Imaging Polarimetry as a Powerful Tool for Lunar Science

Sungsoo S. Kim¹, Minsup Jeong^{1,2}, Ian Garrick-Bethell^{1,3}, So-Myoung Park¹, Chae Kyung Sim¹, Ho Jin², Kyoung Wook Min⁴, and Young-Jun Choi²

¹Kyung Hee University,
²Korea Astronomy and Space Science Institute,
³University of California, Santa Cruz, and
⁴Korea Advanced Institute of Science and Technology

Korea's Lunar Exploration Missions

- Korea's Plans for Lunar exploration
 - 2018-19: Test orbiter
 - >2020: Orbiter/Lander/Sampler returner
- Need to find original science missions for the KLE
 - Almost all kinds of explorations have been tried in the lunar orbit.
 - Korea still needs to find original missions.
 - Simple, fail-safe missions are appropriate for the test orbiter.
- Polarimetric observations
 - Nearly the only major observational method that has not been tried in the lunar orbit.
 - The polarimeter can share the focal plane of the main camera.
 - Very simple equipment: 2 linear CCDs with polarimetric and color filters

Polarimetric Survey of the Lunar Regolith

- As a Korea's lunar exploration mission, we propose
 - Multi-band polarimetric survey from the Lunar orbit, which will be an original science mission that has never been tried before.
 - Polarimeter is a simple instrument, and can share the focal plain of the main camera.
- Advantages of observations from the Lunar orbit

Polarimetric Survey of in the Lunar Orbit

- Polarimetry has not been tried in the Lunar orbit, because
 - In-situ measurement is preferred to remote-sensing in the early times of exploration
 - > Time to pay more attention to remote-sensing missions now?
 - Traditional perception: Lunar science = Geology
 - The only scientist on the Moon = Geologist (Apollo 17)
 - Most of the remote-sensing science missions were for mineralogy, petrology and geophysics.
 - Polarimetry has been used to study dust and aerosol, or remove the effects by them.
 - Polarization of light reflected off particulate surfaces are not well understood, although quite a number of studies have been done recently.
- Study of surface polarimetry = **Blue Ocean**
 - In terms of observation, theory and lab experiments!

Scientific & Exploratory Values of the Lunar Surface Polarimetry

Polarization and Grain Size (1/4)

• Light reflected off a surface is partially polarized.

Polarization and Grain Size (2/4)

- Light that hits a particulate surface
 - 1. is partially reflected off the surface (perpendicularly polarized),
 - 2. is partially absorbed by the grains, or
 - 3. partially escapes after multiple scattering between grains (randomly polarized).

Polarization and Grain Size (3/4)

- Thus the degree of polarization is
 - determined by the ratio between the absorption and scattering,
 - and this ratio depends on the size and composition of the particles.

Polarization and Grain Size (4/4)

• Umov's Law (1905)

$$PA^{1.37} = f(d)$$

P = PolarizationA = Albedod = Grain size

- Recent research showed that *f* is determined by:
 - Size, composition, and shape of the grains
 - Roughness of the surface

Space Weathering of the Lunar Regolith

- As the lunar regolith matures, the regolith grains become
 - darker
 - redder
 - smaller in size (comminution).
- These are the results of space weathering by the solar-wind particles and micrometeorites.
- Darkening and Reddening
 - Caused by the accumulation of nanophase iron (npFe) particles in the regolith grains.
 - npFe particles are produced by the solar wind particles and/or micrometeorites.
- Comminution
 - Caused by the bombardment of micrometeorites.

Two Important Maturity Indices

- Optical Maturity (OMAT)
 - Developed by Lucey et al. (1995, 1998, 2000)
 - Maturity & FeO content can be estimated by albedos at 7500Å & 9500Å.
 - Reflects the degree of darkening and reddening

Two Important Maturity Indices

- Optical Maturity (OMAT)
 - Developed by Lucey et al. (1995, 1998, 2000)
 - Maturity & FeO content can be estimated from albedos at 7500Å & 9500Å.
 - Reflects the degree of darkening and reddening

- Median Grain Size (<d>)
 - Estimated from P_{max} and A (developed by Dollfus 1971, Shkuratov 1981).
 - Dependent on the total dose of micrometeorite
 - Can be used as a supplementary and independent maturity index.
 - Comminution timescale may be different from darkening and reddening timescale.
 - Much less observed, and thus much less studied.

Preliminary Studies

- Ground observations
 - 3 weeks in July 2013 at Lick Observatory
 - Phase angle between 22° and 121°
 - U, B, V, R and I bands
 - ~1.2" seeing (1.6 pixel, 2.2 km at the center of the lunar disk center)
 - First CCD polarimetry of the whole near-side of the Moon
- Main results
 - <d> is latitude-dependent.
 - At the same latitude, <d> is larger in the maria than in the highlands.
 - <d> reaches saturation earlier than OMAT does.
- First paper was published in the ApJS last November.
 - More than four papers from these data are currently being prepared.

Latitude-Dependence of <d>

OMAT Profiles of Craters

OMAT of Crater Inner Walls: EF vs. PF

OMAT of Crater Inner Walls: E vs. W

OMAT of the Lunar Surface

Our Proposal for the Science Payload

- Consortium of KASI, KHU and KAIST (SaTReC)
- The instrument
 - Wide-field cameras in the optical and infrared
 - Polarimetric survey of the whole lunar surface
- Due February 22nd
 - Selection process in March

Second Campaign of Ground Observations

- Speckle polarimetric imaging!
 - Dedicated 24-inch telescope
 - High-speed camera (down to 1 ms)
 - To be installed at the Sierra Remote Observatory in California
 - Collaboration with KASI (Young-Jun Choi)
- Highest-resolution polarimetry of the Moon
 - Speckle polarimetric imaging of the Moon works because we already have hyperresolution imaging data of the Moon.
 - Nyquist sampling with a pixel scale of 0.2" (3-4 times enhancement)
 - Expected to reach GSD of ~300 m
- Will observe Mars and a few asteroids as next targets.