Stochastic Evolution of Halo Spin

Juhan Kim (KIAS), Yun-Young Choi (KHU), Sungsoo S. Kim (KHU), & Jeong-Eun Lee (KHU)

Published in ApJS, 220, 4 (2015)

Halo Spin (λ)

- Original definition: $\lambda^o \equiv \frac{\sqrt{E}|\mathbf{J}|}{GM^{5/2}}$ (Peebles 1969)
 - E: halo total energy
 - J: halo angular momentum
 - -M: halo mass
- Modified version: $\lambda \equiv \frac{|\mathbf{J}|}{\sqrt{2}MRV}$ (Bullock+01)
 - Equivalent to the original under the virial condition
 - R (virial radius) & V (circular velocity) are determined by M and cosmology
- Unsolved Issues related to λ
 - Why the log normal distribution of halo spin?
 - Environmental dependence exists?
 - The role of accretion and merger in shaping the spin distribution.

Stochastic (random) Motion of Halo Spin

Figure 1. Several examples of spin evolution of simulated halos. Each color represents the spin trajectory of a single main-merging tree. For the x axis, we use halo mass rather than time or redshift. Halos at z = 0 are chosen with mass $10^{13} h^{-1} M_{\odot} \leq M < 2 \times 0^{13} h^{-1} M_{\odot}$.

Brownian motion, Monte Carlo simulation, and etc.

predicted precisely.

Contained Random Motion

Stochastic Equation of the Spin Evolution

• Stochastic Evolution of the modified spin

$$\frac{d \log_{10} \lambda}{d \log_{10} M} = \frac{d \log_{10} |\mathbf{J}|}{d \log_{10} M} - \frac{5}{3} + \alpha(z)$$
(1)
$$= D - \frac{5}{3} + \alpha(z)$$
(2)

where $D \equiv \frac{\Delta \log |\mathbf{J}|}{\Delta \log M}$ and $\alpha(z)$ depends on cosmology.

- In this equation, Halo mass plays a role as an independent variable (time).
- Distribution of D is a function of z, M, ΔM , ρ_{10} .
- $\alpha(z)$ a function of cosmological model $(\Omega_m, \Omega_\Lambda, H, \text{etc})$.
 - It is very small and negligible except $\Delta M \to 0$.
 - If $\Delta M \rightarrow 0$ which means there is no matter infall or accretion, the cosmology determines how the halo spin evolves.

Simulations

- Four PMTree2048p737.28s simulations in WMAP 5-year cosmology
 - Boxsize: $L_{box} = 737.28h^{-1}M_{\odot}$
 - $-n_p = 2048^3, z_i = 120, N_{step} = 3000.$
 - a different set of random numbers for each simulation \rightarrow different initial generations
 - save FoF halo data at 44 redshifts.
 - measure halo characteristics: spin, mass, etc.
- Generate the halo merger trees
 - Using particle index to find progenitor halos & major descendent line
 - Finding the changes of spin and mass during the accretion and merger

Sub-Sampling of merger/accretion events

• make subsamples of spin changes in 6-dimensional parameter spaces, M, λ , $\Delta \log M$, $\Delta \rho_{10}$, and z.

where ρ_{10} is a density measured with a spline kernel from 10 neighbors.

- $-\Delta \rho_{10} < 0.7$: underdense (void) region
- $-0.7 < \Delta \rho_{10} < 2$: mean field
- $-2 < \Delta \rho_{10} < 10$: group region
- $-10 < \Delta \rho_{10} < 100$: cluster region
- $-\Delta \rho_{10} > 100$: highly clustered region
- for each subsample, we measured the distribution of $D \equiv \frac{\Delta_0^{(1)} \log \lambda}{\Delta_0^{(1)} \log M}$

Environmental Dependence of Merger and Accretion

For dlnM>0 cases,

- At high z, no difference of dlnM between environments
- At low z, halos in denser region tend to have higher dlnM or frequent mergers.

Distribution of Spin Change (D)

- $D \equiv \frac{d \log |\mathbf{J}|}{d \log M}$: amplitude change of angular momentum when halo mass changes
- P(D): measured probability distribution of spin changes
- $P(D) = P(D|\lambda, M, \Delta M, z, \rho_{10})$
- a fitting of measured P(D) to bimodal Gaussian function.

$$P_{fit}(D) = \frac{f_1}{\sqrt{2\pi\sigma_1^2}} exp\left[-\frac{(D-\mu_1)^2}{2\sigma_1^2}\right] + \frac{f_2}{\sqrt{2\pi\sigma_2^2}} exp\left[-\frac{(D-\mu_2)^2}{2\sigma_2^2}\right] \quad (1)$$

where $f_1 + f_2 = 1$.

Figure 4. Same as Figure 3, but for the low-spin sample of $0.015 \le \lambda < 0.02$, which is used to isolate the spin effect on the angular momentum change.

Figure 6. Dependence of P(D) on the amount of mass infall ratio $(\Delta \log_{10} M)$ using samples of $1 \le M_{12} < 2$, $0.7 \le \Delta \rho_{10} < 2$, and $0.035 \le \lambda < 0.038$.

$$\mu_D = \int_{-\infty}^{\infty} P(D) dD$$

- μ_D : mean value of the distribution
- blue horizontal line: 5/3.
- If $\mu_D > 5/3$, halo spin tends to increase
- If $\mu_D < 5/3$, halo spin tends to decrease
- $\lambda \equiv \lambda_c$ when $\mu_D(\lambda) = 5/3$.
- μ_D decreases with λ crossing 5/3 somewhere around $\lambda_c \sim 0.01 - 0.05$

• λ_c represents the average spin value.

• Different mass, environment, redshift samples have different λ_c . $\therefore \lambda_c = \lambda_c(M, \Delta M, \rho, \lambda, z)$

DISTRIBUTION OF λ_c

Figure 8. Dependence of λ_c on merging mass ($\Delta \log_{10} M$) between $0 \le z < 0.2$ for three mass samples: $0.3 \le M_{12} < 0.5$ (bottom panel), $1 \le M_{12} < 2$ (middle), and $7 \le M_{12} < 10$ (top). Symbols with different colors are used to distinguish the effect of local environment.

From the distribution of λ_c , we come to know that

- At bigger events, λ_c is higher.
- Or accretion tends to make halos have less spin value.
- For more massive halo, the average spin is lower than less massive halo
- In less denser region, halos tends to be have smaller spin.

Stochastic Simulation

• Random-simulated spin evolution is obtained as

$$\lambda_{i+1} = \lambda_i + \Delta \lambda_i \tag{1}$$

where $\Delta \lambda_i$ is **randomly generated** using $P(D|M_i, \lambda_i, z_i, \Delta \rho_i, \Delta M_i)$ and ΔM_i is given from the N-body simulation. Running from i = 0 to $i = i_f$, we get the **target** λ_f for **each** major descendent tree found in simulation.

• We iterate the procedure (Eq. 1) for each major descendent tree and measure $P(\lambda)$.

Results from Stochastic Model

- Red histogram: spin distribution from N-body simulation
- Blue histogram: one obtained from the stochastic model
- Slight differences are found at lower z and less massive halo samples.

Figure 11. Spin distributions of various halo mass samples at z = 0, 0.5, and 2 (from left panels). The blue and red histograms are the randomly generated and *N*-body simulated spin distributions, respectively.

Local Environmental Effects (1)

Figure 14. Spin distributions in various local environments at z = 2. Counterclockwise from the bottom left panel are the spin distributions of *N*-body (red histogram) and random-generated (blue) samples of local densities of Δ $\rho_{10} < 0.7, 0.7 \leq \Delta \rho_{10} < 2, 2 \leq \Delta \rho_{10} < 10$, and $10 \leq \Delta \rho_{10} < 100$. The green solid curve in each panel is a log-normal fit to the *N*-body spin distribution.

Less massive halos at z=0

Figure 16. Same as Figure 14, but at z = 0.

Green histogram: log-normal fit to N-body result

Local Environmental Effects (2)

More massive halos at z=0

Figure 17. Spin distributions of a more massive sample of $6 \le M_{12} < 10$ at z = 0. The green solid curve is a log-normal fit to the corresponding *N*-body distribution.

- Less massive halos in field/underdense regions tend to have lower spin values than expected from the stochastic evolution model.
 - Maybe correlated infall in these parameter space? Ans: we tried various test but can't found the cause of this difference yet.
- Halos in the other regions are well described by the stochastic model

Why P(D) leads to the Log Normal Distribution

• Geometric Brownian Motion (Ross 2007)

$$\frac{d\log_{10}\lambda(\tau)}{d\tau} = \theta + \sigma_c \frac{dW_\tau}{d\tau},$$

where θ is the long-term drift of the system, σ_c is set constant and W_{τ} is a kind of normally distributed Wiener process or $W_{\tau} \sim \mathcal{N}(0, \tau)$.

• Characteristics of Wiener process

$$\frac{dW_{\tau}}{d\tau} = \frac{W_{\tau+d\tau} - W_{\tau}}{d\tau} \sim \frac{\mathcal{N}(0, d\tau)}{d\tau} = \mathcal{N}(0, 1/d\tau) \quad dW_{\tau}^2 \sim \mathcal{N}(0, 1)d\tau \propto d\tau$$
(1)

• Ito's formula (Movellan 2011):

Taylor expansion

$$d\log \lambda = \frac{d\log \lambda}{d\lambda} d\lambda + \frac{1}{2} \frac{d^2 \log \lambda}{d\lambda^2} d\lambda^2 \qquad (2)$$
$$= \sigma_c dW_\tau + \left(\theta - \frac{\sigma_c^2}{2}\right) d\tau \qquad (3)$$

Using Eq. (1)

Why P(D) leads to the Log Normal Distribution (Cont.)

• Using the following equations,

$$d\lambda = \lambda(\theta d\tau + \sigma_c dW_{\tau})$$
(1)
$$dW_{\tau}^2 = d\tau$$
(2)

where $(\theta - \sigma_c^2/2)$ is a corrected long-term drift (Oksendal 2000) and σ_c is the standard deviation.

• Therefore, if W_{τ} is **Gaussian**, the distribution of λ is log normal.

Summary

- Log-normal distribution is a simple consequence of the stochasticity of the spin.
 - Predicted by Ito's formula
 - Subsequent mass merging/accretion are stochastic (Markovian: independent of previous history)
- Some deviations are observed of halos in the mean/underdense region at lower redshifts.
 - Possibly correlated mass infall events of those halos.
 - Halos in group and cluster environments have spin distributions well described by the stochastic model.