Collider physics of charged Higgs bosons in a two Higgs doublet type-II seesaw model

Takaaki Nomura (KIAS)

Based on: PRD D90 no. 7 075008. C.H.Chen, T.N., PRD D91 035023 C.H.Chen, T.N., arXiv: 1609.01504 C.H.Chen, T.N.,

2016-10-19 Search for New Physics through the Higgs Boson @ Gwangju

We consider 2HD + type-II seesaw model

Type-II seesaw mechanism

W.Konetschny, W.Kummer (1977) T. P. Chen, L. F. Li (1980) J. Schechter, J. W. F. Valle (1980)

- **\bullet** Introduce triplet Higgs Δ with Y=2
- Triplet Higgs couple lepton doublet
- Mass is generated through VEV of triplet

Triplet VEV should be less than ~3 GeV from ρ parameter

In 2HD extension,

singly charged Higgs from doublet and triplet can have sizable mixing

Collider physics will be interesting

1. Introduction

2. Model

3. Collider physics

4. Summary

The structure of The model

Two Higgs doublet + Higgs triplet

$$\begin{split} H_{1,2} \quad & \text{*Higgs doublets} \\ H_{1,2} = \begin{pmatrix} H_{1,2}^+ \\ (v_{1,2} + \rho_{1,2} + i\eta_{1,2})/\sqrt{2} \end{pmatrix} \quad & \Delta = \begin{pmatrix} \Delta^+ / \sqrt{2} & \delta^{++} \\ (v_{\Delta} + \delta^0 + i\eta^0)/\sqrt{2} & -\delta^+ / \sqrt{2} \end{pmatrix} \end{split}$$

*****Z₂ symmetry for avoiding FCNC

$$H_2 \rightarrow -H_2, \quad u_R \rightarrow -u_R$$

Yukawa coupling

$$L_Y = y^d_{ij}\overline{Q}_{Li}d_{Rj}H_1 + y^u_{ij}\overline{Q}_{Li}d_{Rj}i\sigma_2H_2^* + y^l_{ij}\overline{L}_il_{Rj} + h_{ij}L^T_iCi\sigma_2\Delta L_j$$

The Higgs potential of the model

Two Higgs doublet potential

 $V_{H_1H_2} = m_1^2 H_1^{\dagger} H_1 + m_2^2 H_2^{\dagger} H_2 - m_{12}^2 (H_1^{\dagger} H_2 + h.c.) + \lambda_1 (H_1^{\dagger} H_1)^2$ $+ \lambda_2 (H_2^{\dagger} H_2)^2 + \lambda_3 H_1^{\dagger} H_1 H_2^{\dagger} H_2 + \lambda_4 H_1^{\dagger} H_2 H_2^{\dagger} H_1 + \frac{\lambda_5}{2} \left[(H_1^{\dagger} H_2)^2 + h.c. \right]$

Triplet Higgs potential

$$V_{\Delta} = m_{\Delta}^2 Tr \Delta^{\dagger} \Delta + \lambda_9 (Tr \Delta^{\dagger} \Delta)^2 + \lambda_{10} Tr (\Delta^{\dagger} \Delta)^2$$

Doublet-Triplet Interactions

$$\begin{split} V_{H_1H_2\Delta} &= \left(\mu_1 H_1^T i\tau_2 \Delta^{\dagger} H_1 + \mu_2 H_2^T i\tau_2 \Delta^{\dagger} H_2 + \mu_3 H_1^T i\tau_2 \Delta^{\dagger} H_2 + h.c.\right) \\ &+ \left(\lambda_6 H_1^{\dagger} H_1 + \bar{\lambda}_6 H_2^{\dagger} H_2\right) Tr \Delta^{\dagger} \Delta + H_1^{\dagger} \left(\lambda_7 \Delta \Delta^{\dagger} + \lambda_8 \Delta^{\dagger} \Delta\right) H_1 \\ &+ H_2^{\dagger} \left(\bar{\lambda}_7 \Delta \Delta^{\dagger} + \bar{\lambda}_8 \Delta^{\dagger} \Delta\right) H_2 \,. \end{split}$$

VEV of the Higgs fields

Assuming $v_{\Delta} \ll v_1$ (v_2), we obtain

$$\frac{\partial \langle V \rangle}{\partial v_1} = 0 \implies m_1^2 v_1 - m_{12}^2 v_2 + \lambda_1 v_1^3 + (\lambda_3 + \lambda_4 + \lambda_5) v_2^2 v_1 \approx 0$$

$$\frac{\partial \langle V \rangle}{\partial v_2} = 0 \implies m_2^2 v_2 - m_{12}^2 v_1 + \lambda_2 v_2^3 + (\lambda_3 + \lambda_4 + \lambda_5) v_1^2 v_2 \approx 0$$

$$\frac{\partial \langle V \rangle}{\partial v_{\Delta}} = 0 \implies m_{\Delta}^2 v_{\Delta} - \frac{1}{\sqrt{2}} (v_1^2 \mu_1 + v_2^2 \mu_2 + v_1 v_2 \mu_3) + \left[\frac{\lambda_6 + \lambda_7}{2} v_1^2 + \frac{\overline{\lambda_6} + \overline{\lambda_7}}{2} v_2^2 \right] v_{\Delta} \approx 0$$

Doublet VEV

$$\sim v_{\Delta} \approx \frac{1}{\sqrt{2}} \frac{\mu_1 v_1^2 + \mu_2 v_2^2 + \mu_3 v_1 v_2}{m_{\Delta}^2 + (\lambda_6 + \lambda_7) v_1^2 / 2 + (\overline{\lambda}_6 + \overline{\lambda}_7) v_2^2 / 2}$$

Condition for small triplet VEV

$$v_{\Delta} \approx \frac{1}{\sqrt{2}} \frac{\mu_1 v_1^2 + \mu_2 v_2^2 + \mu_3 v_1 v_2}{m_{\Delta}^2 + (\lambda_6 + \lambda_7) v_1^2 / 2 + (\overline{\lambda}_6 + \overline{\lambda}_7) v_2^2 / 2}$$

Small v_{Λ} can be achieved by small μ_i or large m_{Λ}

Another possibility in our model

Small numerator with $\mu_3 \sim -\frac{\mu_1 v_1^2 + \mu_2 v_2^2}{m}$

>Trilinear couplings can be sizable >Inducing large mixing in singly charge Higgs sector Interesting signature in collider physics We investigate phenomenology under the condition

Charged Higgs sector in the model

*****The mass eigenstates

 $m_{H_2^+} > m_{H_1^+}$

The mass eigenvalues and mixing angle

$$\begin{pmatrix} m_{H_{1,2}^{\pm}} \end{pmatrix}^{2} = \frac{1}{2} \begin{pmatrix} m_{\delta^{\pm}}^{2} + m_{H^{\pm}}^{2} \end{pmatrix} \mp \frac{1}{2} \left[\begin{pmatrix} m_{\delta^{\pm}}^{2} - m_{H^{\pm}}^{2} \end{pmatrix}^{2} + 4m_{H^{-}\delta^{+}}^{4} \right]^{\frac{1}{2}} \tan 2\theta_{\pm} = -\frac{2m_{H^{-}\delta^{+}}^{2}}{m_{\delta^{\pm}}^{2} - m_{H^{\pm}}^{2}} \qquad \left[m_{H^{-}\delta^{+}}^{2} = \frac{v}{2\sin\beta\cos\beta} [\mu_{1}\cos^{4}\beta - \mu_{2}\sin^{4}\beta + (\mu_{1} - \mu_{2})\sin^{2}\beta\cos^{2}\beta] \right]$$

> The mixing angle can be large for large μ_i > It also depends on tan β > For simplicity, we take parameters $\lambda_i \rightarrow 0$

Charged Higgs sector in the model

The mixing angle

✓The θ₊=0 for µ₁=µ₂ and tanβ=1
✓The mixing angle can be maximal for O(100) GeV µ
✓For large tanβ, behavior is similar for µ₁=µ₂ and µ₁=-µ₂ cases

1. Introduction

2. Model

3. Collider physics

4. Summary

Analysis for doubly charged Higgs production

$$m_{H_2^+} > m_{\delta^{++}} > m_{H_1^+}$$

Production processes for doubly charged Higgs

Electroweak production processes

Estimation of the production cross sections

Parameter setting (in type-II 2HDM)

We investigate case of sizable mixing

$$m_{H_2^+} > m_{\delta^{++}} + m_W \qquad \sin\theta_+ \sim 0.5$$

We apply the following parameter setting

$$m_{\delta^{+}} = m_{\delta^{++}} + 100 \, GeV \qquad m_{H^{+}} = \frac{4}{5} \, m_{\delta^{+}} \\ \mu = \mu_{1} = -\mu_{2} = \frac{m_{\delta^{+}}}{2}$$

Doubly charged Higgs mass is free parameter

3. Collider physics

Cross sections and signal

*Dominant decay model of δ[±]

$$\delta^{++(-)} \to W^{+(-)}H^{+(-)} \to W^{+(-)}t\overline{b}(\overline{t}b)$$

Signal event: $\ell^{\pm}\ell^{\pm} + jets$

SM BG: $pp \rightarrow W^{\pm}W^{\pm}jj, W^{\pm}t\overline{t}(j), W^{\pm}Z + jets, ZZ + jets$

Kinematic distributions and cuts

Applying kinematical cuts

Basic: $P_T(l) > 10 \ GeV, \quad \eta(l) < 2.5$ $P_T(j) > 20 \ GeV, \quad \eta(j) < 5.0$

$$\begin{split} N_{b-jet} \geq 1, \quad p_T(l_2) < 60 \; GeV \\ M_{ll} < m_{\delta^{++}} \; / \; 4 \end{split}$$

Additional:

3. Collider physics Significance and required luminosity

 $S = N_S / \sqrt{N_B}$

Analysis for lighter singly charged Higgs

Production cross section for light H[±]

BRs of light singly charged Higgs

3. Collider physics Signal and background

Signal: $pp \rightarrow H^+ \overline{t} \left(H^+ \overline{t} b \right)$ $H^{\pm} \rightarrow W^{\pm} Z$:3 leptons + n jets (n>2) $H^{\pm} \rightarrow \overline{b} b W^{\pm}$:2 leptons + m jets (m>3)

SM BG :

- 1. ZZ background: $pp \rightarrow ZZ + n$ jets,
- 2. WW background: $pp \to W^{\pm}W^{\mp} + n$ jets,
- 3. WZ background: $pp \to W^\pm Z + n ~{\rm jets}$,
- 4. top background: $pp \to t\bar{t}, t\bar{t}q(\bar{q}), t\bar{t}W^{\pm}$,

of events after cut and significance (tanβ=1)

$H^{\pm} \rightarrow W^{\pm}Z$		$p_T(\ell) > 20 \mathrm{GeV},$		$\eta(\ell) < 2.5,$	$p_T(j_{\text{leading}}) > 50 \text{ GeV},$		
$m_{H^+} = 175 GeV$		$p_T(j) > 20 \text{ GeV},$		p(j) < 5.0,	j) < 5.0, L=100 fb ⁻¹		
cuts	$\operatorname{signal}(3\ell)$	WW+ n j	ZZ+ n j	WZ + n j	top	top+W	\mathbf{S}
KCs	29.	27.	$8.9{ imes}10^2$	$8.8{ imes}10^3$	$5.8 imes10^3$	$1.1 imes 10^2$	0.23
$M_{\ell^{\pm}\ell^{+}\ell^{-}}$ cut	21.	9.0	40.	$5.1 imes 10^3$	$3.2 imes 10^3$	50.	0.23

$$H^{\pm} \rightarrow \overline{b}bW^{\pm}$$

cuts	$\operatorname{signal}(2\ell)$	WW + nj	ZZ+ n j	WZ + nj	top	top+W	\mathbf{S}
KCs	$2.6 imes 10^3$	$2.4 imes 10^4$	$1.9 imes 10^4$	$5.5 imes 10^4$	8.1×10^5	$1.6 imes10^3$	2.7
$(m_{H^{\pm}}[\text{GeV}], \sin\theta_{\pm})$		(150, 0.2)		(120, 0.1)		(100, 0.1)	
# of events		$6.9 imes10^3$		$1.4 imes 10^3$		$7.5 imes 10^2$	
S		7.2		1.5		0.79	

Summary and Discussions

We consider 2HD-Type-II seesaw model

 \diamond Sizable mixing in singly charged Higgs is possible

 \diamond New production modes of doubly charged Higgs

 \diamond Some specific signatures of the model are analyzed

Thanks for listening !

Appendix

Charged Higgs sector in the model

*****The mass matrix

$$\begin{pmatrix} G^{-} & H^{-} & \delta^{-} \end{pmatrix} \begin{pmatrix} 0 & 0 & m_{G^{-}\delta^{+}}^{2} \\ 0 & m_{H^{\pm}}^{2} & m_{H^{-}\delta^{+}}^{2} \\ m_{G^{-}\delta^{+}}^{2} & m_{H^{-}\delta^{+}}^{2} & m_{\delta^{\pm}}^{2} \end{pmatrix} \begin{pmatrix} G^{+} \\ H^{+} \\ \delta^{+} \end{pmatrix}$$

$$G^{\pm} = \cos\beta H_1^+ + \sin\beta H_2^+$$
$$H^{\pm} = -\sin\beta H_1^+ + \cos\beta H_2^+$$
$$\tan\beta = v_1 / v_2$$

The elements of the matrix

$$m_{G^-\delta^+}^2 \propto v_{\Delta} \Rightarrow 0$$

$$m_{H^{\pm}}^2 = \frac{m_{\pm}^2}{\sin\beta\cos\beta}, m_{\pm}^2 = m_{12}^2 - \frac{\lambda_4 + \lambda_5}{2} v_1 v_2$$

$$m_{H^-\delta^+}^2 = \frac{v}{2\sin\beta\cos\beta} \Big[\mu_1 \cos^4\beta - \mu_2 \sin^4\beta + (\mu_1 - \mu_2) \sin^2\beta\cos^2\beta \Big]$$

$$m_{\delta^{\pm}}^2 = m_{\Delta}^2 + \frac{v_1^2}{4} (2\lambda_6 + \lambda_7 + \lambda_8) + \frac{v_2^2}{4} (2\overline{\lambda}_6 + \overline{\lambda}_7 + \overline{\lambda}_8)$$

For small triplet VEV, mixing of G⁺ and δ^+ is small

Constraint from $t \rightarrow H^+b (H^+ \rightarrow \tau^+v)$

