

Formation of SNe Ia by Direct Collisions of White Dwarfs

Yonghwi Kim¹

Collaborator : Subo Dong¹ and Boaz Katz²

¹Kavli Institute for Astronomy and Astrophysics, Peking University, China ²Weizmann Institute of Science, Israel; Institute for Advanced Study, USA

The 5th Survey Science Group Workshop, Feb. 1-3, 2016

Introduction

• Type la supernovae (SNe la)

- Cosmological 'standard candles' : tight correlation between intrinsic peak luminosity and post-peak brightness decline rates (Phillips 1993)
- Powered by the decay of ⁵⁶Ni produced from the explosion of CO white dwarfs (WDs)

• Scenarios for the formation of SNe Ia

- Chandrasekhar-mass model (double-degenerate model)
 - : Merger of two close WDs through the radiation of gravitational waves (Whelan & Iben 1973, Nomoto 1982, Han & Podsiadlowski 2004)
- <u>Single-degenerate model</u> or <u>double detonations theory</u> (DDT)
 - : By accreting a hydrogen-rich or helium-rich mass from a non-degenerate stellar companion (Iben & Tutukov 1984, Webbink 1984; Iben et al. 1987, Ruiter et al. 2011)
- <u>WDs collision scenario</u> (Thompson 2011; Katz & Dong 2012; Kushnir et al. 2013)
 : two WDs collide directly, either because of interaction with a tertiary star
 ⇒ eccentric Kozai-Lidov mechanism (EKL)

The 5th SSG Workshop

Strong Evidence for Direct Collision

 Converged ⁵⁶Ni range is produced by WD range (Kushnir et al. 2013)

- * M_1 and M_2 vary from 0.5 to 1.0 $M_{sun}\!.$
- * Shock ignition \Rightarrow Nuclear Detonation

Strong Evidence for Direct Collision

Double peak at nebular line (Dong+15)

 t₀ is the transparency time when the optical depth to Compton scattering equals unity, using Arnett's rule (Arnett 1982) and the analytic treatment of Jeffery (1999). ⇒ Relate to average column density of ejecta

Kozai-Lidov Mechanism

 $e(m_1 - m_2) \sim 1$ \Rightarrow likely to <u>collisions</u>

Challenges to adopt the <u>Kozai-Lidov theory</u> on the SNe Ia formation a. Required extreme eccentricity : $1-e>10^{-6} \leftarrow a/R_{WD} \sim 10^{6}(a/30AU)$ b. Tidal and General Relativistic (GR) effects will prohibit the collision during the slow secular evolution

c. Small fraction of parameter space $\sim (R_{WD}/a)^{1/2}$ available for producing the required extreme eccentricity 1-e $\sim R_{WD}/a$

Eccentric Kozai-Lidov Mechanism

Overcome these Challenges by;

a. Required extreme eccentricity : $1-e > 10^{-6} \leftarrow a/R_{WD} \sim 10^{6}(a/30AU)$

→ Stochastically achieved the collision after a sufficient amount of orbits, $N \sim a/R_{WD} \sim 10^{6}(a/30AU)$

b. Tidal and General Relativistic (GR) effects will prohibit the collision during the slow secular evolution

⇒ "Clean" : the perturber is close enough to significantly change the angular momentum of the eccentric binary at the last apocenter prior to the collision, leading to a jump in pericenter separation r_p from several R_{WD} (far enough to avoid GR and tides) to $r_p < 2R_{WD}$ (a head-on collision).

c. Small fraction of parameter space $\sim (R_{WD}/a)^{1/2}$ available for producing the required extreme eccentricity 1-e $\sim R_{WD}/a$

⇒ direct numerical 3-body integration in order to avoid the limitation of standard Kozai-Lidov theory.

Evolution of a Triple System

- Inner binary
 - m₁=m₂=0.5M_{sun}
 - a=10AU, e=0.1
- Third body
 - m₃=0.5M_{sun}
 - a_{out}=100AU and e_{out}=0.5 (pericenter r_{p,out}=5a=50AU)
 - i=98° (95 ° -100 ° similar)

Boaz & Dong 2012

Dependence of Numerical Method

- Newtonian
- Non-Newtonian (with GR+T)
- Dependence of Integrator
 - Preo-Tremaine-Mikkola-Tanikawa
 : Most cases
 - EH (Wisdom-Holman integrator)
 : for sufficiently weak perturbers (r_{p,out}>5a)

Dependence of m₃ and a

WDs binary with a=1-300AU+ Outer perturber with $r_{p,out}/a=3-10$

A few percent chance of experiencing a head-on collision within 5 Gyr.

Boaz & Dong 2012

On going work;

- Not enough to explain the fraction of SNe Ia (~only a few %).
- Parametric dependence : m3, i, and other effects

