow 0$. Hence, we obtain the
smoothness of $\sigma_{3}(X)$ at f_{3}.

Computation conormal space I

$f_{3}=x_{0}^{d-2} x_{1}^{2}+x_{0}^{d-1} x_{2}$ (Mixed-type). In this case, we similarly use a computation of $\operatorname{dim} \hat{N}_{f_{3}}^{\vee} \sigma_{3}(X)$ via $\left(f_{3}^{\perp}\right)_{s} \cdot\left(f_{3}^{\perp}\right)_{d-s}$ to show the smoothness of f_{3}.

Let $Q_{1}:=y_{0} y_{2}-\frac{d-1}{2} y_{1}^{2} \in T_{2}$. We easily see that
$f_{3}^{\perp}=\left(\left\{Q_{1}, Q_{2}=y_{1} y_{2}, Q_{3}=y_{2}^{2}\right\} \bigcup\{\right.$ other generators in degree $\left.\geq d-1\}\right)$.
Let I be the ideal generated by three quadrics Q_{1}, Q_{2}, Q_{3}. By the same
reasoning as (ii), we have
$\operatorname{dim} \hat{N}_{f_{3}}^{\vee} \sigma_{3}(X)=\operatorname{dim}\left(f_{3}^{\perp}\right)$
because in this case I^{2} also has the same minimal free resolution
$0 \rightarrow T(-6) \rightarrow T(-5)^{6} \rightarrow T(-4)^{6} \rightarrow I^{2} \rightarrow 0$. Hence, we obtain the
smoothness of $\sigma_{3}(X)$ at f_{3}.

Computation conormal space I

$f_{3}=x_{0}^{d-2} x_{1}^{2}+x_{0}^{d-1} x_{2}$ (Mixed-type). In this case, we similarly use a computation of $\operatorname{dim} \hat{N}_{f_{3}}^{\vee} \sigma_{3}(X)$ via $\left(f_{3}^{\perp}\right)_{s} \cdot\left(f_{3}^{\perp}\right)_{d-s}$ to show the smoothness of f_{3}.

Let $Q_{1}:=y_{0} y_{2}-\frac{d-1}{2} y_{1}^{2} \in T_{2}$. We easily see that
$f_{3}^{\perp}=\left(\left\{Q_{1}, Q_{2}=y_{1} y_{2}, Q_{3}=y_{2}^{2}\right\} \bigcup\{\right.$ other generators in degree $\left.\geq d-1\}\right)$.
Let I be the ideal generated by three quadrics Q_{1}, Q_{2}, Q_{3}. By the same reasoning as (ii), we have
$\operatorname{dim} \hat{N}_{f_{3}}^{\vee} \sigma_{3}(X)=\operatorname{dim}\left(f_{3}^{\perp}\right)_{s} \cdot\left(f_{3}^{\perp}\right)_{d-s}=H\left(I^{2}, d\right)=\left\{\begin{array}{ll}0 & (d \leq 3) \\ \binom{d+2}{2}-9 & (d \geq 4)\end{array}\right.$,
because in this case I^{2} also has the same minimal free resolution $0 \rightarrow T(-6) \rightarrow T(-5)^{6} \rightarrow T(-4)^{6} \rightarrow I^{2} \rightarrow 0$. Hence, we obtain the smoothness of $\sigma_{3}(X)$ at f_{3}.

Computation conormal space II

Now, time for degenerate forms D. When f_{D} is general,
$f_{D}=x_{0}^{d}+\alpha x_{1}^{d}+\beta\left(x_{0}+x_{1}\right)^{d}$ for some $\alpha, \beta \in \mathbb{C}^{*}$, so we have
$F=y_{0}^{2} y_{1}-y_{0} y_{1}^{2}$. Even for the case f_{D} being not general, we have
$F=y_{0}^{2} y_{1}$ up to change of coordinates, because the apolar ideal of this non-general f_{D} corresponds to the case with one multiple root on \mathbb{P}^{1} (Comas-Seigurs, Landsberg-Teitler).
Therefore, we obtain that
$f_{D}^{\perp}=\left(F=y_{0}^{2} y_{1}-y_{0} y_{1}^{2}\right.$ or $\left.y_{0}^{2} y_{1}, G\right)$ for some polynomial G of degree $(d-1)$ and that f_{D}^{\perp} as an ideal in $T=\mathbb{C}\left[y_{0}, y_{1}, \ldots, y_{n}\right]$ has its degree parts $\left(f_{D}^{\perp}\right)_{\left\lfloor\frac{1}{2}\right\rfloor}$ and $\left(f_{D}^{\perp}\right)_{d-\left\lfloor\frac{d}{2}\right\rfloor}$, both of which are generated by F, y_{2}, \ldots, y_{n}, since $d \geq 4$ so that $\left\lfloor\frac{d}{2}\right\rfloor, d-\left\lfloor\frac{d}{2}\right\rfloor<d-1$.

Computation conormal space II

Now, time for degenerate forms D. When f_{D} is general, $f_{D}=x_{0}^{d}+\alpha x_{1}^{d}+\beta\left(x_{0}+x_{1}\right)^{d}$ for some $\alpha, \beta \in \mathbb{C}^{*}$, so we have $F=y_{0}^{2} y_{1}-y_{0} y_{1}^{2}$. Even for the case f_{D} being not general, we have $F=y_{0}^{2} y_{1}$ up to change of coordinates, because the apolar ideal of this non-general f_{D} corresponds to the case with one multiple root on \mathbb{P}^{1} (Comas-Seigurs, Landsberg-Teitler).
$f_{D}^{\perp}=\left(F=y_{0}^{2} y_{1}-y_{0} y_{1}^{2}\right.$ or $\left.y_{0}^{2} y_{1}, G\right)$ for some polynomial G of degree $(d-1)$
and that $f \perp$ as an ideal in $T=\mathbb{C}\left[y_{0}, y_{1}, \ldots, y_{n}\right]$ has its dearee parts $(f \perp)$
and $\left(f_{D}^{\perp}\right)_{d-\left|\frac{d}{V}\right|}$, both of which are generated by F, y_{2}, \ldots, y_{n}, since $d \geq 4$ so that $\left\lfloor\frac{d}{2}\right\rfloor, d-\left\lfloor\frac{d}{2}\right\rfloor<d-1$.

Computation conormal space II

Now, time for degenerate forms D. When f_{D} is general, $f_{D}=x_{0}^{d}+\alpha x_{1}^{d}+\beta\left(x_{0}+x_{1}\right)^{d}$ for some $\alpha, \beta \in \mathbb{C}^{*}$, so we have $F=y_{0}^{2} y_{1}-y_{0} y_{1}^{2}$. Even for the case f_{D} being not general, we have $F=y_{0}^{2} y_{1}$ up to change of coordinates, because the apolar ideal of this non-general f_{D} corresponds to the case with one multiple root on \mathbb{P}^{1} (Comas-Seigurs, Landsberg-Teitler).
Therefore, we obtain that
$f_{D}^{\perp}=\left(F=y_{0}^{2} y_{1}-y_{0} y_{1}^{2}\right.$ or $\left.y_{0}^{2} y_{1}, G\right)$ for some polynomial G of degree $(d-1)$ and that f_{D}^{\perp} as an ideal in $T=\mathbb{C}\left[y_{0}, y_{1}, \ldots, y_{n}\right]$ has its degree parts $\left(f_{D}^{\perp}\right)_{\left\lfloor\frac{d}{2}\right\rfloor}$ and $\left(f_{D}^{\perp}\right)_{d-\left\lfloor\frac{d}{2}\right\rfloor}$, both of which are generated by F, y_{2}, \ldots, y_{n}, since $d \geq 4$ so that $\left\lfloor\frac{d}{2}\right\rfloor, d-\left\lfloor\frac{d}{2}\right\rfloor<d-1$.

Computation conormal space II

i) $d=4$ case (i.e. $\left\lfloor\frac{d}{2}\right\rfloor=2$): In this case, we have
$\hat{N}_{f_{D}}^{\vee} \sigma_{3}(X)=\left(f_{D}^{\perp}\right)_{2} \cdot\left(f_{D}^{\perp}\right)_{2}=\left(y_{2}, \ldots, y_{n}\right)_{2} \cdot\left(y_{2}, \ldots, y_{n}\right)_{2}=\left(\left\{y_{i} y_{j} \mid 2 \leq i, j \leq n\right\}\right)_{4}$.
So, we get

$$
\begin{aligned}
\operatorname{dim} \hat{N}_{f_{D}}^{\vee} \sigma_{3}(X) & =\operatorname{dim} T_{4}-\operatorname{dim}\left\langle y_{0}^{4}, y_{0}^{3} y_{1}, \cdots, y_{1}^{4}\right\rangle-\operatorname{dim}\left\langle\left\{ y_{0}^{3} \cdot \ell, y_{0}^{2} y_{1} \cdot \ell, y_{0} y_{1}^{2} \cdot \ell, y_{1}^{3}\right.\right. \\
& =\binom{4+n}{4}-5-4(n-1) .
\end{aligned}
$$

This shows us that $\sigma_{3}(X)$ is singular at f_{D} if and only if $n \geq 3$, because the expected codimension is $\binom{4+n}{4}-3 n-3$.
generator of f_{D}^{\perp}. Then,

Computation conormal space II

i) $d=4$ case (i.e. $\left\lfloor\frac{d}{2}\right\rfloor=2$): In this case, we have
$\hat{N}_{f_{D}}^{\vee} \sigma_{3}(X)=\left(f_{D}^{\perp}\right)_{2} \cdot\left(f_{D}^{\perp}\right)_{2}=\left(y_{2}, \ldots, y_{n}\right)_{2} \cdot\left(y_{2}, \ldots, y_{n}\right)_{2}=\left(\left\{y_{i} y_{j} \mid 2 \leq i, j \leq n\right\}\right)_{4}$.
So, we get
$\operatorname{dim} \hat{N}_{f_{D}}^{\vee} \sigma_{3}(X)=\operatorname{dim} T_{4}-\operatorname{dim}\left\langle y_{0}^{4}, y_{0}^{3} y_{1}, \cdots, y_{1}^{4}\right\rangle-\operatorname{dim}\left\langle\left\{y_{0}^{3} \cdot \ell, y_{0}^{2} y_{1} \cdot \ell, y_{0} y_{1}^{2} \cdot \ell, y_{1}^{3}\right.\right.$

$$
=\binom{4+n}{4}-5-4(n-1) .
$$

This shows us that $\sigma_{3}(X)$ is singular at f_{D} if and only if $n \geq 3$, because the expected codimension is $\binom{4+n}{4}-3 n-3$.
ii) $d=5$ case (i.e. $\left\lfloor\frac{d}{2}\right\rfloor=2$): Recall that F is $y_{0}^{2} y_{1}-y_{0} y_{1}^{2}$ or $y_{0}^{2} y_{1}$, the cubic generator of f_{D}^{\perp}. Then,

$$
\hat{N}_{f_{D}}^{\vee} \sigma_{3}(X)=\left(f_{D}^{\perp}\right)_{2} \cdot\left(f_{D}^{\perp}\right)_{3}=\left(y_{2}, \ldots, y_{n}\right)_{2} \cdot\left(F, y_{2}, \ldots, y_{n}\right)_{3} .
$$

$\operatorname{dim} \hat{N}_{f_{D}}^{\vee} \sigma_{3}(X)=\operatorname{dim} T_{5}-\operatorname{dim}\left\langle y_{0}^{5}, y_{0}^{4} y_{1}, \cdots, y_{1}^{5}\right\rangle$

$$
\begin{aligned}
& -\operatorname{dim}\left\langle\{ y _ { 0 } ^ { 4 } \cdot \ell , y _ { 0 } ^ { 3 } y _ { 1 } \cdot \ell , y _ { 0 } ^ { 2 } y _ { 1 } ^ { 2 } \cdot \ell , y _ { 0 } y _ { 1 } ^ { 3 } \cdot \ell , y _ { 1 } ^ { 4 } \cdot \ell \} \backslash \left\{ y_{0} F \cdot \ell, y_{1} F \cdot \ell \mid\right.\right. \\
= & \binom{5+n}{5}-6-3(n-1)=\operatorname{expected} \operatorname{codim}\left(\sigma_{3}(X), \mathbb{P} S^{5} V\right) .
\end{aligned}
$$

Computation conormal space II

iii) $d \geq 6$ case : Here, we have

$$
\hat{N}_{f_{D}}^{\vee} \sigma_{3}(X)=\left(f_{D}^{\perp}\right)_{\left\lfloor\frac{d}{2}\right\rfloor} \cdot\left(f_{D}^{\perp}\right)_{d-\left\lfloor\frac{d}{2}\right\rfloor}=\left(F, y_{2}, \ldots, y_{n}\right)_{\left\lfloor\frac{d}{2}\right\rfloor} \cdot\left(F, y_{2}, \ldots, y_{n}\right)_{d-\left\lfloor\frac{d}{2}\right\rfloor} .
$$

$\operatorname{dim} \hat{N}_{f_{D}}^{\vee} \sigma_{3}(X)$
$=\operatorname{dim} T_{d}-\operatorname{dim}\left\langle\left\{y_{0}^{d-1} \cdot \ell, y_{0}^{d-2} y_{1} \cdot \ell, \ldots, y_{1}^{d-1} \cdot \ell\right\} \backslash\left\{y_{0}^{d-4} F \cdot \ell, \ldots, y_{1}^{d-4} F \cdot \ell \mid \ell\right.\right.$
$-\operatorname{dim}\left(\left\{y_{0}^{d}, y_{0}^{d-1} y_{1}, \cdots, y_{1}^{d}\right\} \backslash\left\{y_{0}^{d-6} \cdot F^{2}, y_{0}^{d-7} y_{1} \cdot F^{2}, \ldots, y_{1}^{d-6} \cdot F^{2}\right\}\right)$
$=\binom{d+n}{d}-\{d-(d-3)\}(n-1)-\{(d+1)-(d-5)\}$
$=\binom{d+n}{d}-3(n-1)-6=$ expected $\operatorname{codim}\left(\sigma_{3}(X), \mathbb{P} S^{d} V\right)$,
which implies that $\sigma_{3}(X)$ is also smooth at f_{D}.

Conclusion

Theorem (Singularity of $\sigma_{3}\left(v_{d}\left(\mathbb{P}^{n}\right)\right)$)
Let X be the n-dimensional Veronese variety $v_{d}(\mathbb{P} V)$ in \mathbb{P}^{N} with $N=\binom{n+d}{d}-1$. Then, the following holds that the singular locus

$$
\operatorname{Sing}\left(\sigma_{3}(X)\right)=\sigma_{2}(X)
$$

as a set for all (d, n) with $d \geq 3$ and $n \geq 2$ unless $d=4$ and $n \geq 3$.
In the exceptional case $d=4$, for each $n \geq 3$ the singular locus $\operatorname{Sing}\left(\sigma_{3}\left(v_{4}(\mathbb{P} V)\right)\right)$ is $D \cup \sigma_{2}\left(v_{4}(\mathbb{P} V)\right)$, where D denotes the locus of all the degenerate forms f (i.e. $\operatorname{dim}\langle f\rangle=2$) in $\sigma_{3}\left(v_{4}(\mathbb{P} V)\right) \backslash \sigma_{2}\left(v_{4}(\mathbb{P} V)\right.$).

We can sum up all the relevant results into the following table:

$(\mathbf{k}, \mathbf{d}, \mathbf{n})$	Sing $\sigma_{k}\left(v_{d}\left(\mathbb{P}^{n}\right)\right)$	Comment
$(\geq 2, \geq 2,1)$	σ_{k-1}	Classical; case of binary forms
$(\geq 2,2, \geq 1)$	σ_{k-1}	Symmetric matrice case
$(2, \geq 2, \geq 1)$	σ_{1}	Kanev
$(3,3,2)$	σ_{2}	Aronhold hypersurface
$(3, \geq 4,2)$	σ_{2}	
$(3,3, \geq 3)$	σ_{2}	
$(3,4, \geq 3)$	$D \cup \sigma_{2}$	Only exceptional case $(d=4)$
$(3, \geq 5, \geq 3)$	σ_{2}	

Figure: Singular locus of $\sigma_{k}\left(v_{d}\left(\mathbb{P}^{n}\right)\right)$

As an immediate corollary of our Theorem, we obtain defining equations of the singular locus in our third secant of Veronese embedding $\sigma_{3}(X)$.

Corollary

Let X be the n-dimensional Veronese embedding as above. The singular locus of $\sigma_{3}(X)$ is cut out by 3×3-minors of the two symmetric flattenings $\phi_{d-1,1}$ and $\phi_{d-2,2}$ unless $d=4$ and $n \geq 3$ case, in which the (set-theoretic) defining ideal of the locus is the intersection of the ideal generated by the previous 3×3-minors and the ideal generated by 3×3-minors of $\phi_{d-1,1}$ and 4×4-minors of $\phi_{d-\left\lfloor\frac{d}{2}\right\rfloor\left\lfloor\left\lfloor\frac{d}{2}\right\rfloor\right.}$.

Compensating for Kwak's lecture

- By our theorem, for $\mathrm{ND}(2)$-varieties,

$$
\begin{aligned}
& \operatorname{deg}(X) \geq\binom{ e+2}{2} \\
& \operatorname{deg}(X)=\binom{e+2}{2} \Leftrightarrow I_{X} \text { has ACM 3-linear resolution. }
\end{aligned}
$$

- Note that $\operatorname{deg}(X)=\binom{e+1}{1} \Leftrightarrow I_{X}$ has ACM 2-linear resolution and del Pezzo-Bertini classification gave the geometric classification.
- Problem : What is a geometric classification/or characterization of 'Minimal degree varieties of the second kind'?

Compensating for Kwak's lecture

- By our theorem, for $\mathrm{ND}(2)$-varieties,

$$
\begin{aligned}
\operatorname{deg}(X) & \geq\binom{ e+2}{2} \\
\operatorname{deg}(X)=\binom{e+2}{2} & \Leftrightarrow I_{X} \text { has ACM 3-linear resolution. }
\end{aligned}
$$

- Note that $\operatorname{deg}(X)=\binom{e+1}{1} \Leftrightarrow I_{X}$ has ACM 2-linear resolution and del Pezzo-Bertini classification gave the geometric classification.
- Problem : What is a geometric classification/or characterization of 'Minimal degree varieties of the second kind'?

Compensating for Kwak's lecture

- By our theorem, for $\mathrm{ND}(2)$-varieties,

$$
\begin{aligned}
\operatorname{deg}(X) & \geq\binom{ e+2}{2} \\
\operatorname{deg}(X)=\binom{e+2}{2} & \Leftrightarrow I_{X} \text { has ACM 3-linear resolution. }
\end{aligned}
$$

- Note that $\operatorname{deg}(X)=\binom{e+1}{1} \Leftrightarrow I_{X}$ has ACM 2-linear resolution and del Pezzo-Bertini classification gave the geometric classification.
- Problem : What is a geometric classification/or characterization of 'Minimal degree varieties of the second kind'?

Compensating for Kwak's lecture

- By our theorem, for $\mathrm{ND}(2)$-varieties,

$$
\begin{aligned}
\operatorname{deg}(X) & \geq\binom{ e+2}{2} \\
\operatorname{deg}(X)=\binom{e+2}{2} & \Leftrightarrow I_{X} \text { has ACM 3-linear resolution. }
\end{aligned}
$$

- Note that $\operatorname{deg}(X)=\binom{e+1}{1} \Leftrightarrow I_{X}$ has ACM 2-linear resolution and del Pezzo-Bertini classification gave the geometric classification.
- Problem : What is a geometric classification/or characterization of 'Minimal degree varieties of the second kind'?

Problem : Classfication of VMDs of 2nd kind

Example (Varieties having ACM 3-linear resolution)
(a) Hypercubic $(e=1)$;
(b) 3 -minors of 4×4 generic symmetric matrix (i.e. $\left.\operatorname{Sec}\left(v_{2}\left(\mathbb{P}^{3}\right)\right) \subset \mathbb{P}^{9}\right) ;$
(c) 3-minors of $3 \times(e+2)$ sufficiently generic matrices (e.g. $\operatorname{Sec}(R N S)$).

- All the varieties with ACM 2-linear resolution are determinantal.
- All the examples above are also determinantal.
- Question : Anything else? Probably yes. But, for $n \geq 2$ there is no known example to give ACM 3-linear resolution outside the list.

Problem : Classfication of VMDs of 2nd kind

Example (Varieties having ACM 3-linear resolution)
(a) Hypercubic $(e=1)$;
(b) 3-minors of 4×4 generic symmetric matrix (i.e. $\left.\operatorname{Sec}\left(v_{2}\left(\mathbb{P}^{3}\right)\right) \subset \mathbb{P}^{9}\right) ;$
(c) 3-minors of $3 \times(e+2)$ sufficiently generic matrices (e.g. $\operatorname{Sec}(R N S)$).

- All the varieties with ACM 2-linear resolution are determinantal.
- All the examples above are also determinantal.
- Question : Anything else? Probably yes. But, for $n \geq 2$ there is no known example to give ACM 3-linear resolution outside the list.

Problem : Classfication of VMDs of 2nd kind

Example (Varieties having ACM 3-linear resolution)
(a) Hypercubic $(e=1)$;
(b) 3-minors of 4×4 generic symmetric matrix (i.e. $\left.\operatorname{Sec}\left(v_{2}\left(\mathbb{P}^{3}\right)\right) \subset \mathbb{P}^{9}\right) ;$
(c) 3-minors of $3 \times(e+2)$ sufficiently generic matrices (e.g. $\operatorname{Sec}(R N S)$).

- All the varieties with ACM 2-linear resolution are determinantal.
- All the examples above are also determinantal.
- Question : Anything else? Probably yes. But, for $n \geq 2$ there is no known example to give ACM 3-linear resolution outside the list.

Problem : Classfication of VMDs of 2nd kind

Example (Varieties having ACM 3-linear resolution)
(a) Hypercubic $(e=1)$;
(b) 3-minors of 4×4 generic symmetric matrix (i.e. $\left.\operatorname{Sec}\left(v_{2}\left(\mathbb{P}^{3}\right)\right) \subset \mathbb{P}^{9}\right) ;$
(c) 3-minors of $3 \times(e+2)$ sufficiently generic matrices (e.g. $\operatorname{Sec}(R N S)$).

- All the varieties with ACM 2-linear resolution are determinantal.
- All the examples above are also determinantal.
- Question : Anything else? Probably yes. But, for $n \geq 2$ there is no known example to give ACM 3-linear resolution outside the list.

Thank you!

