CHEMICAL EVOLUTION IN SIMULATED GALAXIES

Owain Snaith

Jeremy Bailin, Eric Bell, Hugh Couchman, Brad Gibson, Greg Stinson, Monica Valluri, James Wadsley, Dan Weisz (Snaith et al. 2016, MNRAS, 456, 3119, arXiv:1512.02680v1)

http://mugs.mcmaster.ca/g15784.html

INTRODUCTION

- Motivation
- Description of the Simulations
- Results
- Future Directions
- Conclusions

MOTIVATION

- Chemistry gives window into the assembly history of galaxies
- Gaia-ESO (+followups), APOGEE, CALIFA, MaNGA detailed data on the chemical properties of the MW and other galaxies
- Challenges to chemodynamical models of galaxies
- Need to compare chemistry in simulations and observations

DESCRIPTION OF THE SIMULATIONS

- Two simulations identical ICs different stellar feedback
- MUGS (Stinson et al. 2010) & MaGICC (Stinson et al. 2013)

DIFFERENCES BETWEEN SIMULATIONS

• MUGS

- Traditional SN feedback (Stinson et al. 2006)
- MaGICC
 - Traditional + early radiative feedback (Stinson et al. 2013)
 - Stars start introducing energy into the simulation as soon as they are formed.
 - Different IMF

• Histogram equalisation technique to bring out substructures

MaGICC

• MUGS

MaGICC

• MUGS

MaGICC

ORIGIN OF THE SPINE/SKIRT

- Two parallel sequences in the AMR
- One is narrow, the other very broad

ORIGIN OF THE SPINE/SKIRT

- Two parallel sequences in the AMR
- One is narrow, the other very broad
- Implies different environments.... bulge, disc, halo?

COMPARE WITH OBSERVATIONS

- Ages are hard so look in [Fe/H]-[O/Fe]
- Substructure apparent.

COMPARE TO OBSERVATIONS

- Something's missing... errors.
- The observations have errors (0.08 dex for abundances,, Hayden et al. 2015, 1.5 Gyr for ages, Haywood et al. 2015)
- All that substructure in MUGS might be there but can we see it?

COMPARING WITH

• When we convolve the [O/Fe]-[Fe/H] distribution with errors we go from...

 $(\sigma_{age}, \sigma_{[Fe/H]}, \sigma_{[O/Fe]}) =$

(1 Gyr, 0.1 dex, 0.1 dex),

(0.5 Gyr, 0.05 dex, 0.05 dex),

(0.25 Gyr, 0.025 dex, 0.025 dex)

COMPARING W

 The density distribution of stars –

APOGEE (Hayden et al. 2015) v. simulations

- Two sequences in APOGEE, MUGS and MaGICC
- MUGS more similar to
 APOGEE
- Can we do better?

FUTURE WORK

- Generate mock observations
- Treat the result as if we were observers
- Compare with what is really there in the simulation
- How much detail can we recover?

CONCLUSIONS

- The chemical evolution of galaxies is vital to our understanding of galaxy formation and evolution
- Use simulations to link observed properties to events in a galaxy's history
- Not trivial
- Different parts of a galaxy leave different signatures in the chemical abundances and ages of stars
- More work to do in future to make ready for new surveys