Properties of Near Field Dwarf Galaxies Revealed by their 'Resolved' Stellar Populations

2016 Feb, The 5th Survey Science Workshop

Soung-Chul Yang (KASI)

Definition of "Nearby Galaxies"

Any galaxies with

D < 11 Mpc $V_{LG} < 600 km s^{-1}$ (z~0.002)

where V_{LG} is radial velocity with respect to the Local Group centroid, and can be expressed as $V_{LG} = H_0 D$

According to the latest compilation of the nearby galaxies collected by Karachentsev et al. (2013, AJ, 145, 101),

we now have a total of 869 galaxies within these category

Definition of "Dwarf Galaxies"

Categorised primarily by size & luminosity (mass)

Canonical dwarfs Ultra-faint dwarfs Hybrid/Mutant objects

 $Mv < -8 \text{ mag, } r_h > 100 \text{ pc}$ $Mv > -6 \text{ mag, } r_h < 100 \text{ pc}$ $Mv \approx \text{ as faint as uFd, but with}$ $GGC \text{ size (i.e. } r_h \approx 30 \text{ pc})$

* M83 & Cen A(NGC 5128) Groups appear to be a similar cousin to MW-M31 pair
* Thin layer structure in SXY plane continues in larger scale!

Karachentsev et al. (2013)

Two giant spirals of the Local Group, MW & Andromeda shows characteristic thin disk structures of satellites.

Karachentsev et al. 2004, AJ, 127, 2031

Two giant spirals of the Local Group, MW & Andromeda shows characteristic thin disk structures of satellites.

Ibata et al. 2013, Nature, 493, 62

What can we learn from resolved stellar populations?

Today's Keywords

Star Formation History Chemical Enrichment History

SFH & CEH provide a direct & intuitive understanding on the galaxy formation and evolution Definition of "Star Formation History"

Star-formation rate as a function of lookback time and metallicity

How we can obtain SFH of a galaxy?

By directly comparing stellar evolution models and the temperature-luminosity distributions (e.g. color-magnitude diagram) of individual stars

Quick Summary of SFH Analysis

How to Read SFH diagram?

lookback time

Lessons from the comparison (1)

- dSphs are predominantly old systems. In average, they have formed the vast majority of their stars prior to z~2 (10 Gyr ago)
- 2. However individual galaxies show significant scatter, ranging from purely old to those with constant lifetime SFHs
- 3. Overall SFH trend well matched with "exponentially decreasing model"

Lessons from the comparison (2)

- On average dIrrs formed ~30% of their stellar mass prior to z~2, and show an increasing SFR toward the present, beginning around z~1 (7.6 Gyr ago)
- 2. There are few predominantly old dIrrs
- 3. Show only modest scatter relative to the average
- 4. Nearby dIrrs may provide a template for how low mass galaxies evolve without significant environmental influence

Lessons from the comparison (3)

- dTrans appear to have formed ~45% of their stellar mass prior to z ~ 2, and have experienced nearly constant SFRs since that time
- 2. dTrans with predominantly old SFHs (e.g. DDO210) tend to have lower present-day gas fractions, while those with higher gas fraction have had more constant SFRs

Lessons from the comparison (4)

- dEs typically have an initial burst of SF prior to 12 Gyr ago (z~5), followed by nearly constant SFR
- All dEs show declining SFHs starting at z~0.1 (2 Gyr ago)

Lessons from the comparison (5)

- 1. SFs in the least luminous uFds have been quenched at earlier times than the most luminous dSphs
- 2. In general, more luminous dwarfs have extended SFHs, however deviations from this relationship suggest that environmental effects of individual galaxies might be as important as their mass

SFH of a galaxy is one of key factors determining the path of its chemical evolution because the number of stars formed (i.e. SFR) with a given initial mass function controls the rate of chemical enrichment

Simple Concept of Chemical Evolution

GAS

One key observable features that the SFH of a galaxy left behind is the metallicity distribution function (MDF) of its stars

Metallicity Distribution of the Stars

Simple Analytical Model

Equation of Gas phase Chemical Evolution

 $z(t) = z(0) - y * \ln[M_{gas}(t)/M_{gas}(0)]$

 $M_{gas}(t) = M_{gas}(0) * e^{-[z(t)-z(0)]/y}$

**where z mass fraction of heavy element (i.e. metallicity) y chemical yield (i.e. "productivity" of elements) M_{gas} gas mass

Equation of Stellar Mass with metallicity less than z(t)

$$M_{\star}[\langle z(t)] \equiv M_{\star}(t) = M_{gas}(0) - M_{gas}(t)$$

 $dM_{\star}(z) \propto e^{-[z(t)-z(0)]/y} dz$

Metallicity Distribution of RRLs

Why RRLs? Why not RGBs?

Rejkuba et al. 2005, ApJ, 631, 262

Color-Magnitude Diagrams from HST/ACS F606W,F814W

RGB MDF is influenced by inclusion of young/intermediate age populations. It also depends on the stellar evolution models and abundance of alpha elements!

Metallicity Distribution of RRLs

Simple Analytical Model of Chemical Evolution

Early Chemical Enrichment of the Sculptor dTrans

- * All three simple models appear to describe the RRL MDFs fairly well
- Possible scenarios for the early enrichment process
 - "Prompt initial enrichment" : Preferential protogalactic enrichment by high-mass stars (or Pop III stars?) during the very early phase of galaxy formation. The initial cosmic enrichment levels (10⁻⁶ < Z₀ <10⁻⁴) can be achieved by the end products of Pop III stars (Schneider et al. 2002)
 - ★ "Two-phase enrichment" : The metal-poor tails of the MDFs formed first in a very early gas infall phase. Then the dTrans approached to a steady state (z → y), then they entered into a closed-box-like phase to form the remaining part of the MDFs. These phase transition should be completed within a very short period of time (t < 1 Gyr)</p>

Take Home Messages

Take Home Messages

- About SFHs of Nearby Dwarf Galaxies
 - * Individual galaxies show significant scatter, ranging from purely old to those with constant lifetime SFHs
 - More luminous dwarfs have extended SFHs, however deviations from this relationship suggest that environmental effects of individual galaxies might be as important as their mass
 - * SFs in the least luminous uFds have been quenched at earlier times than the most luminous dSphs

Take Home Messages

- About Early Chemical Evolution of the Sculptor dTrans
 - * SFH of a galaxy is one of key factors determining the path of its chemical evolution
 - RRL MDF can be used as a useful analytical tool for investigating early chemical enrichment process of nearby dwarf galaxies

True Nature of a Mysterious Crater Stellar System

Yang et al. 2015 in prep

Crater system was discovered in 2013 by ATLAS survey program using the 2.6m VLT survey telescope at Panaral in Chile.

Crater seems to be too compact to be a dwarf galaxy

Magellan/IMACS VI Imaging of the Crater

The preliminary results of our analysis seem to reveal quite different nature of the Crater system

Please stay tuned for our upcoming results.

Thanks & Any Questions?

Summary of "LG Dwarf Galaxies"

Туре	M _{dyn}	MB	$\langle [Fe/H] \rangle_{RGB}$	*M/L	SFH	
dE dSph dIrr dTran uFd	10 ⁷ ~ 10 ⁵ M⊙	-0.7 ~ -18 mag	-0.5 ~ -2.7 dex i.e. the most metal-poor systems	>100 i.e. the most dark matter dominated system	no two Local Group dwarfs have the same SFH	
M32 dE Sculpt	or dSph NGC682	2 dlrr Phoenix dT	ran 22 -0.5 0.0 0 (g	а а а а а а а а а а а а а а	151.8 151.7 a(2000) (h)	

Segue I uFd

Nearby Dwarf Galaxies in the Near-field Environment

 Gas-poor dSph/dEs appear to be located more closer to their giant hosts while gas-rich dIrr/dTrans tend to be isolated

 The overall properties of nearby dwarf galaxies seem to be consistent with their counterparts in distant universe

Metallicity Distribution of RRLs

Why RRLs? Why not RGBs?

Rejkuba et al. 2005, ApJ, 631, 262

dTrans in the Sculptor Group

Target	Mv	<[Fe/H]>	(m-M)₀	Туре	MD		ESO294 -G010
ESO294-G010	-11.11	-1.77*	26.38*	dlrr/dSph	NGC 55		ESO410
ESO410-G005	-11.42	-1.64*	26.30*	dlrr/dSph	NGC 55		-G005
Phoenix	-9.8	-1.9	23.04	dlrr/dSph	MW		Phoenix
Leo I	-11.9	-1.4	22.40	dlrr/dSph	MW		
							Leo I
LGS3	-9.8	-1.7	24.08	dlrr/dSph	M3 I		
DDO210	-10.9	-1.9	24.89	dlrr/dSph	M3 I		LGS 3
*Note : [Fe/H] values from previous studies refer "photometric metallicity" measured							

DDO210

*Note : [Fe/H] values from previous studies refer "photometric metallicity" measured using RGBs, while the [Fe/H] values of ESO291 & ESO410 are derived via the P-Amp-[Fe/ H] relation of Alcock et al. (2000).

ESO294-G010

ESO410-G005

Color-Magnitude Diagrams from HST/ACS F606W,F814W

Pop III star formation & Early Chemical Enrichment

The first generation of stars, formed out of pristine primordial gas, had a top heavy initial mass function, with a typical mass scale of order of ~100 M(sun) and most probably just one star per halo (e.g. see Abel et al. 2002; O'Shea & Norman 2007).

These stars started forming after about 30-40 million years from the big bang at redshift z~55-65 (Naoz et al. 2006; Trenti & Stiavelli 2007; see also Gao et al. 2005), and given their high mass, they live only a few million years ending with a pair-instability SN phase or a direct collapse to a black hole (Heger et al. 2003).

A halo with a mass of ~ 10^8 M(sun) can be enriched to a critical metallicity Zcrit > 10^-4 Z(sun) by the most massive pair-instability SN. More typical explosions may instead enrich significantly less gas (~ 10^6 M(sun)) although at a corresponding higher metallicity (Bromm et al. 2003; Kitayama & Yoshida 2005; Grief et al. 2007; Whalen et al. 2008).