Korea Astronomy & Space Science Institute (01/27/2016)

Recombination in Small-scale Structures During the Cosmic Reionization

Speaker: Hyunbae Park (KASI) Collaborators:

Paul R. Shapiro (UT Austin), Jun-Hwan Choi (UT Austin), Naoki Yoshida (U of Tokyo), Shingo Hirano (U of Tokyo)

Cosmic Reionization

Galaxies produce ionizing (>13.6 eV) photons. Those photons are consumed to ionize intergalactic gas.

(2) recombining H in the ionized region.

Resolution Limit in Large-scale EoR Simulation

Recombination & Clumping Factor $\langle R \rangle_V \propto \langle \rho^2 \rangle_V \neq \langle \rho \rangle_V^2$

Square of average does not equal to average of square!

Clumping factor quantifies the underestimation of the recombination rate due to unresolved density fluctuations.

"Sub-grid" Clumping Factor

"Sub-grid" Clumping Factor

Simulation Setup

Code : GADGET-3 Size : 200 kpc/h Resolution : $M_{DM} = 51 M_{\odot} (N = 256^3)$

Star Formation : Suppressed by LW background Ionizing Radiation :

Isotropic

External Background

 $T = 10^5$ K black-body with $J_{21} = 1, 0.3, 0.1$

Turned on at $z_i = 10, 9, 8$

J₂₁ : intensity in the unit of 10⁻²¹(erg/s/Hz/std/cm²)

Shielding Algorithm for Minihalos

Most gas will ionized immediate except dense gas in minihalos that will be able to shield against the external background.

Shielding Algorithm for Minihalos

Shielding Algorithm for Minihalos

We test our shielding algorithm again the 1D rad-hydro code of Ahn et al. (2007).

lonized Neutral

Test Result: Radial Profiles of Physical Quantities

We agree very well with the 1D code of Ahn et al. (2007).

Result : Clumping Factor

Standard case : $J_{21} = 1$, $z_i = 10$

High clumping factor early and low clumping factor later.

Clumping Factor at Early Time: Static Density Field

Clumping Factor at Late Time: Hydrodynamic Feedback

The outer part of HII regions will consume more photon. Bubble growth rate will change!

Impact 2: Photon Budget for Reionization

Small-scale structures end up with 0.3 recombination per HI.

Parameters for a sub-Mpc volume

In the large-scale picture, sub-Mpc volumes are ionized at different times with different intensities depending on their environments.

$N_{rec}\xspace$ as the Functions of z and J_{21}

Later reionization and higher intensity lead to more recombination.

Summary & Conclusion

Small-scales structures would...

- add 0.2~0.5 more recombination per HI.
 More photons (i.e. more galaxies) needed to achieve the cosmic reionization.
- would boost recombination in the outer part of HII regions. Observational features from HII bubbles will be impacted.

Thank you !