Lefschetz properties and moving beyond the SHGH Conjecture

Research Station on Commutative Algebra Korea Institute for Advanced studies / Yangpyung Korea
June 14, 2016

Juan C. Migliore

University of Notre Dame

Introduction

Joint work with:

David Cook II

Brian Harbourne

Uwe Nagel

Introduction

Joint work with:

David Cook II

Brian Harbourne

Uwe Nagel
(Motivated by a paper of Di Gennaro - Ilardi - Vallès.)

Recall that the Lefschetz properties measure the following.

Recall that the Lefschetz properties measure the following.
Given certain dimensions
(specifically $\operatorname{dim}\left[R / \Pi_{i}\right.$ and $\operatorname{dim}\left[R / \Pi_{i+1}\right.$),

Recall that the Lefschetz properties measure the following.
Given certain dimensions

$$
\text { (specifically } \operatorname{dim}\left[R / \Pi _ { i } \text { and } \operatorname { d i m } \left[R / \Pi_{i+1}\right.\right. \text {), }
$$

there is some general choice to make
(specifically the general linear form ℓ)

Recall that the Lefschetz properties measure the following.
Given certain dimensions

$$
\text { (specifically } \operatorname{dim}\left[R / \Pi _ { i } \text { and } \operatorname { d i m } \left[R / \Pi_{i+1}\right.\right. \text {), }
$$

there is some general choice to make

(specifically the general linear form ℓ)

leading to a new dimension

(specifically dim coker(× \times))

Recall that the Lefschetz properties measure the following.
Given certain dimensions

$$
\text { (specifically } \operatorname{dim}\left[R / \Pi _ { i } \text { and } \operatorname { d i m } \left[R / \Pi_{i+1}\right.\right. \text {), }
$$

there is some general choice to make

(specifically the general linear form ℓ)

leading to a new dimension

(specifically dim coker(× $)$)

and we want to know when this is larger than "expected."

Recall that the Lefschetz properties measure the following.
Given certain dimensions

$$
\text { (specifically } \operatorname{dim}\left[R / \Pi _ { i } \text { and } \operatorname { d i m } \left[R / \Pi_{i+1}\right.\right. \text {), }
$$

there is some general choice to make

(specifically the general linear form ℓ)

leading to a new dimension
(specifically dim coker($\times \ell$))
and we want to know when this is larger than "expected."
In this sense, the main topic of this talk shares this Lefschetz philosophy. There will be a direct connection at the end.

Expected number of independent conditions

Let K be a field of arbitrary characteristic and let $R=k[x, y, z]$.

Expected number of independent conditions

Let K be a field of arbitrary characteristic and let $R=k[x, y, z]$.
Easy Question 1. Consider the complete linear system \mathcal{L}_{j} of plane curves of degree j.
Recall $\operatorname{dim} \mathcal{L}_{j}=\operatorname{dim}_{k}[R]_{j}-1=\binom{j+2}{2}-1$.

Expected number of independent conditions

Let K be a field of arbitrary characteristic and let $R=k[x, y, z]$.
Easy Question 1. Consider the complete linear system \mathcal{L}_{j} of plane curves of degree j.
Recall $\operatorname{dim} \mathcal{L}_{j}=\operatorname{dim}_{k}[R]_{j}-1=\binom{j+2}{2}-1$.
Let $P \in \mathbb{P}^{2}$. What is the dimension of the linear system of plane curves of degree j passing through P ?

Expected number of independent conditions

Let K be a field of arbitrary characteristic and let $R=k[x, y, z]$.
Easy Question 1. Consider the complete linear system \mathcal{L}_{j} of plane curves of degree j.
Recall $\operatorname{dim} \mathcal{L}_{j}=\operatorname{dim}_{k}[R]_{j}-1=\binom{j+2}{2}-1$.
Let $P \in \mathbb{P}^{2}$. What is the dimension of the linear system of plane curves of degree j passing through P ?

Answer. Regardless of the choice of P, the dimension is

$$
\operatorname{dim} \mathcal{L}_{j}-1=\binom{j+2}{2}-2
$$

That is, P imposes one independent condition on \mathcal{L}_{j}.

Easy Question 2. Consider the complete linear system \mathcal{L}_{j} of plane curves of degree j.

Let $\left\{P_{1}, \ldots, P_{d}\right\} \subset \mathbb{P}^{2}$ be a set of points. How many conditions do P_{1}, \ldots, P_{d} impose on \mathcal{L}_{j} ?

Easy Question 2. Consider the complete linear system \mathcal{L}_{j} of plane curves of degree j.

Let $\left\{P_{1}, \ldots, P_{d}\right\} \subset \mathbb{P}^{2}$ be a set of points. How many conditions do P_{1}, \ldots, P_{d} impose on \mathcal{L}_{j} ?

Answer. There's no single answer. It depends on the choice of the points P_{1}, \ldots, P_{d}.

Easy Question 2. Consider the complete linear system \mathcal{L}_{j} of plane curves of degree j.

Let $\left\{P_{1}, \ldots, P_{d}\right\} \subset \mathbb{P}^{2}$ be a set of points. How many conditions do P_{1}, \ldots, P_{d} impose on \mathcal{L}_{j} ?

Answer. There's no single answer. It depends on the choice of the points P_{1}, \ldots, P_{d}.

Easy Question 3. Assume that P_{1}, \ldots, P_{d} are chosen generally. Then how many conditions do they impose on \mathcal{L}_{j} ?

Easy Question 2. Consider the complete linear system \mathcal{L}_{j} of plane curves of degree j.

Let $\left\{P_{1}, \ldots, P_{d}\right\} \subset \mathbb{P}^{2}$ be a set of points. How many conditions do P_{1}, \ldots, P_{d} impose on \mathcal{L}_{j} ?

Answer. There's no single answer. It depends on the choice of the points P_{1}, \ldots, P_{d}.

Easy Question 3. Assume that P_{1}, \ldots, P_{d} are chosen generally. Then how many conditions do they impose on \mathcal{L}_{j} ?

Answer. If there aren't too many points, they impose independent conditions. More generally, they impose $\min \left\{\left(\begin{array}{c}\left.\binom{2}{2}, d\right\} \text { independent conditions. }\end{array}\right.\right.$

Slightly less easy question. Let $P \in \mathbb{P}^{2}$. Let $m \geq 1$. How many conditions are imposed on plane curves of degree j if we require them to have multiplicity m at P ?

Slightly less easy question. Let $P \in \mathbb{P}^{2}$. Let $m \geq 1$. How many conditions are imposed on plane curves of degree j if we require them to have multiplicity m at P ?

Answer. The number of independent conditions is

$$
\min \left\{\binom{j+2}{2},\binom{m+1}{2}\right\} .
$$

(Think about partial derivatives.)

Slightly less easy question. Let $P \in \mathbb{P}^{2}$. Let $m \geq 1$. How many conditions are imposed on plane curves of degree j if we require them to have multiplicity m at P ?

Answer. The number of independent conditions is

$$
\min \left\{\binom{j+2}{2},\binom{m+1}{2}\right\} .
$$

(Think about partial derivatives.)
Terminology. In the latter case we'll say that the fat point $m P$ imposes $\binom{m+1}{2}$ independent conditions on \mathcal{L}_{j}.

Slightly less easy question. Let $P \in \mathbb{P}^{2}$. Let $m \geq 1$. How many conditions are imposed on plane curves of degree j if we require them to have multiplicity m at P ?

Answer. The number of independent conditions is

$$
\min \left\{\binom{j+2}{2},\binom{m+1}{2}\right\} .
$$

(Think about partial derivatives.)
Terminology. In the latter case we'll say that the fat point $m P$ imposes $\binom{m+1}{2}$ independent conditions on \mathcal{L}_{j}.
$m P$ is the scheme defined by the ideal I_{P}^{m}.

Very hard question. ("Fat" analog of earlier question.) Let $\left\{P_{1}, \ldots, P_{d}\right\} \subset \mathbb{P}^{2}$ be a general set of points. Let m_{1}, \ldots, m_{d} be positive integers.

Very hard question. ("Fat" analog of earlier question.) Let $\left\{P_{1}, \ldots, P_{d}\right\} \subset \mathbb{P}^{2}$ be a general set of points. Let m_{1}, \ldots, m_{d} be positive integers.

How many conditions do $\left\{m_{1} P_{1}, \ldots, m_{d} P\right\}$ impose on \mathcal{L}_{j} ?

Very hard question. ("Fat" analog of earlier question.) Let $\left\{P_{1}, \ldots, P_{d}\right\} \subset \mathbb{P}^{2}$ be a general set of points. Let m_{1}, \ldots, m_{d} be positive integers.

How many conditions do $\left\{m_{1} P_{1}, \ldots, m_{d} P\right\}$ impose on \mathcal{L}_{j} ?
Notation. Denote by $X=m_{1} P_{1}+\cdots+m_{d} P_{d}$ the above union of fat points.

Very hard question. ("Fat" analog of earlier question.) Let $\left\{P_{1}, \ldots, P_{d}\right\} \subset \mathbb{P}^{2}$ be a general set of points. Let m_{1}, \ldots, m_{d} be positive integers.

How many conditions do $\left\{m_{1} P_{1}, \ldots, m_{d} P\right\}$ impose on \mathcal{L}_{j} ?
Notation. Denote by $X=m_{1} P_{1}+\cdots+m_{d} P_{d}$ the above union of fat points.

Naive guess: Just like the case where $m_{i}=1$ for all i (mentioned above), if there is "room" then they should impose

$$
\binom{m_{1}+1}{2}+\binom{m_{2}+1}{2}+\cdots+\binom{m_{d}+1}{2}
$$

independent conditions.

Example. Let $d=5$ and $m_{1}=\cdots=m_{5}=2$.

Example. Let $d=5$ and $m_{1}=\cdots=m_{5}=2$.
The "prediction" is that the scheme $2 P_{1}+\cdots+2 P_{5}$ imposes

$$
\binom{1+2}{2}+\binom{1+2}{2}+\binom{1+2}{2}+\binom{1+2}{2}+\binom{1+2}{2}=15
$$

independent conditions on forms of any degree j, or else the linear system is empty.

Example. Let $d=5$ and $m_{1}=\cdots=m_{5}=2$.
The "prediction" is that the scheme $2 P_{1}+\cdots+2 P_{5}$ imposes

$$
\binom{1+2}{2}+\binom{1+2}{2}+\binom{1+2}{2}+\binom{1+2}{2}+\binom{1+2}{2}=15
$$

independent conditions on forms of any degree j, or else the linear system is empty.

But consider $j=4$. Since $\operatorname{dim} k[x, y, z]_{4}=15$, this means the "prediction" is that there is no curve of degree 4 double at all 5 points.

Is this true?

No!

There is a unique conic containing P_{1}, \ldots, P_{5}, and its square is double at each of the five points!

No!

There is a unique conic containing P_{1}, \ldots, P_{5}, and its square is double at each of the five points!

But "most" of the time it is true. There is a long history of research on this problem, culminating in the SHGH conjecture.

Note: SHGH = Segre-Harbourne-Gimigliano-Hirschowitz.

No!

There is a unique conic containing P_{1}, \ldots, P_{5}, and its square is double at each of the five points!

But "most" of the time it is true. There is a long history of research on this problem, culminating in the SHGH conjecture.

Note: SHGH = Segre-Harbourne-Gimigliano-Hirschowitz.
SHGH gives a complete conjectural answer to the question. They describe precisely when you do not get the expected number of conditions (as happened in our example).

No!

There is a unique conic containing P_{1}, \ldots, P_{5}, and its square is double at each of the five points!

But "most" of the time it is true. There is a long history of research on this problem, culminating in the SHGH conjecture.

Note: SHGH = Segre-Harbourne-Gimigliano-Hirschowitz.
SHGH gives a complete conjectural answer to the question. They describe precisely when you do not get the expected number of conditions (as happened in our example).

Question. Staying in \mathbb{P}^{2}, what goes beyond this conjecture (as suggested in the title)?

Answer. Start with a linear system \mathcal{L} that is not complete! Specifically,

$$
\mathcal{L}=\left|\left[I_{Z}\right]_{j+1}\right|
$$

the linear system of curves of degree $j+1$ passing through a fixed (reduced?) set of points Z.

Answer. Start with a linear system \mathcal{L} that is not complete! Specifically,

$$
\mathcal{L}=\left|\left[I_{Z}\right]_{j+1}\right|
$$

the linear system of curves of degree $j+1$ passing through a fixed (reduced?) set of points Z.

- Does $X=m_{1} P_{1}+\cdots+m_{d} P_{d}\left(P_{1}, \ldots, P_{d}\right.$ general) impose the expected number of conditions on \mathcal{L} ?

Answer. Start with a linear system \mathcal{L} that is not complete! Specifically,

$$
\mathcal{L}=\left|\left[I_{Z}\right]_{j+1}\right|
$$

the linear system of curves of degree $j+1$ passing through a fixed (reduced?) set of points Z.

- Does $X=m_{1} P_{1}+\cdots+m_{d} P_{d}\left(P_{1}, \ldots, P_{d}\right.$ general) impose the expected number of conditions on \mathcal{L} ?
- If not, can we predict when they do not?

Answer. Start with a linear system \mathcal{L} that is not complete! Specifically,

$$
\mathcal{L}=\left|\left[I_{Z}\right]_{j+1}\right|,
$$

the linear system of curves of degree $j+1$ passing through a fixed (reduced?) set of points Z.

- Does $X=m_{1} P_{1}+\cdots+m_{d} P_{d}\left(P_{1}, \ldots, P_{d}\right.$ general) impose the expected number of conditions on \mathcal{L} ?
- If not, can we predict when they do not?
- How does the geometry of Z relate to this question?

Answer. Start with a linear system \mathcal{L} that is not complete! Specifically,

$$
\mathcal{L}=\left|\left[I_{z}\right]_{j+1}\right|
$$

the linear system of curves of degree $j+1$ passing through a fixed (reduced?) set of points Z.

- Does $X=m_{1} P_{1}+\cdots+m_{d} P_{d}\left(P_{1}, \ldots, P_{d}\right.$ general) impose the expected number of conditions on \mathcal{L} ?
- If not, can we predict when they do not?
- How does the geometry of Z relate to this question?
- Are there connections between this and other interesting questions?

Answer. Start with a linear system \mathcal{L} that is not complete! Specifically,

$$
\mathcal{L}=\left|\left[I_{z}\right]_{j+1}\right|
$$

the linear system of curves of degree $j+1$ passing through a fixed (reduced?) set of points Z.

- Does $X=m_{1} P_{1}+\cdots+m_{d} P_{d}\left(P_{1}, \ldots, P_{d}\right.$ general) impose the expected number of conditions on \mathcal{L} ?
- If not, can we predict when they do not?
- How does the geometry of Z relate to this question?
- Are there connections between this and other interesting questions?
- Clearly this question is intractable as stated. What is the first non-trivial special case? Even $d=1$ is interesting!

A seemingly unrelated problem!

A seemingly unrelated problem!

Let K be an arbitrary (!!!) algebraically closed field.
The next part of the talk is mostly standard. It describes the amazing (to me) fact that even in positive characteristic, things work better than I would have expected.

Let K be an arbitrary (!!!) algebraically closed field.
The next part of the talk is mostly standard. It describes the amazing (to me) fact that even in positive characteristic, things work better than I would have expected.

Let $R=K[x, y, z]$. Let $f=\ell_{1} \cdots \ell_{d}$ be a product of d linear forms, none a scalar multiple of any other.

Let K be an arbitrary (!!!) algebraically closed field.
The next part of the talk is mostly standard. It describes the amazing (to me) fact that even in positive characteristic, things work better than I would have expected.

Let $R=K[x, y, z]$. Let $f=\ell_{1} \cdots \ell_{d}$ be a product of d linear forms, none a scalar multiple of any other.

Let \mathcal{A}_{f} be the line arrangement in \mathbb{P}^{2} defined by f. Note the lines of \mathcal{A}_{f} are dual to a reduced set of d distinct points Z.

Let K be an arbitrary (!!!) algebraically closed field.
The next part of the talk is mostly standard. It describes the amazing (to me) fact that even in positive characteristic, things work better than I would have expected.

Let $R=K[x, y, z]$. Let $f=\ell_{1} \cdots \ell_{d}$ be a product of d linear forms, none a scalar multiple of any other.

Let \mathcal{A}_{f} be the line arrangement in \mathbb{P}^{2} defined by f. Note the lines of \mathcal{A}_{f} are dual to a reduced set of d distinct points Z.

We'll consider two ideals:

- $J=\left(f_{x}, f_{y}, f_{z}, f\right)$

Let K be an arbitrary (!!!) algebraically closed field.
The next part of the talk is mostly standard. It describes the amazing (to me) fact that even in positive characteristic, things work better than I would have expected.

Let $R=K[x, y, z]$. Let $f=\ell_{1} \cdots \ell_{d}$ be a product of d linear forms, none a scalar multiple of any other.

Let \mathcal{A}_{f} be the line arrangement in \mathbb{P}^{2} defined by f. Note the lines of \mathcal{A}_{f} are dual to a reduced set of d distinct points Z.

We'll consider two ideals:

- $J=\left(f_{x}, f_{y}, f_{z}, f\right)$
- $J^{\prime}=\left(f_{x}, f_{y}, f_{z}\right)$.

Recall Euler's theorem:

$$
x f_{x}+y f_{y}+z f_{z}=d f
$$

Recall Euler's theorem:

$$
x f_{x}+y f_{y}+z f_{z}=d f
$$

- If $\operatorname{char}(K)$ does not divide $d=\operatorname{deg}(f)$, then

$$
x f_{x}+y f_{y}+z f_{z}=d f
$$

is a non-zero scalar multiple of f, so $J=J^{\prime}$ in this case.

Recall Euler's theorem:

$$
x f_{x}+y f_{y}+z f_{z}=d f
$$

- If $\operatorname{char}(K)$ does not divide $d=\operatorname{deg}(f)$, then

$$
x f_{x}+y f_{y}+z f_{z}=d f
$$

is a non-zero scalar multiple of f, so $J=J^{\prime}$ in this case.

- If char (K) does divide $\operatorname{deg}(f)$ then

$$
x f_{x}+y f_{y}+z f_{z}=0
$$

This is a degree one syzygy on f_{x}, f_{y}, f_{z}.

Recall Euler's theorem:

$$
x f_{x}+y f_{y}+z f_{z}=d f
$$

- If $\operatorname{char}(K)$ does not divide $d=\operatorname{deg}(f)$, then

$$
x f_{x}+y f_{y}+z f_{z}=d f
$$

is a non-zero scalar multiple of f, so $J=J^{\prime}$ in this case.

- If char (K) does divide $\operatorname{deg}(f)$ then

$$
x f_{x}+y f_{y}+z f_{z}=0
$$

This is a degree one syzygy on f_{x}, f_{y}, f_{z}.
In this case it is not necessarily true that f is in the ideal generated by its first partial derivatives, although it can happen.

Example. Let

$$
f=x y z(x+y)=\left(x^{2} y+x y^{2}\right) z \text { with } \operatorname{char}(K)=2 .
$$

So

$$
J^{\prime}=\left(f_{x}, f_{y}, f_{z}\right)=\left(y^{2} z, x^{2} z, x^{2} y+x y^{2}\right)
$$

and $f=z \cdot f_{z} \in J^{\prime}=J$.

Example. Let

$$
f=x y z(x+y)=\left(x^{2} y+x y^{2}\right) z \text { with } \operatorname{char}(K)=2 .
$$

So

$$
J^{\prime}=\left(f_{x}, f_{y}, f_{z}\right)=\left(y^{2} z, x^{2} z, x^{2} y+x y^{2}\right)
$$

and $f=z \cdot f_{z} \in J^{\prime}=J$.

Example. Let

$$
f=x y z(x+y)(x+z) \text { with } \operatorname{char}(K)=5 .
$$

One can check that $f \notin J^{\prime}$ so $J^{\prime} \subsetneq J$.

Define the submodule

$$
D(Z) \subset R \frac{\partial}{\partial x} \oplus R \frac{\partial}{\partial y} \oplus R \frac{\partial}{\partial z} \cong R^{3}
$$

to be the K-linear derivations δ such that $\delta(f) \in R f$.

Define the submodule

$$
D(Z) \subset R \frac{\partial}{\partial x} \oplus R \frac{\partial}{\partial y} \oplus R \frac{\partial}{\partial z} \cong R^{3}
$$

to be the K-linear derivations δ such that $\delta(f) \in R f$.
In particular,

- $D(Z)$ contains the Euler derivation $\delta_{E}=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}$;

Define the submodule

$$
D(Z) \subset R \frac{\partial}{\partial x} \oplus R \frac{\partial}{\partial y} \oplus R \frac{\partial}{\partial z} \cong R^{3}
$$

to be the K-linear derivations δ such that $\delta(f) \in R f$.
In particular,

- $D(Z)$ contains the Euler derivation $\delta_{E}=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}$;
- δ_{E} generates a submodule $R \delta_{E} \cong R(-1)$.

Define the submodule

$$
D(Z) \subset R \frac{\partial}{\partial x} \oplus R \frac{\partial}{\partial y} \oplus R \frac{\partial}{\partial z} \cong R^{3}
$$

to be the K-linear derivations δ such that $\delta(f) \in R f$.
In particular,

- $D(Z)$ contains the Euler derivation $\delta_{E}=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}$;
- δ_{E} generates a submodule $R \delta_{E} \cong R(-1)$.

We define the quotient $D_{0}(Z)=D(Z) / R \delta_{E}$.

Define the submodule

$$
D(Z) \subset R \frac{\partial}{\partial x} \oplus R \frac{\partial}{\partial y} \oplus R \frac{\partial}{\partial z} \cong R^{3}
$$

to be the K-linear derivations δ such that $\delta(f) \in R f$.
In particular,

- $D(Z)$ contains the Euler derivation $\delta_{E}=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}$;
- δ_{E} generates a submodule $R \delta_{E} \cong R(-1)$.

We define the quotient $D_{0}(Z)=D(Z) / R \delta_{E}$.
Let $\mathcal{D}_{Z}, \widetilde{D(Z)}$ be the sheafifications of $D_{0}(Z)$ and $D(Z)$ resp. What can we say about \mathcal{D}_{Z} and about $\overline{D(Z)}$?

We have the following facts (omitting proofs):

- \mathcal{D}_{Z} is locally free of rank 2.

We have the following facts (omitting proofs):

- \mathcal{D}_{Z} is locally free of rank 2.
- When char (K) does not divide d, \mathcal{D}_{Z} is isomorphic to the syzygy bundle (suitably twisted) of J^{\prime}.

We have the following facts (omitting proofs):

- \mathcal{D}_{Z} is locally free of rank 2.
- When char (K) does not divide d, \mathcal{D}_{Z} is isomorphic to the syzygy bundle (suitably twisted) of J^{\prime}.
- When char (K) does divide $d, \widetilde{D(Z)}$ is isomorphic to the syzygy bundle (suitably twisted) of J.

We have the following facts (omitting proofs):

- \mathcal{D}_{Z} is locally free of rank 2.
- When char (K) does not divide d, \mathcal{D}_{Z} is isomorphic to the syzygy bundle (suitably twisted) of J^{\prime}.
- When char (K) does divide $d, \widetilde{D(Z)}$ is isomorphic to the syzygy bundle (suitably twisted) of J.
- The restriction of \mathcal{D}_{Z} to a general line $\ell \cong \mathbb{P}^{1}$ splits as a direct sum

$$
\mathcal{O}_{\mathbb{P}^{1}}\left(-a_{Z}\right) \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(-b_{Z}\right)
$$

for positive integers $a_{Z} \leq b_{Z}$ satisfying

$$
a_{z}+b_{z}=\operatorname{deg} f-1=d-1
$$

We have the following facts (omitting proofs):

- \mathcal{D}_{Z} is locally free of rank 2.
- When char (K) does not divide d, \mathcal{D}_{Z} is isomorphic to the syzygy bundle (suitably twisted) of J^{\prime}.
- When char (K) does divide $d, \widetilde{D(Z)}$ is isomorphic to the syzygy bundle (suitably twisted) of J.
- The restriction of \mathcal{D}_{Z} to a general line $\ell \cong \mathbb{P}^{1}$ splits as a direct sum

$$
\mathcal{O}_{\mathbb{P}^{1}}\left(-a_{Z}\right) \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(-b_{Z}\right)
$$

for positive integers $a_{Z} \leq b_{Z}$ satisfying

$$
a_{z}+b_{Z}=\operatorname{deg} f-1=d-1
$$

The ordered pair $\left(a_{Z}, b_{Z}\right)$ is the splitting type of \mathcal{D}_{Z} (or Z).

Merging the two topics

Fix a set of points, $Z \subset \mathbb{P}^{2}$.
Let $\mathcal{L}=\left|\left[I_{Z}\right]_{j+1}\right|$. (Incomplete linear system.) Let $P \in \mathbb{P}^{2}$ be a general point.

Merging the two topics

Fix a set of points, $Z \subset \mathbb{P}^{2}$.
Let $\mathcal{L}=\left|\left[I_{Z}\right]_{j+1}\right|$. (Incomplete linear system.) Let $P \in \mathbb{P}^{2}$ be a general point.

First interesting case of our general problem. Consider the fat point $j P$.

How many conditions does $j P$ impose on \mathcal{L} ?

Merging the two topics

Fix a set of points, $Z \subset \mathbb{P}^{2}$.
Let $\mathcal{L}=\left|\left[I_{Z}\right]_{j+1}\right|$. (Incomplete linear system.) Let $P \in \mathbb{P}^{2}$ be a general point.

First interesting case of our general problem. Consider the fat point $j P$.

How many conditions does $j P$ impose on \mathcal{L} ?
We expect that $j P$ will impose

$$
\min \left\{\binom{j+1}{2}, \operatorname{dim}\left[I_{z}\right]_{j+1}\right\}
$$

independent conditions on \mathcal{L}.

For which Z and for which values of j do we get unexpected behavior?

For which Z and for which values of j do we get unexpected behavior?

Definition. Let Z, P and $\mathcal{L}=\left|\left[I_{Z}\right]_{j+1}\right|$ be as above.

For which Z and for which values of j do we get unexpected behavior?

Definition. Let Z, P and $\mathcal{L}=\left|\left[I_{Z}\right]_{j+1}\right|$ be as above. Then
Z admits an unexpected curve of degree $j+1$
if, for a general point P, the fat point $j P$ fails to impose the expected number of conditions on \mathcal{L}.

For which Z and for which values of j do we get unexpected behavior?

Definition. Let Z, P and $\mathcal{L}=\left|\left[I_{Z}\right]_{j+1}\right|$ be as above. Then
Z admits an unexpected curve of degree $j+1$
if, for a general point P, the fat point $j P$ fails to impose the expected number of conditions on \mathcal{L}.

That is, Z admits an unexpected curve of degree $j+1$ if

$$
\operatorname{dim}\left[I_{Z+j P}\right]_{j+1}>\max \left\{\operatorname{dim}\left[I_{z}\right]_{j+1}-\binom{j+1}{2}, 0\right\}
$$

For which Z and for which values of j do we get unexpected behavior?

Definition. Let Z, P and $\mathcal{L}=\left|\left[I_{Z}\right]_{j+1}\right|$ be as above. Then
Z admits an unexpected curve of degree $j+1$
if, for a general point P, the fat point $j P$ fails to impose the expected number of conditions on \mathcal{L}.

That is, Z admits an unexpected curve of degree $j+1$ if

$$
\operatorname{dim}\left[I_{Z+j P}\right]_{j+1}>\max \left\{\operatorname{dim}\left[I_{Z}\right]_{j+1}-\binom{j+1}{2}, 0\right\}
$$

We say that Z admits an unexpected curve if such a j exists.

For which Z and for which values of j do we get unexpected behavior?

Definition. Let Z, P and $\mathcal{L}=\left|\left[I_{Z}\right]_{j+1}\right|$ be as above. Then
Z admits an unexpected curve of degree $j+1$
if, for a general point P, the fat point $j P$ fails to impose the expected number of conditions on \mathcal{L}.

That is, Z admits an unexpected curve of degree $j+1$ if

$$
\operatorname{dim}\left[I_{Z+j P}\right]_{j+1}>\max \left\{\operatorname{dim}\left[I_{Z}\right]_{j+1}-\binom{j+1}{2}, 0\right\}
$$

We say that Z admits an unexpected curve if such a j exists.
Note Z might have unexpected curves in more than one degree.

Some of the questions answered in our paper.

1. What properties of Z force the existence of an unexpected curve? (Necessary and sufficient conditions.)

Some of the questions answered in our paper.

1. What properties of Z force the existence of an unexpected curve? (Necessary and sufficient conditions.)
2. The definition of unexpected curves allowed for their existence in more than one degree. If there are unexpected curves at all, in what degrees do they exist?

Some of the questions answered in our paper.

1. What properties of Z force the existence of an unexpected curve? (Necessary and sufficient conditions.)
2. The definition of unexpected curves allowed for their existence in more than one degree. If there are unexpected curves at all, in what degrees do they exist?
3. Describe the unexpected curves:

Some of the questions answered in our paper.

1. What properties of Z force the existence of an unexpected curve? (Necessary and sufficient conditions.)
2. The definition of unexpected curves allowed for their existence in more than one degree. If there are unexpected curves at all, in what degrees do they exist?
3. Describe the unexpected curves:

- When are they irreducible?

Some of the questions answered in our paper.

1. What properties of Z force the existence of an unexpected curve? (Necessary and sufficient conditions.)
2. The definition of unexpected curves allowed for their existence in more than one degree. If there are unexpected curves at all, in what degrees do they exist?
3. Describe the unexpected curves:

- When are they irreducible?
- If they are reducible, what do the irreducible components look like?

Some of the questions answered in our paper.

1. What properties of Z force the existence of an unexpected curve? (Necessary and sufficient conditions.)
2. The definition of unexpected curves allowed for their existence in more than one degree. If there are unexpected curves at all, in what degrees do they exist?
3. Describe the unexpected curves:

- When are they irreducible?
- If they are reducible, what do the irreducible components look like?

4. What are some examples of sets of points with unexpected curves?

So what does this have to do with arrangements?

Let Z be a reduced set of points of \mathbb{P}^{2}.

So what does this have to do with arrangements?

Let Z be a reduced set of points of \mathbb{P}^{2}.

The points of Z are dual to a line arrangement \mathcal{A}_{f}, where f is a product of distinct linear forms.

So what does this have to do with arrangements?
Let Z be a reduced set of points of \mathbb{P}^{2}.
The points of Z are dual to a line arrangement \mathcal{A}_{f}, where f is a product of distinct linear forms.

Let P be a general point of \mathbb{P}^{2}.
Notation. $Z+j P$ is the scheme defined by the ideal $I_{Z} \cap I_{P}^{j} \subset R$.

So what does this have to do with arrangements?
Let Z be a reduced set of points of \mathbb{P}^{2}.
The points of Z are dual to a line arrangement \mathcal{A}_{f}, where f is a product of distinct linear forms.

Let P be a general point of \mathbb{P}^{2}.
Notation. $Z+j P$ is the scheme defined by the ideal $I_{Z} \cap I_{P}^{j} \subset R$.
Let \mathcal{I}_{Z} and $\mathcal{I}_{Z+j P}$ be the corresponding ideal sheaves.

So what does this have to do with arrangements?
Let Z be a reduced set of points of \mathbb{P}^{2}.
The points of Z are dual to a line arrangement \mathcal{A}_{f}, where f is a product of distinct linear forms.

Let P be a general point of \mathbb{P}^{2}.
Notation. $Z+j P$ is the scheme defined by the ideal $I_{Z} \cap I_{P}^{j} \subset R$.
Let \mathcal{I}_{Z} and $\mathcal{I}_{Z+j P}$ be the corresponding ideal sheaves.
Recall that the splitting type of \mathcal{D}_{Z} is $\left(a_{Z}, b_{Z}\right)$ with $a_{z} \leq b_{Z}$ and $a_{z}+b_{z}=\operatorname{deg} Z-1$.

The following is a (non-trivial) consequence of a result of Faenzi and Valles.

Lemma.

$$
\operatorname{dim}\left[I_{Z+j P}\right]_{j+1}=\max \left\{0, j-a_{z}+1\right\}+\max \left\{0, j-b_{z}+1\right\} .
$$

The following is a (non-trivial) consequence of a result of Faenzi and Valles.

Lemma.

$$
\operatorname{dim}\left[I_{Z+j P}\right]_{j+1}=\max \left\{0, j-a_{z}+1\right\}+\max \left\{0, j-b_{z}+1\right\} .
$$

This combines information about Z with information about the dual line arrangement \mathcal{A}_{f}.

The following is a (non-trivial) consequence of a result of Faenzi and Valles.

Lemma.

$$
\operatorname{dim}\left[I_{Z+j P}\right]_{j+1}=\max \left\{0, j-a_{Z}+1\right\}+\max \left\{0, j-b_{Z}+1\right\}
$$

This combines information about Z with information about the dual line arrangement \mathcal{A}_{f}.

Remark. From this lemma it follows immediately that

- $\operatorname{dim}\left[I_{Z+a_{z} P}\right]_{a_{z}+1}$ is either equal to 1 or to 2 ;

The following is a (non-trivial) consequence of a result of Faenzi and Valles.

Lemma.

$$
\operatorname{dim}\left[I_{Z+j P}\right]_{j+1}=\max \left\{0, j-a_{Z}+1\right\}+\max \left\{0, j-b_{Z}+1\right\}
$$

This combines information about Z with information about the dual line arrangement \mathcal{A}_{f}.

Remark. From this lemma it follows immediately that

- $\operatorname{dim}\left[I_{Z+a_{z} P}\right]_{a_{z}+1}$ is either equal to 1 or to 2 ;
- $\operatorname{dim}\left[I_{Z+a_{Z} P}\right]_{a_{z}+1}=2$ if and only if $a_{Z}=b_{Z}$.

Main results

Definition. Let Z be a reduced 0 -dimensional subscheme of \mathbb{P}^{2}.
(a) The multiplicity index is

$$
m_{Z}=\min \left\{j \in \mathbb{Z} \mid \operatorname{dim}\left[I_{z_{+j}} P\right]_{j_{+1}}>0\right\}
$$

Main results

Definition. Let Z be a reduced 0 -dimensional subscheme of \mathbb{P}^{2}.
(a) The multiplicity index is

$$
\begin{aligned}
m_{Z} & =\min \left\{j \in \mathbb{Z} \mid \operatorname{dim}\left[I_{Z+j P}\right]_{j+1}>0\right\} \\
& =a_{z}(\text { by the Faenzi-Valles lemma })
\end{aligned}
$$

Main results

Definition. Let Z be a reduced 0 -dimensional subscheme of \mathbb{P}^{2}.
(a) The multiplicity index is

$$
\begin{aligned}
m_{z} & =\min \left\{j \in \mathbb{Z} \mid \operatorname{dim}\left[I_{z+j}\right]_{j+1}>0\right\} \\
& =a_{z} \text { (by the Faenzi-Valles lemma) }
\end{aligned}
$$

(b) $t_{Z}=\min \left\{j \left\lvert\, \operatorname{dim}\left[I_{Z}\right]_{Z+1}>\binom{j+1}{2}\right.\right.$. (Depends only on the Hilbert function of Z.)

Main results

Definition. Let Z be a reduced 0 -dimensional subscheme of \mathbb{P}^{2}.
(a) The multiplicity index is

$$
\begin{aligned}
m_{Z} & =\min \left\{j \in \mathbb{Z} \mid \operatorname{dim}\left[I_{Z+j P}\right]_{j+1}>0\right\} \\
& =a_{Z}(\text { by the Faenzi-Valles lemma })
\end{aligned}
$$

(b) $t_{Z}=\min \left\{j \left\lvert\, \operatorname{dim}\left[I_{Z}\right]_{Z+1}>\binom{j+1}{2}\right.\right.$. (Depends only on the Hilbert function of Z.)
(c) The speciality index is

$$
\begin{gathered}
u_{Z}=\min \{j \mid Z+j P \text { imposes independent conditions } \\
\text { on plane curves of degree } j+1\}
\end{gathered}
$$

Main results

Definition. Let Z be a reduced 0 -dimensional subscheme of \mathbb{P}^{2}.
(a) The multiplicity index is

$$
\begin{aligned}
m_{Z} & =\min \left\{j \in \mathbb{Z} \mid \operatorname{dim}\left[I_{Z+j P}\right]_{j+1}>0\right\} \\
& =a_{z}(\text { by the Faenzi-Valles lemma })
\end{aligned}
$$

(b) $t_{Z}=\min \left\{j \left\lvert\, \operatorname{dim}\left[I_{Z}\right]_{Z+1}>\binom{j+1}{2}\right.\right.$. (Depends only on the Hilbert function of Z.)
(c) The speciality index is
$u_{Z}=\min \{j \mid Z+j P$ imposes independent conditions on plane curves of degree $j+1\}$

$$
=\min \left\{j \left\lvert\, \operatorname{dim}\left[I_{Z+j P}\right]_{j+1}=\binom{j+3}{2}-\left(\begin{array}{c}
\left.\binom{+1}{2}-|Z|\right\}
\end{array}\right.\right.\right.
$$

Main results

Definition. Let Z be a reduced 0 -dimensional subscheme of \mathbb{P}^{2}.
(a) The multiplicity index is

$$
\begin{aligned}
m_{Z} & =\min \left\{j \in \mathbb{Z} \mid \operatorname{dim}\left[I_{Z+j p}\right]_{j+1}>0\right\} \\
& =a_{Z}(\text { by the Faenzi-Valles lemma })
\end{aligned}
$$

(b) $t_{Z}=\min \left\{j \left\lvert\, \operatorname{dim}\left[I_{Z}\right]_{j+1}>\binom{j+1}{2}\right.\right.$. (Depends only on the Hilbert function of Z.)
(c) The speciality index is
$u_{Z}=\min \{j \mid Z+j P$ imposes independent conditions
on plane curves of degree $j+1\}$

$$
\begin{aligned}
& =\min \left\{j\left|\operatorname{dim}\left[I_{Z+j P}\right]_{j+1}=\binom{j+3}{2}-\binom{j+1}{2}-|Z|\right\}\right. \\
& =\min \left\{j \mid h^{1}\left(\mathcal{I}_{Z+j} P(j+1)\right)=0\right\} .
\end{aligned}
$$

Theorem. Regardless of whether Z has an unexpected curve or not, we have:
(a) $m_{Z}<u_{Z} \Leftrightarrow|Z| \geq 2 m_{Z}+3$

Theorem. Regardless of whether Z has an unexpected curve or not, we have:
(a) $m_{Z}<u_{Z} \Leftrightarrow|Z| \geq 2 m_{Z}+3$
(b) $\quad m_{Z}=u_{Z} \Leftrightarrow|Z|=2 m_{Z}+2$

Theorem. Regardless of whether Z has an unexpected curve or not, we have:
(a) $m_{Z}<u_{Z} \Leftrightarrow|Z| \geq 2 m_{Z}+3$
(b) $\quad m_{Z}=u_{Z} \Leftrightarrow|Z|=2 m_{Z}+2$
(c) $m_{Z}>u_{Z} \Leftrightarrow|Z|=2 m_{Z}+1$

Theorem. Regardless of whether Z has an unexpected curve or not, we have:
$\left.\begin{array}{l}\text { (a) } m_{Z}<u_{Z} \Leftrightarrow|Z| \geq 2 m_{Z}+3 \\ \text { (b) } m_{Z}=u_{Z} \Leftrightarrow|Z|=2 m_{Z}+2\end{array}\right\} \Leftrightarrow \operatorname{dim}\left[I_{Z+m_{Z} P}\right]_{m_{Z}+1}=1$
(c) $m_{Z}>u_{Z} \Leftrightarrow|Z|=2 m_{Z}+1$

Theorem. Regardless of whether Z has an unexpected curve or not, we have:
$\left.\begin{array}{l}\text { (a) } \quad m_{Z}<u_{Z} \Leftrightarrow|Z| \geq 2 m_{Z}+3 \\ \text { (b) } m_{Z}=u_{Z} \Leftrightarrow|Z|=2 m_{Z}+2\end{array}\right\} \Leftrightarrow \operatorname{dim}\left[I_{Z+m_{Z} P}\right]_{m_{Z}+1}=1$
(c) $m_{Z}>u_{Z} \Leftrightarrow|Z|=2 m_{Z}+1 \quad \Leftrightarrow \operatorname{dim}\left[I_{Z+m_{Z} P}\right]_{m_{Z}+1}=2$

Theorem. Regardless of whether Z has an unexpected curve or not, we have:
$\left.\begin{array}{l}\text { (a) } m_{z}<u_{z} \Leftrightarrow|Z| \geq 2 m_{Z}+3 \\ \text { (b) } m_{z}=u_{z} \Leftrightarrow|Z|=2 m_{z}+2\end{array}\right\} \Leftrightarrow \operatorname{dim}\left[I_{z+m_{z}} \rho\right]_{m_{z}+1}=1$
(c) $m_{Z}>u_{Z} \Leftrightarrow|Z|=2 m_{Z}+1 \Leftrightarrow \operatorname{dim}\left[I_{z+m_{z}} P\right]_{m_{z}+1}=2$

Theorem. Regardless of whether Z has an unexpected curve or not, we have:

$$
m_{z}+u_{z}=|Z|-2 .
$$

Theorem. Regardless of whether Z has an unexpected curve or not, we have:
$\left.\begin{array}{l}\text { (a) } m_{z}<u_{Z} \Leftrightarrow|Z| \geq 2 m_{Z}+3 \\ \text { (b) } m_{z}=u_{z} \quad \Leftrightarrow|Z|=2 m_{Z}+2\end{array}\right\} \Leftrightarrow \operatorname{dim}\left[/_{Z+m_{Z}} \mathrm{P}\right]_{m_{Z}+1}=1$
(c) $m_{Z}>u_{z} \Leftrightarrow|Z|=2 m_{z}+1 \Leftrightarrow \operatorname{dim}\left[I_{z+m_{z}} P\right]_{m_{z}+1}=2$

Theorem. Regardless of whether Z has an unexpected curve or not, we have:

$$
m_{z}+u_{z}=|Z|-2 .
$$

Corollary For the splitting type $\left(a_{z}, b_{z}\right)$ of \mathcal{D}_{Z} we have $a_{z}=m_{Z}$ and $b_{z}=u_{z}+1$.

Theorem. An unexpected curve exists if and only if

$$
m_{Z}<t_{Z}
$$

Theorem. An unexpected curve exists if and only if

$$
m_{Z}<t_{Z}
$$

in which case $t_{Z} \leq u_{Z}$.

Theorem. An unexpected curve exists if and only if

$$
m_{Z}<t_{Z}
$$

in which case $t_{Z} \leq u_{Z}$.
In this situation Z has an unexpected curve of degree $j+1$ if and only if

$$
m_{Z} \leq j<u_{z}
$$

Theorem. An unexpected curve exists if and only if

$$
m_{Z}<t_{Z}
$$

in which case $t_{Z} \leq u_{Z}$.
In this situation Z has an unexpected curve of degree $j+1$ if and only if

$$
m_{Z} \leq j<u_{Z}
$$

Corollary. If Z admits an unexpected curve then $b_{Z}-a_{Z} \geq 2$.

Theorem. An unexpected curve exists if and only if

$$
m_{Z}<t_{Z}
$$

in which case $t_{Z} \leq u_{Z}$.
In this situation Z has an unexpected curve of degree $j+1$ if and only if

$$
m_{Z} \leq j<u_{Z}
$$

Corollary. If Z admits an unexpected curve then $b_{Z}-a_{Z} \geq 2$.

Is the converse true?

Theorem.

An unexpected curve exists $\Leftrightarrow\left\{\begin{array}{l}\text { (a) } b_{z}-a_{z} \geq 2\end{array}\right.$

Theorem.

$$
\text { An unexpected curve exists } \Leftrightarrow\left\{\begin{array}{l}
\text { (a) } b_{Z}-a_{z} \geq 2 \\
\text { (b) } h_{Z}\left(t_{z}\right)=|Z|
\end{array}\right.
$$

Theorem.

$$
\text { An unexpected curve exists } \Leftrightarrow\left\{\begin{array}{l}
\text { (a) } b_{z}-a_{z} \geq 2 \\
\text { (b) } h_{z}\left(t_{z}\right)=|Z|
\end{array}\right.
$$

Note
(b) $\Leftrightarrow h^{1}\left(\mathcal{I}_{Z}\left(t_{Z}\right)\right)=0$
$\Leftrightarrow \quad Z$ imposes independent conditions on curves of degree t_{Z}.

Irreducibility

- An unexpected curve can only hope to be irreducible in degree $m_{Z}+1$.

Irreducibility

- An unexpected curve can only hope to be irreducible in degree $m_{Z}+1$.
- We give a necessary and sufficient condition for the existence of irreducible curves in the linear system $\left|\left[I_{Z+m_{z}} P\right]_{m_{Z}+1}\right|$, assuming $m_{Z} \leq u_{Z}$.

Irreducibility

- An unexpected curve can only hope to be irreducible in degree $m_{Z}+1$.
- We give a necessary and sufficient condition for the existence of irreducible curves in the linear system $\left|\left[I_{Z+m_{z} P}\right]_{m_{z}+1}\right|$, assuming $m_{Z} \leq u_{z}$. [If $m_{Z}=u_{Z}+1$ then there is always an irreducible curve.]

Irreducibility

- An unexpected curve can only hope to be irreducible in degree $m_{z}+1$.
- We give a necessary and sufficient condition for the existence of irreducible curves in the linear system $\left|\left[I_{Z+m_{z} P}\right]_{m_{z}+1}\right|$, assuming $m_{Z} \leq u_{z}$. [If $m_{Z}=u_{Z}+1$ then there is always an irreducible curve.]

Structure of unexpected curves

We give a careful description. Briefly, an unexpected curve consists of the union of

- an irreducible rational curve of some degree e having a point of multiplicity e-1 and
- certain lines.

Some Examples/results

Example. [Di Gennaro, llardi and Vallès] (This motivated our paper!)

The points dual to the B-3 configuration admit an unexpected curve of degree 4.

Example. For this example, for simplicity we assume our ground field has characteristic 0 , because we want to use the syzygy bundle of $J^{\prime}=\left(f_{x}, f_{y}, f_{z}\right)$.

Example. For this example, for simplicity we assume our ground field has characteristic 0 , because we want to use the syzygy bundle of $J^{\prime}=\left(f_{x}, f_{y}, f_{z}\right)$.

Consider the line configuration \mathcal{A}_{f} given by the lines defined by

$$
\begin{aligned}
f= & x y z(x+y)(x-y)(2 x+y)(2 x-y)(x+z)(x-z) \\
& (y+z)(y-z)(x+2 z)(x-2 z)(y+2 z)(y-2 z) \\
& (x-y+z)(x-y-z)(x-y+2 z)(x-y-2 z) .
\end{aligned}
$$

Example. For this example, for simplicity we assume our ground field has characteristic 0 , because we want to use the syzygy bundle of $J^{\prime}=\left(f_{x}, f_{y}, f_{z}\right)$.

Consider the line configuration \mathcal{A}_{f} given by the lines defined by

$$
\begin{aligned}
f= & x y z(x+y)(x-y)(2 x+y)(2 x-y)(x+z)(x-z) \\
& (y+z)(y-z)(x+2 z)(x-2 z)(y+2 z)(y-2 z) \\
& (x-y+z)(x-y-z)(x-y+2 z)(x-y-2 z) .
\end{aligned}
$$

Note $d=19$. Let Z be the corresponding reduced scheme consisting of the 19 points that are dual to these lines.

The following figures show \mathcal{A}_{f} and Z.

It is not hard to verify that the first difference of the Hilbert function of Z is

$$
\Delta h_{z}=(1,2,3,4,4,4,1)
$$

from which we find that $t_{Z}=9$.

It is not hard to verify that the first difference of the Hilbert function of Z is

$$
\Delta h_{z}=(1,2,3,4,4,4,1)
$$

from which we find that $t_{Z}=9$.
Picking a random point P, one employs various methods to prove that $a_{Z}=m_{Z}=8$.

It is not hard to verify that the first difference of the Hilbert function of Z is

$$
\Delta h_{z}=(1,2,3,4,4,4,1)
$$

from which we find that $t_{Z}=9$.
Picking a random point P, one employs various methods to prove that $a_{Z}=m_{Z}=8$.

Since $m_{Z}<t_{Z}, Z$ admits an unexpected curve of degree $m_{Z}+1=9$.

It is not hard to verify that the first difference of the Hilbert function of Z is

$$
\Delta h_{z}=(1,2,3,4,4,4,1)
$$

from which we find that $t_{Z}=9$.
Picking a random point P, one employs various methods to prove that $a_{Z}=m_{Z}=8$.

Since $m_{Z}<t_{Z}, Z$ admits an unexpected curve of degree $m_{Z}+1=9$.

Since $|Z|=19$, the splitting type is $(8,10)$, and $u_{Z}=10-1=9$.

So we have $m_{Z}=8, t_{Z}=9$ and $u_{Z}=9$.

So we have $m_{Z}=8, t_{Z}=9$ and $u_{Z}=9$. Recall our theorem:
An unexpected curve exists if and only if $m_{Z}<t_{Z}$.
In this situation Z has an unexpected curve of degree $j+1$

$$
\begin{gathered}
\text { if and only if } \\
m_{Z}+1 \leq j+1<u_{Z}+1
\end{gathered}
$$

So we have $m_{Z}=8, t_{Z}=9$ and $u_{Z}=9$. Recall our theorem:
An unexpected curve exists if and only if $m_{Z}<t_{Z}$.
In this situation Z has an unexpected curve of degree $j+1$

$$
\begin{gathered}
\text { if and only if } \\
m_{Z}+1 \leq j+1<u_{Z}+1
\end{gathered}
$$

Thus in our example there is an unexpected curve for each degree $j+1$ with

$$
8+1 \leq j+1<9+1
$$

That is, 9 is the only degree in which Z admits an unexpected curve. We have verified experimentally (using our criterion for irreducibility) that this curve is not irreducible.

Assume for convenience that K has characteristic zero.
Definition. A line arrangement \mathcal{A}_{f} in \mathbb{P}^{2} is free if \mathcal{D}_{Z} is free, i.e. if $J=J^{\prime}=\left(f_{x}, f_{y}, f_{z}\right)$ is a saturated ideal.

Assume for convenience that K has characteristic zero.
Definition. A line arrangement \mathcal{A}_{f} in \mathbb{P}^{2} is free if \mathcal{D}_{Z} is free, i.e. if $J=J^{\prime}=\left(f_{x}, f_{y}, f_{z}\right)$ is a saturated ideal.

In the previous example, \mathcal{A}_{f} is not free. Freeness does not affect the above results, but it's a little more work to determine the splitting type for a particular non-free arrangement.

Assume for convenience that K has characteristic zero.
Definition. A line arrangement \mathcal{A}_{f} in \mathbb{P}^{2} is free if \mathcal{D}_{Z} is free, i.e. if $J=J^{\prime}=\left(f_{x}, f_{y}, f_{z}\right)$ is a saturated ideal.

In the previous example, \mathcal{A}_{f} is not free. Freeness does not affect the above results, but it's a little more work to determine the splitting type for a particular non-free arrangement.

The following result used the Grauert-Mülich theorem for the proof, so we assume characteristic zero also for this.

Theorem. If Z is in linear general position then Z does not admit an unexpected curve.

Assume for convenience that K has characteristic zero.
Definition. A line arrangement \mathcal{A}_{f} in \mathbb{P}^{2} is free if \mathcal{D}_{Z} is free, i.e. if $J=J^{\prime}=\left(f_{x}, f_{y}, f_{z}\right)$ is a saturated ideal.

In the previous example, \mathcal{A}_{f} is not free. Freeness does not affect the above results, but it's a little more work to determine the splitting type for a particular non-free arrangement.

The following result used the Grauert-Mülich theorem for the proof, so we assume characteristic zero also for this.

Theorem. If Z is in linear general position then Z does not admit an unexpected curve.
(This is far from talking about a general set of points.)

Example.

Assume $\operatorname{char}(K)=2$.
Let Z be the 7 points of the Fano plane.

Example.

Assume $\operatorname{char}(K)=2$.
Let Z be the 7 points of the Fano plane.
Then $\operatorname{dim}\left[I_{z}\right]_{3}=3$ and $2 P$ should impose 3 conditions, so we expect there not to be a cubic containing Z and singular at a general point $P=[\alpha, \beta, \gamma]$.

Example.

Assume $\operatorname{char}(K)=2$.
Let Z be the 7 points of the Fano plane.
Then $\operatorname{dim}\left[I_{z}\right]_{3}=3$ and $2 P$ should impose 3 conditions, so we expect there not to be a cubic containing Z and singular at a general point $P=[\alpha, \beta, \gamma]$.

But in fact there is one. One can easily check that

$$
f=\alpha^{2} y z(y+z)+\beta^{2} x z(x+z)+\gamma^{2} x y(x+y)
$$

defines a curve C (reduced and irreducible in fact) which is singular at P, and hence C is an unexpected curve of degree 3 for Z.

Close the circle

Finally, we give a connection between unexpected curves and Lefschetz properties. (There are actually several such connections.)

Close the circle

Finally, we give a connection between unexpected curves and Lefschetz properties. (There are actually several such connections.)

- Recall WLP studied the rank of

$$
\times L:[R / I]_{i} \rightarrow[R / I]_{i+1}
$$

for all i.

Close the circle

Finally, we give a connection between unexpected curves and Lefschetz properties. (There are actually several such connections.)

- Recall WLP studied the rank of

$$
\times L:\left[R / I_{i} \rightarrow[R / I]_{i+1}\right.
$$

for all i.

- SLP studied the rank of

$$
\times L^{k}:\left[R / I_{i} \rightarrow\left[R / I_{i+k}\right.\right.
$$

for all i and all k.

Intermediate question:

- When does

$$
\times L^{2}:[R / \Pi]_{i} \rightarrow\left[R / I_{i+2}\right.
$$

have maximal rank?

Intermediate question:

- When does

$$
\times L^{2}:\left[R / \Pi_{i} \rightarrow\left[R / \Pi_{i+2}\right.\right.
$$

have maximal rank?

Here is an interesting class of ideals:

$$
\mathcal{C}=\left\{I=\left(L_{1}^{a_{1}}, \ldots, L_{k}^{a_{k}}\right)\right\}
$$

where $k \geq 3, a_{1}, \ldots, a_{k} \geq 2$ and L_{1}, \ldots, L_{k} linear forms in $K[x, y, z]$ (unlike my first talk, this time they are not necessarily general).

Intermediate question:

- When does

$$
\times L^{2}:\left[R / \Pi_{i} \rightarrow\left[R / \Pi_{i+2}\right.\right.
$$

have maximal rank?

Here is an interesting class of ideals:

$$
\mathcal{C}=\left\{I=\left(L_{1}^{a_{1}}, \ldots, L_{k}^{a_{k}}\right)\right\}
$$

where $k \geq 3, a_{1}, \ldots, a_{k} \geq 2$ and L_{1}, \ldots, L_{k} linear forms in $K[x, y, z]$ (unlike my first talk, this time they are not necessarily general).

Schenck-Seceleanu: Any such ideal has the WLP (3 variables).

Intermediate question:

- When does

$$
\times L^{2}:\left[R / \Pi_{i} \rightarrow\left[R / \Pi_{i+2}\right.\right.
$$

have maximal rank?

Here is an interesting class of ideals:

$$
\mathcal{C}=\left\{I=\left(L_{1}^{a_{1}}, \ldots, L_{k}^{a_{k}}\right)\right\}
$$

where $k \geq 3, a_{1}, \ldots, a_{k} \geq 2$ and L_{1}, \ldots, L_{k} linear forms in $K[x, y, z]$ (unlike my first talk, this time they are not necessarily general).

Schenck-Seceleanu: Any such ideal has the WLP (3 variables).
But the above question about $\times L^{2}$ is meaningful.

Theorem. Let

- $\mathcal{A}(f)$ be a line arrangement in \mathbb{P}^{2}, where $f=L_{1} \cdots L_{d}$.
- Z be the set of points in \mathbb{P}^{2} dual to these lines.
- $I=\left(L_{1}^{j+1}, \ldots, L_{d}^{j+1}\right)$.

Theorem. Let

- $\mathcal{A}(f)$ be a line arrangement in \mathbb{P}^{2}, where $f=L_{1} \cdots L_{d}$.
- Z be the set of points in \mathbb{P}^{2} dual to these lines.
- $I=\left(L_{1}^{j+1}, \ldots, L_{d}^{j+1}\right)$.

Then
Z has an unexpected curve of degree $j+1$
if and only if
$\times L^{2}:[R / I]_{j-1} \rightarrow\left[R / I_{j+1}\right.$ does not have maximal rank.

Theorem. Let

- $\mathcal{A}(f)$ be a line arrangement in \mathbb{P}^{2}, where $f=L_{1} \cdots L_{d}$.
- Z be the set of points in \mathbb{P}^{2} dual to these lines.
- $I=\left(L_{1}^{j+1}, \ldots, L_{d}^{j+1}\right)$.

Then
Z has an unexpected curve of degree $j+1$
if and only if
$\times L^{2}:[R / I]_{j-1} \rightarrow\left[R / I_{j+1}\right.$ does not have maximal rank.

There is one additional ingredient to prove this.

Theorem. (J. Emsalem and A. Iarrobino)
Let \wp_{1}, \ldots, \wp_{m} be the ideals of m distinct points in \mathbb{P}^{n-1}.

Theorem. (J. Emsalem and A. Iarrobino)
Let \wp_{1}, \ldots, \wp_{m} be the ideals of m distinct points in \mathbb{P}^{n-1}.
Let L_{1}, \ldots, L_{m} be the dual linear forms.

Theorem. (J. Emsalem and A. Iarrobino)
Let \wp_{1}, \ldots, \wp_{m} be the ideals of m distinct points in \mathbb{P}^{n-1}.
Let L_{1}, \ldots, L_{m} be the dual linear forms.
Choose positive integers a_{1}, \ldots, a_{m}.

Theorem. (J. Emsalem and A. Iarrobino)
Let \wp_{1}, \ldots, \wp_{m} be the ideals of m distinct points in \mathbb{P}^{n-1}.
Let L_{1}, \ldots, L_{m} be the dual linear forms.
Choose positive integers a_{1}, \ldots, a_{m}.
Then for any integer $k \geq \max \left\{a_{i}\right\}$,
$\operatorname{dim}_{K}\left[R /\left(L_{1}^{a_{1}}, \ldots, L_{m}^{a_{m}}\right)\right]_{k}=\operatorname{dim}_{K}\left[\wp_{1}^{k-a_{1}+1} \cap \cdots \cap \wp_{m}^{k-a_{m}+1}\right]_{k}$.

Theorem. (J. Emsalem and A. larrobino)
Let \wp_{1}, \ldots, \wp_{m} be the ideals of m distinct points in \mathbb{P}^{n-1}.
Let L_{1}, \ldots, L_{m} be the dual linear forms.
Choose positive integers a_{1}, \ldots, a_{m}.
Then for any integer $k \geq \max \left\{a_{i}\right\}$,

$$
\operatorname{dim}_{K}\left[R /\left(L_{1}^{a_{1}}, \ldots, L_{m}^{a_{m}}\right)\right]_{k}=\operatorname{dim}_{K}\left[\wp_{1}^{k-a_{1}+1} \cap \cdots \cap \delta_{m}^{k-a_{m}+1}\right]_{k} .
$$

In particular, for a general point P with defining ideal \wp and dual linear form L, we have
$\operatorname{dim}_{K}\left[R /\left(L_{1}^{j+1}, \ldots, L_{d}^{j+1}, L^{2}\right)\right]_{j+1}=\operatorname{dim}_{K}\left[\wp_{1}^{1} \cap \cdots \cap \wp_{n}^{1} \cap \wp^{j}\right]_{j+1}$.

Thank you.

