Lefschetz properties and moving beyond the SHGH Conjecture

Research Station on Commutative Algebra Korea Institute for Advanced studies / Yangpyung Korea June 14, 2016

Juan C. Migliore

University of Notre Dame

Juan C. Migliore Lefschetz properties and moving beyond the SHGH Conjectu

Joint work with:

David Cook II

Brian Harbourne

Uwe Nagel

Juan C. Migliore Lefschetz properties and moving beyond the SHGH Conjectu

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Joint work with:

David Cook II

Brian Harbourne

Uwe Nagel

(Motivated by a paper of Di Gennaro - Ilardi - Vallès.)

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

Juan C. Migliore Lefschetz properties and moving beyond the SHGH Conjectu

<日</td>

Given certain dimensions

(specifically dim $[R/I]_i$ and dim $[R/I]_{i+1}$),

Juan C. Migliore Lefschetz properties and moving beyond the SHGH Conjectu

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ つくで

Given certain dimensions

```
(specifically dim[R/I]_i and dim[R/I]_{i+1}),
```

there is some general choice to make

(specifically the general linear form ℓ)

Given certain dimensions

```
(specifically dim[R/I]_i and dim[R/I]_{i+1}),
```

there is some general choice to make

(specifically the general linear form ℓ)

leading to a new dimension

(specifically dim coker($\times \ell$))

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ つくで

Given certain dimensions

```
(specifically dim[R/I]_i and dim[R/I]_{i+1}),
```

there is some general choice to make

(specifically the general linear form ℓ)

leading to a new dimension

(specifically dim coker($\times \ell$))

and we want to know when this is larger than "expected."

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Given certain dimensions

```
(specifically dim[R/I]_i and dim[R/I]_{i+1}),
```

there is some general choice to make

(specifically the general linear form ℓ)

leading to a new dimension

```
(specifically dim coker(\times \ell))
```

and we want to know when this is larger than "expected."

In this sense, the main topic of this talk shares this Lefschetz philosophy. There will be a direct connection at the end.

Let *K* be a field of arbitrary characteristic and let R = k[x, y, z].

Juan C. Migliore Lefschetz properties and moving beyond the SHGH Conjectu

▲聞 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Let *K* be a field of arbitrary characteristic and let R = k[x, y, z].

Easy Question 1. Consider the complete linear system \mathcal{L}_j of plane curves of degree *j*.

Recall dim
$$\mathcal{L}_j = \dim_k [R]_j - 1 = inom{j+2}{2} - 1.$$

(日) (圖) (E) (E) (E)

Let *K* be a field of arbitrary characteristic and let R = k[x, y, z].

Easy Question 1. Consider the complete linear system \mathcal{L}_j of plane curves of degree *j*.

Recall dim
$$\mathcal{L}_j = \dim_k [R]_j - 1 = \binom{j+2}{2} - 1.$$

Let $P \in \mathbb{P}^2$. What is the dimension of the linear system of plane curves of degree *j* passing through *P*?

|▲□ ▶ ▲ 国 ▶ ▲ 国 ▶ ● 回 ● ● ● ●

Let *K* be a field of arbitrary characteristic and let R = k[x, y, z].

Easy Question 1. Consider the complete linear system \mathcal{L}_j of plane curves of degree *j*.

Recall dim
$$\mathcal{L}_j = \dim_k [R]_j - 1 = {j+2 \choose 2} - 1.$$

Let $P \in \mathbb{P}^2$. What is the dimension of the linear system of plane curves of degree *j* passing through *P*?

Answer. Regardless of the choice of P, the dimension is

$$\dim \mathcal{L}_j - 1 = \binom{j+2}{2} - 2.$$

That is, *P* imposes one independent condition on \mathcal{L}_{i} .

(調) (目) (日) (日)

Let $\{P_1, \ldots, P_d\} \subset \mathbb{P}^2$ be a set of points. How many conditions do P_1, \ldots, P_d impose on \mathcal{L}_i ?

<□> <同> <同> < 回> < 回> < 回> < 回> < 回> ○ Q ()

Let $\{P_1, \ldots, P_d\} \subset \mathbb{P}^2$ be a set of points. How many conditions do P_1, \ldots, P_d impose on \mathcal{L}_i ?

Answer. There's no single answer. It depends on the choice of the points P_1, \ldots, P_d .

Let $\{P_1, \ldots, P_d\} \subset \mathbb{P}^2$ be a set of points. How many conditions do P_1, \ldots, P_d impose on \mathcal{L}_i ?

Answer. There's no single answer. It depends on the choice of the points P_1, \ldots, P_d .

Easy Question 3. Assume that P_1, \ldots, P_d are chosen generally. Then how many conditions do they impose on \mathcal{L}_i ?

Let $\{P_1, \ldots, P_d\} \subset \mathbb{P}^2$ be a set of points. How many conditions do P_1, \ldots, P_d impose on \mathcal{L}_j ?

Answer. There's no single answer. It depends on the choice of the points P_1, \ldots, P_d .

Easy Question 3. Assume that P_1, \ldots, P_d are chosen generally. Then how many conditions do they impose on \mathcal{L}_i ?

Answer. If there aren't too many points, they impose independent conditions. More generally, they impose $\min\left\{\binom{j+2}{2}, d\right\}$ independent conditions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ ● ● ●

Answer. The number of independent conditions is

$$\min\left\{\binom{j+2}{2},\binom{m+1}{2}\right\}.$$

(Think about partial derivatives.)

• Image: A image:

Answer. The number of independent conditions is

$$\min\left\{\binom{j+2}{2},\binom{m+1}{2}\right\}.$$

(Think about partial derivatives.)

Terminology. In the latter case we'll say that the fat point *mP* imposes $\binom{m+1}{2}$ independent conditions on \mathcal{L}_j .

Answer. The number of independent conditions is

$$\min\left\{\binom{j+2}{2},\binom{m+1}{2}\right\}.$$

(Think about partial derivatives.)

Terminology. In the latter case we'll say that the fat point *mP* imposes $\binom{m+1}{2}$ independent conditions on \mathcal{L}_j .

mP is the scheme defined by the ideal I_P^m .

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○ ○

How many conditions do $\{m_1 P_1, \ldots, m_d P\}$ impose on \mathcal{L}_i ?

< ■ ▶ < ■ ▶ < ■ ▶ ■ ● のへで

How many conditions do $\{m_1 P_1, \ldots, m_d P\}$ impose on \mathcal{L}_i ?

Notation. Denote by $X = m_1 P_1 + \cdots + m_d P_d$ the above union of fat points.

How many conditions do $\{m_1 P_1, \ldots, m_d P\}$ impose on \mathcal{L}_i ?

Notation. Denote by $X = m_1 P_1 + \cdots + m_d P_d$ the above union of fat points.

Naive guess: Just like the case where $m_i = 1$ for all *i* (mentioned above), if there is "room" then they should impose

$$\binom{m_1+1}{2}+\binom{m_2+1}{2}+\cdots+\binom{m_d+1}{2}$$

independent conditions.

Example. Let d = 5 and $m_1 = \cdots = m_5 = 2$.

Juan C. Migliore Lefschetz properties and moving beyond the SHGH Conjectu

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ① ○ ○ ○

Example. Let d = 5 and $m_1 = \cdots = m_5 = 2$.

The "prediction" is that the scheme $2P_1 + \cdots + 2P_5$ imposes

$$\binom{1+2}{2} + \binom{1+2}{2} + \binom{1+2}{2} + \binom{1+2}{2} + \binom{1+2}{2} = 15$$

independent conditions on forms of any degree *j*, or else the linear system is empty.

Example. Let d = 5 and $m_1 = \cdots = m_5 = 2$.

The "prediction" is that the scheme $2P_1 + \cdots + 2P_5$ imposes

$$\binom{1+2}{2} + \binom{1+2}{2} + \binom{1+2}{2} + \binom{1+2}{2} + \binom{1+2}{2} = 15$$

independent conditions on forms of any degree *j*, or else the linear system is empty.

But consider j = 4. Since dim $k[x, y, z]_4 = 15$, this means the "prediction" is that there is no curve of degree 4 double at all 5 points.

Is this true?

There is a unique conic containing P_1, \ldots, P_5 , and its square is double at each of the five points!

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

There is a unique conic containing P_1, \ldots, P_5 , and its square is double at each of the five points!

But "most" of the time it is true. There is a long history of research on this problem, culminating in the SHGH conjecture.

Note: SHGH = Segre-Harbourne-Gimigliano-Hirschowitz.

There is a unique conic containing P_1, \ldots, P_5 , and its square is double at each of the five points!

But "most" of the time it is true. There is a long history of research on this problem, culminating in the SHGH conjecture.

Note: SHGH = Segre-Harbourne-Gimigliano-Hirschowitz.

SHGH gives a complete conjectural answer to the question. They describe precisely when you do not get the expected number of conditions (as happened in our example).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

There is a unique conic containing P_1, \ldots, P_5 , and its square is double at each of the five points!

But "most" of the time it is true. There is a long history of research on this problem, culminating in the SHGH conjecture.

Note: SHGH = Segre-Harbourne-Gimigliano-Hirschowitz.

SHGH gives a complete conjectural answer to the question. They describe precisely when you do not get the expected number of conditions (as happened in our example).

Question. Staying in \mathbb{P}^2 , what goes beyond this conjecture (as suggested in the title)?

$$\mathcal{L}=\left|\left[I_{Z}\right]_{j+1}\right|,$$

the linear system of curves of degree j + 1 passing through a fixed (reduced?) set of points *Z*.

э

$$\mathcal{L}=\left|\left[I_{Z}\right]_{j+1}\right|,$$

the linear system of curves of degree j + 1 passing through a fixed (reduced?) set of points *Z*.

Does X = m₁P₁ + ··· + m_dP_d (P₁, ..., P_d general) impose the expected number of conditions on L?

$$\mathcal{L}=\left|\left[I_{Z}\right]_{j+1}\right|,$$

the linear system of curves of degree j + 1 passing through a fixed (reduced?) set of points *Z*.

- Does X = m₁P₁ + ··· + m_dP_d (P₁, ..., P_d general) impose the expected number of conditions on L?
- If not, can we predict when they do not?

$$\mathcal{L}=\left|\left[I_{Z}\right]_{j+1}\right|,$$

the linear system of curves of degree j + 1 passing through a fixed (reduced?) set of points *Z*.

- Does X = m₁P₁ + ··· + m_dP_d (P₁, ..., P_d general) impose the expected number of conditions on L?
- If not, can we predict when they do not?
- How does the geometry of Z relate to this question?

Answer. Start with a linear system \mathcal{L} that is not complete! Specifically,

$$\mathcal{L}=\left|\left[I_{Z}\right]_{j+1}\right|,$$

the linear system of curves of degree j + 1 passing through a fixed (reduced?) set of points *Z*.

- Does X = m₁P₁ + ··· + m_dP_d (P₁, ..., P_d general) impose the expected number of conditions on L?
- If not, can we predict when they do not?
- How does the geometry of Z relate to this question?
- Are there connections between this and other interesting questions?

Answer. Start with a linear system \mathcal{L} that is not complete! Specifically,

$$\mathcal{L}=\left|\left[I_{Z}\right]_{j+1}\right|,$$

the linear system of curves of degree j + 1 passing through a fixed (reduced?) set of points *Z*.

- Does X = m₁P₁ + ··· + m_dP_d (P₁, ..., P_d general) impose the expected number of conditions on L?
- If not, can we predict when they do not?
- How does the geometry of Z relate to this question?
- Are there connections between this and other interesting questions?
- Clearly this question is intractable as stated. What is the first non-trivial special case? Even d = 1 is interesting!

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

A seemingly unrelated problem!

Juan C. Migliore Lefschetz properties and moving beyond the SHGH Conjectu

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

크

A seemingly unrelated problem!

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The next part of the talk is mostly standard. It describes the amazing (to me) fact that even in positive characteristic, things work better than I would have expected.

- 同下 - ヨト - ヨト

The next part of the talk is mostly standard. It describes the amazing (to me) fact that even in positive characteristic, things work better than I would have expected.

Let R = K[x, y, z]. Let $f = \ell_1 \cdots \ell_d$ be a product of *d* linear forms, none a scalar multiple of any other.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ つくで

The next part of the talk is mostly standard. It describes the amazing (to me) fact that even in positive characteristic, things work better than I would have expected.

Let R = K[x, y, z]. Let $f = \ell_1 \cdots \ell_d$ be a product of *d* linear forms, none a scalar multiple of any other.

Let A_f be the line arrangement in \mathbb{P}^2 defined by f. Note the lines of A_f are dual to a reduced set of d distinct points Z.

(日本)(日本)(日本)(日本)

The next part of the talk is mostly standard. It describes the amazing (to me) fact that even in positive characteristic, things work better than I would have expected.

Let R = K[x, y, z]. Let $f = \ell_1 \cdots \ell_d$ be a product of *d* linear forms, none a scalar multiple of any other.

Let A_f be the line arrangement in \mathbb{P}^2 defined by f. Note the lines of A_f are dual to a reduced set of d distinct points Z.

We'll consider two ideals:

 $\blacktriangleright J = (f_x, f_y, f_z, f)$

|▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ � � �

The next part of the talk is mostly standard. It describes the amazing (to me) fact that even in positive characteristic, things work better than I would have expected.

Let R = K[x, y, z]. Let $f = \ell_1 \cdots \ell_d$ be a product of *d* linear forms, none a scalar multiple of any other.

Let A_f be the line arrangement in \mathbb{P}^2 defined by f. Note the lines of A_f are dual to a reduced set of d distinct points Z.

We'll consider two ideals:

$$\blacktriangleright J = (f_x, f_y, f_z, f)$$

$$\blacktriangleright J' = (f_X, f_Y, f_Z).$$

(日本)(日本)(日本)(日本)

 $xf_x + yf_y + zf_z = df.$

Juan C. Migliore Lefschetz properties and moving beyond the SHGH Conjectu

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ① ○ ○ ○

$$xf_x + yf_y + zf_z = df.$$

• If char(K) does not divide d = deg(f), then

$$xf_x + yf_y + zf_z = df$$

is a non-zero scalar multiple of *f*, so J = J' in this case.

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

$$xf_x + yf_y + zf_z = df.$$

• If char(K) does not divide d = deg(f), then

$$xf_x + yf_y + zf_z = df$$

is a non-zero scalar multiple of *f*, so J = J' in this case.

If char(K) does divide deg(f) then

$$xf_x+yf_y+zf_z=0.$$

This is a degree one syzygy on f_x , f_y , f_z .

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ つくで

$$xf_x + yf_y + zf_z = df.$$

• If char(K) does not divide d = deg(f), then

$$xf_x + yf_y + zf_z = df$$

is a non-zero scalar multiple of *f*, so J = J' in this case.

If char(K) does divide deg(f) then

$$xf_x+yf_y+zf_z=0.$$

This is a degree one syzygy on f_x , f_y , f_z .

In this case it is not necessarily true that f is in the ideal generated by its first partial derivatives, although it can happen.

Example. Let

$$f = xyz(x + y) = (x^2y + xy^2)z$$
 with char(K) = 2.

So

$$J' = (f_x, f_y, f_z) = (y^2 z, x^2 z, x^2 y + x y^2)$$

and $f = z \cdot f_z \in J' = J$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

Example. Let

$$f = xyz(x + y) = (x^2y + xy^2)z$$
 with char(K) = 2.

So

$$J' = (f_x, f_y, f_z) = (y^2 z, x^2 z, x^2 y + x y^2)$$

and $f = z \cdot f_z \in J' = J$.

Example. Let

$$f = xyz(x + y)(x + z)$$
 with char(K) = 5.

One can check that $f \notin J'$ so $J' \subsetneq J$.

$$D(Z) \subset Rrac{\partial}{\partial x} \oplus Rrac{\partial}{\partial y} \oplus Rrac{\partial}{\partial z} \cong R^3$$

to be the *K*-linear derivations δ such that $\delta(f) \in Rf$.

<ロ> <同> <同> < 同> < 同> < 同> 、

크

$$D(Z) \subset Rrac{\partial}{\partial x} \oplus Rrac{\partial}{\partial y} \oplus Rrac{\partial}{\partial z} \cong R^3$$

to be the *K*-linear derivations δ such that $\delta(f) \in Rf$.

In particular,

• D(Z) contains the Euler derivation $\delta_E = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + z \frac{\partial}{\partial z}$;

$$D(Z) \subset R rac{\partial}{\partial x} \oplus R rac{\partial}{\partial y} \oplus R rac{\partial}{\partial z} \cong R^3$$

to be the *K*-linear derivations δ such that $\delta(f) \in Rf$.

In particular,

- D(Z) contains the Euler derivation $\delta_E = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + z \frac{\partial}{\partial z}$;
- δ_E generates a submodule $R\delta_E \cong R(-1)$.

<□> <同> <同> < 回> < 回> < 回> < 回> < 回> ○ Q ()

$$D(Z) \subset Rrac{\partial}{\partial x} \oplus Rrac{\partial}{\partial y} \oplus Rrac{\partial}{\partial z} \cong R^3$$

to be the *K*-linear derivations δ such that $\delta(f) \in Rf$.

In particular,

- D(Z) contains the Euler derivation $\delta_E = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + z \frac{\partial}{\partial z}$;
- δ_E generates a submodule $R\delta_E \cong R(-1)$.

We define the quotient $D_0(Z) = D(Z)/R\delta_E$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● の Q @

$$D(Z) \subset R rac{\partial}{\partial x} \oplus R rac{\partial}{\partial y} \oplus R rac{\partial}{\partial z} \cong R^3$$

to be the *K*-linear derivations δ such that $\delta(f) \in Rf$.

In particular,

- D(Z) contains the Euler derivation $\delta_E = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + z \frac{\partial}{\partial z}$;
- δ_E generates a submodule $R\delta_E \cong R(-1)$.

We define the quotient $D_0(Z) = D(Z)/R\delta_E$.

Let \mathcal{D}_Z , $\widetilde{D(Z)}$ be the sheafifications of $D_0(Z)$ and D(Z) resp. What can we say about \mathcal{D}_Z and about $\widetilde{D(Z)}$?

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ◆□ ● ◇◇◇

• \mathcal{D}_Z is locally free of rank 2.

Juan C. Migliore Lefschetz properties and moving beyond the SHGH Conjectu

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- \mathcal{D}_Z is locally free of rank 2.
- ► When char(K) does not divide d, D_Z is isomorphic to the syzygy bundle (suitably twisted) of J'.

- \mathcal{D}_Z is locally free of rank 2.
- ► When char(K) does not divide d, D_Z is isomorphic to the syzygy bundle (suitably twisted) of J'.
- ► When char(K) does divide d, D(Z) is isomorphic to the syzygy bundle (suitably twisted) of J.

- \mathcal{D}_Z is locally free of rank 2.
- ► When char(K) does not divide d, D_Z is isomorphic to the syzygy bundle (suitably twisted) of J'.
- ► When char(K) does divide d, D(Z) is isomorphic to the syzygy bundle (suitably twisted) of J.
- ► The restriction of D_Z to a general line ℓ ≃ P¹ splits as a direct sum

$$\mathcal{O}_{\mathbb{P}^1}(-a_Z)\oplus\mathcal{O}_{\mathbb{P}^1}(-b_Z)$$

for positive integers $a_Z \leq b_Z$ satisfying

$$a_Z + b_Z = \deg f - 1 = d - 1.$$

- \mathcal{D}_Z is locally free of rank 2.
- ► When char(K) does not divide d, D_Z is isomorphic to the syzygy bundle (suitably twisted) of J'.
- When char(K) does divide d, D(Z) is isomorphic to the syzygy bundle (suitably twisted) of J.
- ► The restriction of D_Z to a general line ℓ ≃ P¹ splits as a direct sum

$$\mathcal{O}_{\mathbb{P}^1}(-a_Z)\oplus \mathcal{O}_{\mathbb{P}^1}(-b_Z)$$

for positive integers $a_Z \leq b_Z$ satisfying

$$a_Z+b_Z=\deg f-1=d-1.$$

The ordered pair (a_Z, b_Z) is the splitting type of \mathcal{D}_Z (or *Z*).

◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● � � � �

Merging the two topics

Fix a set of points, $Z \subset \mathbb{P}^2$.

Let $\mathcal{L} = |[I_Z]_{j+1}|$. (Incomplete linear system.) Let $P \in \mathbb{P}^2$ be a general point.

Merging the two topics

Fix a set of points, $Z \subset \mathbb{P}^2$.

Let $\mathcal{L} = |[I_Z]_{j+1}|$. (Incomplete linear system.) Let $P \in \mathbb{P}^2$ be a general point.

First interesting case of our general problem. Consider the fat point *jP*.

How many conditions does jP impose on \mathcal{L} ?

Merging the two topics

Fix a set of points, $Z \subset \mathbb{P}^2$.

Let $\mathcal{L} = |[I_Z]_{j+1}|$. (Incomplete linear system.) Let $P \in \mathbb{P}^2$ be a general point.

First interesting case of our general problem. Consider the fat point *jP*.

How many conditions does jP impose on \mathcal{L} ?

We expect that *jP* will impose

$$\min\left\{\binom{j+1}{2},\dim[I_Z]_{j+1}\right\}$$

independent conditions on \mathcal{L} .

<ロ> <同> <同> < 同> < 同> < 同> 、

크

Definition. Let *Z*, *P* and $\mathcal{L} = |[I_Z]_{i+1}|$ be as above.

Juan C. Migliore Lefschetz properties and moving beyond the SHGH Conjectu

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Definition. Let *Z*, *P* and $\mathcal{L} = |[I_Z]_{j+1}|$ be as above. Then

Z admits an unexpected curve of degree j + 1

if, for a general point P, the fat point jP fails to impose the expected number of conditions on \mathcal{L} .

Definition. Let *Z*, *P* and $\mathcal{L} = |[I_Z]_{j+1}|$ be as above. Then

Z admits an unexpected curve of degree j + 1

if, for a general point P, the fat point jP fails to impose the expected number of conditions on \mathcal{L} .

That is, Z admits an unexpected curve of degree j + 1 if

$$\dim[I_{Z+jP}]_{j+1} > \max\left\{\dim[I_Z]_{j+1} - \binom{j+1}{2}, 0\right\}.$$

Definition. Let *Z*, *P* and $\mathcal{L} = |[I_Z]_{j+1}|$ be as above. Then

Z admits an unexpected curve of degree j + 1

if, for a general point P, the fat point jP fails to impose the expected number of conditions on \mathcal{L} .

That is, Z admits an unexpected curve of degree j + 1 if

$$\dim[I_{Z+jP}]_{j+1} > \max\left\{\dim[I_Z]_{j+1} - \binom{j+1}{2}, 0\right\}.$$

We say that Z admits an unexpected curve if such a j exists.

Definition. Let *Z*, *P* and $\mathcal{L} = |[I_Z]_{j+1}|$ be as above. Then

Z admits an unexpected curve of degree j + 1

if, for a general point P, the fat point jP fails to impose the expected number of conditions on \mathcal{L} .

That is, Z admits an unexpected curve of degree j + 1 if

$$\dim[I_{Z+jP}]_{j+1} > \max\left\{\dim[I_Z]_{j+1} - \binom{j+1}{2}, 0\right\}.$$

We say that *Z* admits an unexpected curve if such a *j* exists. Note *Z* might have unexpected curves in more than one degree.

Some of the questions answered in our paper.

1. What properties of *Z* force the existence of an unexpected curve? (Necessary and sufficient conditions.)

< 同 > < 回 > < 回 > <

Some of the questions answered in our paper.

- 1. What properties of *Z* force the existence of an unexpected curve? (Necessary and sufficient conditions.)
- 2. The definition of unexpected curves allowed for their existence in more than one degree. If there are unexpected curves at all, in what degrees do they exist?

・ 白 ・ ・ ヨ ・ ・ 日 ・

- 1. What properties of *Z* force the existence of an unexpected curve? (Necessary and sufficient conditions.)
- 2. The definition of unexpected curves allowed for their existence in more than one degree. If there are unexpected curves at all, in what degrees do they exist?
- 3. Describe the unexpected curves:

< 同 > < 回 > < 回 > -

- 1. What properties of *Z* force the existence of an unexpected curve? (Necessary and sufficient conditions.)
- 2. The definition of unexpected curves allowed for their existence in more than one degree. If there are unexpected curves at all, in what degrees do they exist?
- 3. Describe the unexpected curves:
 - When are they irreducible?

- 1. What properties of *Z* force the existence of an unexpected curve? (Necessary and sufficient conditions.)
- 2. The definition of unexpected curves allowed for their existence in more than one degree. If there are unexpected curves at all, in what degrees do they exist?
- 3. Describe the unexpected curves:
 - When are they irreducible?
 - If they are reducible, what do the irreducible components look like?

・ 同 ト ・ ヨ ト ・ ヨ ト

- 1. What properties of *Z* force the existence of an unexpected curve? (Necessary and sufficient conditions.)
- 2. The definition of unexpected curves allowed for their existence in more than one degree. If there are unexpected curves at all, in what degrees do they exist?
- 3. Describe the unexpected curves:
 - When are they irreducible?
 - If they are reducible, what do the irreducible components look like?
- 4. What are some examples of sets of points with unexpected curves?

・ 同 ト ・ ヨ ト ・ ヨ ト

Let *Z* be a reduced set of points of \mathbb{P}^2 .

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

크

Let *Z* be a reduced set of points of \mathbb{P}^2 .

The points of *Z* are dual to a line arrangement A_f , where *f* is a product of distinct linear forms.

Let *Z* be a reduced set of points of \mathbb{P}^2 .

The points of *Z* are dual to a line arrangement A_f , where *f* is a product of distinct linear forms.

Let *P* be a general point of \mathbb{P}^2 .

Notation. Z + jP is the scheme defined by the ideal $I_Z \cap I_P^j \subset R$.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ つくで

Let *Z* be a reduced set of points of \mathbb{P}^2 .

The points of *Z* are dual to a line arrangement A_f , where *f* is a product of distinct linear forms.

Let *P* be a general point of \mathbb{P}^2 .

Notation. Z + jP is the scheme defined by the ideal $I_Z \cap I_P^j \subset R$.

Let \mathcal{I}_Z and \mathcal{I}_{Z+iP} be the corresponding ideal sheaves.

Let *Z* be a reduced set of points of \mathbb{P}^2 .

The points of *Z* are dual to a line arrangement A_f , where *f* is a product of distinct linear forms.

Let *P* be a general point of \mathbb{P}^2 .

Notation. Z + jP is the scheme defined by the ideal $I_Z \cap I_P^j \subset R$.

Let \mathcal{I}_Z and \mathcal{I}_{Z+iP} be the corresponding ideal sheaves.

Recall that the splitting type of \mathcal{D}_Z is (a_Z, b_Z) with $a_Z \le b_Z$ and $a_Z + b_Z = \deg Z - 1$.

Lemma.

 $\dim[I_{Z+jP}]_{j+1} = \max\{0, j - a_Z + 1\} + \max\{0, j - b_Z + 1\}.$

Lemma.

$$\dim[I_{Z+jP}]_{j+1} = \max\{0, j - a_Z + 1\} + \max\{0, j - b_Z + 1\}.$$

This combines information about *Z* with information about the dual line arrangement A_f .

Lemma.

$$\dim[I_{Z+jP}]_{j+1} = \max\{0, j - a_Z + 1\} + \max\{0, j - b_Z + 1\}.$$

This combines information about Z with information about the dual line arrangement A_{f} .

Remark. From this lemma it follows immediately that

• dim
$$[I_{Z+a_ZP}]_{a_Z+1}$$
 is either equal to 1 or to 2;

э

Lemma.

$$\dim[I_{Z+jP}]_{j+1} = \max\{0, j - a_Z + 1\} + \max\{0, j - b_Z + 1\}.$$

This combines information about Z with information about the dual line arrangement A_{f} .

Remark. From this lemma it follows immediately that

• dim
$$[I_{Z+a_ZP}]_{a_Z+1}$$
 is either equal to 1 or to 2;

• dim
$$[I_{Z+a_ZP}]_{a_Z+1} = 2$$
 if and only if $a_Z = b_Z$.

э

Definition. Let Z be a reduced 0-dimensional subscheme of \mathbb{P}^2 .

(a) The multiplicity index is

 $m_Z = \min\{j \in \mathbb{Z} \mid \dim[I_{Z+jP}]_{j+1} > 0\}$

Definition. Let Z be a reduced 0-dimensional subscheme of \mathbb{P}^2 .

(a) The multiplicity index is

$$m_Z = \min\{j \in \mathbb{Z} \mid \dim[I_{Z+jP}]_{j+1} > 0\}$$

 $= a_Z$ (by the Faenzi-Valles lemma)

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

크

Definition. Let Z be a reduced 0-dimensional subscheme of \mathbb{P}^2 .

(a) The multiplicity index is

$$m_{Z} = \min\{j \in \mathbb{Z} \mid \dim[I_{Z+jP}]_{j+1} > 0\}$$

= a_{Z} (by the Faenzi-Valles lemma)

(b) $t_Z = \min\{j \mid \dim[I_Z]_{j+1} > {j+1 \choose 2}$. (Depends only on the Hilbert function of *Z*.)

▲母▶▲国▶▲国▶ 国 のQで

Definition. Let Z be a reduced 0-dimensional subscheme of \mathbb{P}^2 .

(a) The multiplicity index is

$$m_Z = \min\{j \in \mathbb{Z} \mid \dim[I_{Z+jP}]_{j+1} > 0\}$$

 $= a_Z$ (by the Faenzi-Valles lemma)

- (b) $t_Z = \min\{j \mid \dim[I_Z]_{j+1} > {j+1 \choose 2}$. (Depends only on the Hilbert function of *Z*.)
- (c) The speciality index is
 - $u_Z = \min\{j \mid Z + jP \text{ imposes independent conditions}$ on plane curves of degree $j + 1\}$

Definition. Let Z be a reduced 0-dimensional subscheme of \mathbb{P}^2 .

(a) The multiplicity index is

$$m_Z = \min\{j \in \mathbb{Z} \mid \dim[I_{Z+jP}]_{j+1} > 0\}$$

 $= a_Z$ (by the Faenzi-Valles lemma)

- (b) $t_Z = \min\{j \mid \dim[I_Z]_{j+1} > {j+1 \choose 2}$. (Depends only on the Hilbert function of *Z*.)
- (c) The speciality index is
 - $u_Z = \min\{j \mid Z + jP \text{ imposes independent conditions}$ on plane curves of degree $j + 1\}$

$$= \min\{j \mid \dim[I_{Z+jP}]_{j+1} = {j+3 \choose 2} - {j+1 \choose 2} - |Z|\}$$

Definition. Let Z be a reduced 0-dimensional subscheme of \mathbb{P}^2 .

(a) The multiplicity index is

$$m_Z = \min\{j \in \mathbb{Z} \mid \dim[I_{Z+jP}]_{j+1} > 0\}$$

 $= a_Z$ (by the Faenzi-Valles lemma)

- (b) $t_Z = \min\{j \mid \dim[I_Z]_{j+1} > {j+1 \choose 2}$. (Depends only on the Hilbert function of *Z*.)
- (c) The speciality index is
 - $u_Z = \min\{j \mid Z + jP \text{ imposes independent conditions}$ on plane curves of degree $j + 1\}$

$$= \min\{j \mid \dim[I_{Z+jP}]_{j+1} = {\binom{j+3}{2}} - {\binom{j+1}{2}} - |Z|\}$$

$$= \min\{j \mid h^1(\mathcal{I}_{Z+jP}(j+1)) = 0\}.$$

(a) $m_Z < u_Z \Leftrightarrow |Z| \ge 2m_Z + 3$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

(a)
$$m_Z < u_Z \Leftrightarrow |Z| \ge 2m_Z + 3$$

(b)
$$m_Z = u_Z \Leftrightarrow |Z| = 2m_Z + 2$$

イロト イヨト イヨト イヨト

(a)
$$m_Z < u_Z \Leftrightarrow |Z| \ge 2m_Z + 3$$

(b)
$$m_Z = u_Z \Leftrightarrow |Z| = 2m_Z + 2$$

(c)
$$m_Z > u_Z \Leftrightarrow |Z| = 2m_Z + 1$$

イロト イヨト イヨト イヨト

(a)
$$m_Z < u_Z \iff |Z| \ge 2m_Z + 3$$

(b) $m_Z = u_Z \iff |Z| = 2m_Z + 2$

$$\begin{cases} \Leftrightarrow \dim[I_{Z+m_ZP}]_{m_Z+1} = 1 \end{cases}$$

(c) $m_Z > u_Z \Leftrightarrow |Z| = 2m_Z + 1$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

(a)
$$m_Z < u_Z \iff |Z| \ge 2m_Z + 3$$

(b) $m_Z = u_Z \iff |Z| = 2m_Z + 2$

$$\Leftrightarrow \dim[I_{Z+m_ZP}]_{m_Z+1} = 1$$

(c) $m_Z > u_Z \Leftrightarrow |Z| = 2m_Z + 1 \Leftrightarrow \dim[I_{Z+m_ZP}]_{m_Z+1} = 2$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

(a)
$$m_Z < u_Z \iff |Z| \ge 2m_Z + 3$$

(b) $m_Z = u_Z \iff |Z| = 2m_Z + 2$

$$\Leftrightarrow \dim[I_{Z+m_ZP}]_{m_Z+1} = 1$$

(c) $m_Z > u_Z \Leftrightarrow |Z| = 2m_Z + 1 \Leftrightarrow \dim[I_{Z+m_ZP}]_{m_Z+1} = 2$

Theorem. Regardless of whether *Z* has an unexpected curve or not, we have:

$$m_Z+u_Z=|Z|-2.$$

(a)
$$m_Z < u_Z \iff |Z| \ge 2m_Z + 3$$

(b) $m_Z = u_Z \iff |Z| = 2m_Z + 2$

$$\Leftrightarrow \dim[I_{Z+m_ZP}]_{m_Z+1} = 1$$

(c) $m_Z > u_Z \Leftrightarrow |Z| = 2m_Z + 1 \Leftrightarrow \dim[I_{Z+m_ZP}]_{m_Z+1} = 2$

Theorem. Regardless of whether *Z* has an unexpected curve or not, we have:

$$m_Z+u_Z=|Z|-2.$$

Corollary For the splitting type (a_Z, b_Z) of \mathcal{D}_Z we have $a_Z = m_Z$ and $b_Z = u_Z + 1$.

<□> <同> <同> < 回> < 回> < 回> < 回> < 回> ○ Q ()

 $m_Z < t_Z$,

(日)

 $m_Z < t_Z$,

in which case $t_Z \leq u_Z$.

 $m_Z < t_Z$,

in which case $t_Z \leq u_Z$.

In this situation Z has an unexpected curve of degree j + 1 if and only if

 $m_Z \leq j < u_Z$.

Juan C. Migliore Lefschetz properties and moving beyond the SHGH Conjectu

 $m_Z < t_Z$,

in which case $t_Z \leq u_Z$.

In this situation Z has an unexpected curve of degree j + 1 if and only if

$$m_Z \leq j < u_Z$$
.

Corollary. If *Z* admits an unexpected curve then $b_Z - a_Z \ge 2$.

 $m_Z < t_Z$,

in which case $t_Z \leq u_Z$.

In this situation Z has an unexpected curve of degree j + 1 if and only if

$$m_Z \leq j < u_Z$$
.

Corollary. If *Z* admits an unexpected curve then $b_Z - a_Z \ge 2$.

Is the converse true?

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

Theorem.

An unexpected curve exists
$$\Leftrightarrow \left\{ \begin{array}{l} \mbox{(a) } b_Z - a_Z \geq 2 \\ \end{array} \right.$$

Juan C. Migliore Lefschetz properties and moving beyond the SHGH Conjectu

◆□▶ ◆御▶ ◆理▶ ◆理▶ 三世

Theorem.

An unexpected curve exists $\Leftrightarrow \begin{cases} (a) \ b_Z - a_Z \ge 2 \\ (b) \ h_Z(t_Z) = |Z|. \end{cases}$

回 とうほとうほとう

르

Theorem.

An unexpected curve exists
$$\Leftrightarrow \begin{cases} (a) \ b_Z - a_Z \ge 2 \\ (b) \ h_Z(t_Z) = |Z|. \end{cases}$$

. . . .

Note

$$(b) \Leftrightarrow h^1(\mathcal{I}_Z(t_Z)) = 0$$

 \Leftrightarrow Z imposes independent conditions on curves of degree t_Z .

・ロト ・四ト ・ヨト ・ヨト

Irreducibility

► An unexpected curve can only hope to be irreducible in degree m_Z + 1.

르

Irreducibility

- ► An unexpected curve can only hope to be irreducible in degree m_Z + 1.
- We give a necessary and sufficient condition for the existence of irreducible curves in the linear system |[*I*_{Z+m_Z}P]_{m_Z+1}|, assuming m_Z ≤ u_Z.

(本部) (本語) (本語) (語)

Irreducibility

- ► An unexpected curve can only hope to be irreducible in degree m_Z + 1.
- We give a necessary and sufficient condition for the existence of irreducible curves in the linear system |[*I*_{Z+m_ZP}]_{m_Z+1}|, assuming m_Z ≤ u_Z. [If m_Z = u_Z + 1 then there is always an irreducible curve.]

▲御▶ ▲ 国▶ ▲ 国▶ 二 国

Irreducibility

- ► An unexpected curve can only hope to be irreducible in degree m_Z + 1.
- We give a necessary and sufficient condition for the existence of irreducible curves in the linear system |[*I*_{Z+m_ZP}]_{m_Z+1}|, assuming m_Z ≤ u_Z. [If m_Z = u_Z + 1 then there is always an irreducible curve.]

Structure of unexpected curves

We give a careful description. Briefly, an unexpected curve consists of the union of

- ► an irreducible rational curve of some degree *e* having a point of multiplicity *e* − 1 and
- certain lines.

<□> < 三> < 三> < 三> < 三 > ○ < ○

Some Examples/results

Example. [Di Gennaro, Ilardi and Vallès] (This motivated our paper!)

The points dual to the B-3 configuration admit an unexpected curve of degree 4.

A B b A B b

Example. For this example, for simplicity we assume our ground field has characteristic 0, because we want to use the syzygy bundle of $J' = (f_x, f_y, f_z)$.

Example. For this example, for simplicity we assume our ground field has characteristic 0, because we want to use the syzygy bundle of $J' = (f_x, f_y, f_z)$.

Consider the line configuration A_f given by the lines defined by

$$f = xyz(x + y)(x - y)(2x + y)(2x - y)(x + z)(x - z) (y + z)(y - z)(x + 2z)(x - 2z)(y + 2z)(y - 2z) (x - y + z)(x - y - z)(x - y + 2z)(x - y - 2z).$$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ つくで

Example. For this example, for simplicity we assume our ground field has characteristic 0, because we want to use the syzygy bundle of $J' = (f_x, f_y, f_z)$.

Consider the line configuration A_f given by the lines defined by

$$f = xyz(x+y)(x-y)(2x+y)(2x-y)(x+z)(x-z)(y+z)(y-z)(x+2z)(x-2z)(y+2z)(y-2z)(x-y+z)(x-y-z)(x-y+2z)(x-y-2z).$$

Note d = 19. Let Z be the corresponding reduced scheme consisting of the 19 points that are dual to these lines.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ つくで

The following figures show A_f and Z.

<ロト <回 > < 回 > < 回 > .

æ

(日)

æ

$$\Delta h_{Z} = (1, 2, 3, 4, 4, 4, 1),$$

from which we find that $t_Z = 9$.

< 日 > < 回 > < 回 > < 回 > < 回 > <

르

$$\Delta h_Z = (1, 2, 3, 4, 4, 4, 1),$$

from which we find that $t_Z = 9$.

Picking a random point *P*, one employs various methods to prove that $a_Z = m_Z = 8$.

<□> <同> <同> < 回> < 回> < 回> < 回> < 回> ○ Q ()

$$\Delta h_Z = (1, 2, 3, 4, 4, 4, 1),$$

from which we find that $t_Z = 9$.

Picking a random point *P*, one employs various methods to prove that $a_Z = m_Z = 8$.

Since $m_Z < t_Z$, Z admits an unexpected curve of degree $m_Z + 1 = 9$.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ の Q ()

$$\Delta h_Z = (1, 2, 3, 4, 4, 4, 1),$$

from which we find that $t_Z = 9$.

Picking a random point *P*, one employs various methods to prove that $a_Z = m_Z = 8$.

Since $m_Z < t_Z$, Z admits an unexpected curve of degree $m_Z + 1 = 9$.

Since |Z| = 19, the splitting type is (8, 10), and $u_Z = 10 - 1 = 9$.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ の Q ()

So we have $m_Z = 8$, $t_Z = 9$ and $u_Z = 9$.

Juan C. Migliore Lefschetz properties and moving beyond the SHGH Conjectu

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ① ○ ○ ○

So we have $m_Z = 8$, $t_Z = 9$ and $u_Z = 9$. Recall our theorem:

An unexpected curve exists if and only if $m_Z < t_Z$.

In this situation Z has an unexpected curve of degree j + 1if and only if

 $m_Z + 1 \le j + 1 < u_Z + 1.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

So we have $m_Z = 8$, $t_Z = 9$ and $u_Z = 9$. Recall our theorem:

An unexpected curve exists if and only if $m_Z < t_Z$.

In this situation Z has an unexpected curve of degree j + 1if and only if

 $m_Z + 1 \le j + 1 < u_Z + 1.$

Thus in our example there is an unexpected curve for each degree j + 1 with

```
8+1 \le j+1 < 9+1.
```

That is, 9 is the only degree in which Z admits an unexpected curve. We have verified experimentally (using our criterion for irreducibility) that this curve is not irreducible.

(ロ) (同) (E) (E) (E) (C)

Definition. A line arrangement A_f in \mathbb{P}^2 is free if \mathcal{D}_Z is free, i.e. if $J = J' = (f_x, f_y, f_z)$ is a saturated ideal.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ つくで

Definition. A line arrangement A_f in \mathbb{P}^2 is free if \mathcal{D}_Z is free, i.e. if $J = J' = (f_x, f_y, f_z)$ is a saturated ideal.

In the previous example, A_f is not free. Freeness does not affect the above results, but it's a little more work to determine the splitting type for a particular non-free arrangement.

Definition. A line arrangement A_f in \mathbb{P}^2 is free if \mathcal{D}_Z is free, i.e. if $J = J' = (f_x, f_y, f_z)$ is a saturated ideal.

In the previous example, A_f is not free. Freeness does not affect the above results, but it's a little more work to determine the splitting type for a particular non-free arrangement.

The following result used the Grauert-Mülich theorem for the proof, so we assume characteristic zero also for this.

Theorem. If Z is in linear general position then Z does not admit an unexpected curve.

(日) (圖) (E) (E) (E)

Definition. A line arrangement A_f in \mathbb{P}^2 is free if \mathcal{D}_Z is free, i.e. if $J = J' = (f_x, f_y, f_z)$ is a saturated ideal.

In the previous example, A_f is not free. Freeness does not affect the above results, but it's a little more work to determine the splitting type for a particular non-free arrangement.

The following result used the Grauert-Mülich theorem for the proof, so we assume characteristic zero also for this.

Theorem. If Z is in linear general position then Z does not admit an unexpected curve.

(This is far from talking about a general set of points.)

・ロト ・ 四ト ・ ヨト ・ ヨト - ヨ

Example. Assume char(K) = 2.

Let Z be the 7 points of the Fano plane.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

æ

Example. Assume char(K) = 2.

Let Z be the 7 points of the Fano plane.

Then dim $[I_Z]_3 = 3$ and 2*P* should impose 3 conditions, so we expect there not to be a cubic containing *Z* and singular at a general point $P = [\alpha, \beta, \gamma]$.

<□> <同> <同> < 回> < 回> < 回> < 回> < 回> ○ Q ()

Example. Assume char(K) = 2.

Let Z be the 7 points of the Fano plane.

Then dim $[I_Z]_3 = 3$ and 2*P* should impose 3 conditions, so we expect there not to be a cubic containing *Z* and singular at a general point $P = [\alpha, \beta, \gamma]$.

But in fact there is one. One can easily check that

$$f = \alpha^2 yz(y+z) + \beta^2 xz(x+z) + \gamma^2 xy(x+y)$$

defines a curve C (reduced and irreducible in fact) which is singular at P, and hence C is an unexpected curve of degree 3 for Z.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ の Q ()

Finally, we give a connection between unexpected curves and Lefschetz properties. (There are actually several such connections.)

< 日 > < 回 > < 回 > < 回 > < 回 > <

크

Finally, we give a connection between unexpected curves and Lefschetz properties. (There are actually several such connections.)

Recall WLP studied the rank of

 $\times L : [R/I]_i \rightarrow [R/I]_{i+1}$

for all *i*.

(日) (圖) (E) (E) (E)

Finally, we give a connection between unexpected curves and Lefschetz properties. (There are actually several such connections.)

Recall WLP studied the rank of

 $\times L : [R/I]_i \rightarrow [R/I]_{i+1}$

for all *i*.

SLP studied the rank of

 $\times L^k : [R/I]_i \rightarrow [R/I]_{i+k}$

for all *i* and all *k*.

< 同 > < 回 > < 回 > <

э.

▶ When does

$$\times L^2: [R/I]_i \to [R/I]_{i+2}$$

have maximal rank?

► When does

$$\times L^2: [R/I]_i \to [R/I]_{i+2}$$

have maximal rank?

Here is an interesting class of ideals:

$$\mathcal{C} = \{I = (L_1^{a_1}, \ldots, L_k^{a_k})\}$$

where $k \ge 3$, $a_1, \ldots, a_k \ge 2$ and L_1, \ldots, L_k linear forms in K[x, y, z] (unlike my first talk, this time they are not necessarily general).

< □→ < □→ < □→ - □

When does

$$\times L^2: [R/I]_i \to [R/I]_{i+2}$$

have maximal rank?

Here is an interesting class of ideals:

$$\mathcal{C} = \{I = (L_1^{a_1}, \ldots, L_k^{a_k})\}$$

where $k \ge 3$, $a_1, \ldots, a_k \ge 2$ and L_1, \ldots, L_k linear forms in K[x, y, z] (unlike my first talk, this time they are not necessarily general).

Schenck-Seceleanu: Any such ideal has the WLP (3 variables).

(日本)(日本)(日本)(日本)

▶ When does

$$\times L^2: [R/I]_i \to [R/I]_{i+2}$$

have maximal rank?

Here is an interesting class of ideals:

$$\mathcal{C} = \{I = (L_1^{a_1}, \ldots, L_k^{a_k})\}$$

where $k \ge 3$, $a_1, \ldots, a_k \ge 2$ and L_1, \ldots, L_k linear forms in K[x, y, z] (unlike my first talk, this time they are not necessarily general).

Schenck-Seceleanu: Any such ideal has the WLP (3 variables).

But the above question about $\times L^2$ is meaningful.

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ � � �

Theorem. Let

- $\mathcal{A}(f)$ be a line arrangement in \mathbb{P}^2 , where $f = L_1 \cdots L_d$.
- Z be the set of points in \mathbb{P}^2 dual to these lines.
- ► $I = (L_1^{j+1}, ..., L_d^{j+1}).$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - つくぐ

Theorem. Let

- $\mathcal{A}(f)$ be a line arrangement in \mathbb{P}^2 , where $f = L_1 \cdots L_d$.
- Z be the set of points in \mathbb{P}^2 dual to these lines.

►
$$I = (L_1^{j+1}, \dots, L_d^{j+1}).$$

Then

Z has an unexpected curve of degree j + 1if and only if

 $imes L^2 : [R/I]_{j-1}
ightarrow [R/I]_{j+1}$ does not have maximal rank.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● の Q @

Theorem. Let

- $\mathcal{A}(f)$ be a line arrangement in \mathbb{P}^2 , where $f = L_1 \cdots L_d$.
- Z be the set of points in \mathbb{P}^2 dual to these lines.

►
$$I = (L_1^{j+1}, \dots, L_d^{j+1}).$$

Then

Z has an unexpected curve of degree j + 1 if and only if

 $imes L^2 : [R/I]_{j-1}
ightarrow [R/I]_{j+1}$ does not have maximal rank.

There is one additional ingredient to prove this.

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

Let \wp_1, \ldots, \wp_m be the ideals of *m* distinct points in \mathbb{P}^{n-1} .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Let \wp_1, \ldots, \wp_m be the ideals of *m* distinct points in \mathbb{P}^{n-1} . Let L_1, \ldots, L_m be the dual linear forms.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Let \wp_1, \ldots, \wp_m be the ideals of *m* distinct points in \mathbb{P}^{n-1} .

Let L_1, \ldots, L_m be the dual linear forms.

Choose positive integers a_1, \ldots, a_m .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Let \wp_1, \ldots, \wp_m be the ideals of m distinct points in \mathbb{P}^{n-1} .

Let L_1, \ldots, L_m be the dual linear forms.

Choose positive integers a_1, \ldots, a_m .

Then for any integer $k \geq \max\{a_i\}$,

$$\dim_{\mathcal{K}}\left[R/(L_{1}^{a_{1}},\ldots,L_{m}^{a_{m}})\right]_{k}=\dim_{\mathcal{K}}\left[\wp_{1}^{k-a_{1}+1}\cap\cdots\cap\wp_{m}^{k-a_{m}+1}\right]_{k}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Let \wp_1, \ldots, \wp_m be the ideals of *m* distinct points in \mathbb{P}^{n-1} . Let L_1, \ldots, L_m be the dual linear forms.

Choose positive integers a_1, \ldots, a_m .

Then for any integer $k \geq \max\{a_i\}$,

$$\dim_{\mathcal{K}}\left[R/(L_{1}^{a_{1}},\ldots,L_{m}^{a_{m}})\right]_{k}=\dim_{\mathcal{K}}\left[\wp_{1}^{k-a_{1}+1}\cap\cdots\cap\wp_{m}^{k-a_{m}+1}\right]_{k}.$$

In particular, for a general point *P* with defining ideal \wp and dual linear form *L*, we have

$$\dim_{K}\left[R/(L_{1}^{j+1},\ldots,L_{d}^{j+1},L^{2})\right]_{j+1}=\dim_{K}\left[\wp_{1}^{1}\cap\cdots\cap\wp_{n}^{1}\cap\wp^{j}\right]_{j+1}$$

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ の Q ()

Thank you.

Juan C. Migliore Lefschetz properties and moving beyond the SHGH Conjectu

< 一型

ъ

크