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The general philosophy


Topological String (TS): framework for quantizing classical systems;  
can provide analytic solution to problems in Quantum Mechanics (QM) 

However: TS only defined perturbatively, many observables ill-defined  
(asymptotic series, divergences, …) due to missing non-perturbative terms 

To solve QM problems analytically we need a complete theory of TS 
         need to understand non-perturbative terms in TS; how? 
                                                          

                                         + 

Today: review what is known so far and study QM eigenfunctions via TS 

(QM problems: “relativistic”, exponential dependence on momenta)
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Quantum Mechanics and 


Topological Strings



Quantum Mechanics from Topological Strings 


Setup: TS on a local toric Calabi-Yau threefold     (in                              ) 

Mirror curve 

Mainly focus on cases with 5d gauge theory interpretation (    : SW curve) 

Genus 1 example (5d pure      = 1 SU(2) theory / local     ):

X

Toric Calabi-Yau    : 
identified by its toric diagram; 

 +      Kahler parameters 

X

g⌃ r⌃

Mirror Calabi-Yau    : 
identified by genus      mirror curve; 

“true” moduli     ,      masses
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How do we associate a Quantum Mechanical problem to     ? 

For genus 1, first rewrite the mirror curve     as  

Then, consider Weyl quantization of the mirror curve: 

Obtain a self-adjoint operator on           with discrete energy spectrum 

and with inverse operator                        of trace class 

Genus 1 example (pure SU(2) / local     ): Quantum Mechanical problem 
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When the genus      > 1 we can instead define two different QM problems 

I) Quantum mirror curve as      finite-difference Schrodinger operators 
I) Construct a family of       finite-difference operators:  
First, pick up                   and rewrite the mirror curve     as  

After Weyl quantization, obtain      self-adjoint operators on    

with inverse operators                            of trace class and discrete energy 

• Operators         and         related by similarity transformations 

• Solution                                                      solution 

• Single quantization condition; discrete family of  codimension-1 

submanifolds in      -dimensional “energy” space

g⌃
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A cartoon: 

At fixed      , quantized energy                         (and viceversa)
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II) Quantum mirror curve as Baxter equation (Separation of Variables) 
II) Interpret the quantized mirror curve as a Baxter equation 
To each      we can associate a classical (cluster) integrable system   
with      Hamiltonians      +       Casimirs         [Goncharov-Kenyon ’11] 

Mirror / SW curve: spectral curve of the classical cluster integrable system 

Toric diagram                dimer model           cluster integrable system   

g⌃ ui r⌃ mj

=)

() ()
[Franco-Hatsuda-Marino ’15]
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Quantum problem: 

look for              -normalizable simultaneous eigenfunctions   
     quantization conditions, discrete set of points in energy space 

‘Shortcut’: study quantum mirror curve / Baxter equation 

Requirements on           (no            like in QM problem I): 

•            from           via integral transform (Separation of Variables); 

• Need           entire + rapidly-decaying (such that                             ) 

Conditions on           imply that all          are quantized 

[p̂k, x̂l] = �i~�k,l , [ûi, ûj ] = 0 =)
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How to solve   these QM problems in terms of TS quantities of     ? 

• Problem I: Topological String / Spectral Theory correspondence (TS/ST) 
[Grassi-Marino-Hatsuda ’14][Codesido, Zakany, Moriyama, Okuyama, Kashaev, Gu, Klemm, Reuter,…] 

Spectral determinant via unrefined TS free energy (+ NS non-pert. terms): 

• Problem II: (revised) “Bethe/Gauge” correspondence  
[Nekrasov-Shatashvili ’09][Huang, Wang, Zhang, Sun, Marino, Hatsuda, Franco, Kashani-Poor, A.S.,…] 

Quantization conditions via NS limit of TS free energy (+ non-pert. terms): 

Check with numerics; in both cases, non-perturbative terms play a key role 

Solution: discrete energy levels + normalizable wave-functions; analytic solution unknown in QM

X
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Remarks on numerics (“experiment”)


QM problems often unsolved analytically, but can be studied numerically 

Given a QM problem                              defined on           , diagonalize it  
in an orthonormal basis on             (in practice, harmonic oscillator basis) 

Consider a truncation of the infinite-dimensional matrix 

and compute its eigenvalues and eigenvectors; increasing the matrix size, 
these should converge to eigenvalues and eigenvectors of  

Analytical TS solution of QM problems always checked against numerics
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Quantum Mechanical problem II:


Quantum Integrable Systems



QM problem II: (revised) “Bethe/Gauge” correspondence


Dictionary between 4d     =2 / 5d     =1 SUSY gauge theories and Quantum 
Integrable Systems: “Bethe/Gauge correspondence” [Nekrasov-Shatashvili ’09]            

               Bethe (QIS)                                                      Gauge 

N N

     Planck constant 
Spectral curve 

Quantization conditions 
Eigenvalues 

Eigenfunctions (    ) 
Eigenfunctions (Baxter)

  NS limit         
Seiberg-Witten curve 

SUSY vacua equations 
codim. 4 defects (Wilson) 
codim. 2 defects (quiver) 

codim. 2 defects (free chiral)
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QM problem II: (revised) “Bethe/Gauge” correspondence


Dictionary between 4d     =2 / 5d     =1 SUSY gauge theories and Quantum 
Integrable Systems: “Bethe/Gauge correspondence” [Nekrasov-Shatashvili ’09]            

               Bethe (QIS)                                                      Gauge 

Thought to involve gauge theory on           (4d) or                       (5d); 
however, correspondence incomplete in 5d (disagreement with numerics) 

Need to revisit and reinterpret Bethe/Gauge correspondence in 5d
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4d Bethe/Gauge example: N-particle closed Toda chain / 4d      = 2 SU(N) 

N-particle closed Toda chain Hamiltonians (QM solution known): 

Quantization:                                         look for                  eigenfunctions 

‘Shortcut’: study Baxter equation / quantum spectral (SW) curve; for N=2:  

from SW curve                                            (with                                      )   

• Require          entire + rapidly decaying             quantized energy 
• Obtain          from           via integral transform (Separation of Variables) 
• Similar procedure for any N      

N
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Bethe/Gauge prescription on            - quantization conditions + spectrum 

  
• Define the Yang-Yang / twisted effective superpotential function 

• Discrete energy levels                obtained at SUSY vacua as  

                                                              for 
                                                          

4d Bethe/Gauge correspondence seems to work well: 
 

W4d(a, ~, Q4d) = lim

✏2!0
[�✏2✏1 logZ4d(a, ✏1, ✏2, Q4d)]
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✏1,✏2
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[Nekrasov-Shatashvili ’09]
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Bethe/Gauge prescription on             - Baxter eigenfunction           

Couple 4d to two 2d                     free chiral / anti-chiral on         (or        ) 

•                   : 4d partition function with 2d defect (NS limit) 
• Both fast-decay at                , but not entire (poles at               );  

requiring cancellation of both poles fixes         (and         ) 

•           entire / normalizable             SUSY vacua equations:   
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Compare gauge theory result (4-instantons) with “experiment” (numerics) 

Bethe/Gauge Baxter “eigenfunction”           not entire for                 :    

On the other hand, both poles cancelled if                  :                          

(gauge) 

  (numerics) 

       (difference)
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5d example: N-particle “relativistic” closed Toda chain / 5d      = 1 SU(N) 

N-particle “relativistic” closed Toda Hamiltonians (QM solution unknown): 

Quantization:                                         look for                  eigenfunctions 

‘Shortcut’: study Baxter equation / quantum spectral (SW) curve; for N=2:  

from SW curve (mirror curve local     )                                                                     

• Require          entire + rapidly decaying             quantized energy 
• Obtain          from           via integral transform (Separation of Variables) 
• Similar procedure for any N      

N
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(Putative) Bethe/Gauge prescription on                     - quantized spectrum 

  
• Define the Yang-Yang / twisted effective superpotential function 

• Discrete energy levels                   obtained at SUSY vacua as  

                                                        for 
                                                          

However, 5d Bethe/Gauge correspondence on                      inconsistent: 
 

R4
✏1,✏2 ⇥ S1

R

W5d(a, ~, R,Q5d) = lim

✏2!0
[�✏2 logZ5d(a, ✏1, ✏2, R,Q5d)]

��
✏1=i~

eE = eEn

eEn = hWSU(2)
⇤,NS (a(n), ~, R,Q5d)i a(n) : @aW5d(a, ~, R,Q5d) = 2⇡n

[Nekrasov-Shatashvili ’09]

codim. 4 defect: Wilson loop
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5d Bethe/Gauge prescription on                      inconsistent also for                                                   

Couple 5d to 3d              chiral / anti-chiral on                  (or                 ):  

Formally satisfies Baxter, fast-decaying at                , but never entire: 

                                                 for                                                                                       for 

Moreover, ill-defined for               (and, more in general, for                 ) 
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Why 5d Bethe/Gauge quantization conditions ill-defined at                 ? 

Pole at            (classical limit) but also dense set of poles at                  
(k-th instanton contribution                            )     

The same problem appears in the would-be Baxter eigenfunction          :  

What happens? 5d Bethe/Gauge gives QM all-orders WKB expressions; 
however, all-orders WKB may be corrected by QM instanton effects 
(also related to quasi-constant (   -periodic) ambiguity Toda eigenfunction) 

NOT problem of flat-space 5d gauge theory observables but of Bethe/Gauge 
which should be better interpreted in TS (more than just 5d gauge theory) 

~ 2 2⇡Q



Why 5d Bethe/Gauge quantization conditions ill-defined at                 ? 

Pole at            (classical limit) but also dense set of poles at                  
(k-th instanton contribution                             )     

The same problem appears in the would-be Baxter eigenfunction          :  

What happens? 5d Bethe/Gauge gives QM all-orders WKB expressions; 
however, all-orders WKB may be corrected by QM instanton effects 
(also related to quasi-constant (   -periodic) ambiguity Toda eigenfunction) 

NOT problem of flat-space 5d gauge theory observables but of Bethe/Gauge 
which should be better interpreted in TS (more than just 5d gauge theory) 

~ 2 2⇡Q

W inst
5d (a, ~) = q(1 + q)Q5d

(1� q)(1� qµ)(1� qµ�1)
+O(Q2

5d) (q = ei~, µ = ea)

~ = 0 ~ 2 2⇡Q

Q(x)

Q
(c),inst
NS (x, a, ~) = 1 +

Q5dq
2X(µ

1
2 + µ� 1

2 � qX � q2X)

(1� q)(1� qµ)(1� qµ�1)(1� qXµ
1
2 )(1� qXµ� 1

2 )
+O(Q2

5d) (X = ex)

⇠ Qk
5d(1� qk)�1



Why 5d Bethe/Gauge quantization conditions ill-defined at                 ? 

Pole at            (classical limit) but also dense set of poles at                  
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The same problem appears in the would-be Baxter eigenfunction          :  

What happens? 5d Bethe/Gauge gives QM all-orders WKB expressions; 
however, all-orders WKB may be corrected by QM instanton effects 
(also related to quasi-constant (   -periodic) ambiguity Toda eigenfunction) 

This is NOT a problem of our flat-space 5d gauge theory / TS observables,  
but of their correct interpretation in Quantum Mechanics
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Can we fix this? Yes; Separation of Variable prescription: modular duality 

Redefining all parameters, rewrite the “relativistic” Toda Hamiltonians as 

Quantizing                           , ambiguity          by       -periodic functions; 
solved by considering modular dual “relativistic” Toda system (               ) 

and requiring          to be eigenfunctions of both sets of Hamiltonians    

Consequence:          needs to satisfy Baxter and dual Baxter equation; 
fixes       -periodic functions ambiguity of          , cancels poles at 

[Kharchev,Lebedev,Tian-Shansky ’01]
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N

=
NY

l=1

e!2pl

[p̂k, x̂l] = �i�k,l i!1

 (~x) ûi, ˆ̃ui
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Gauge theory realization of modular duality (revised Bethe/Gauge): 

                                                     (NS limit) 

           obtained from two copies of our previous                                  : 

Modular duality:                           (north pole),                           (south pole) 

Revised Bethe/Gauge: all formulas “doubled”, symmetry                ; 
dual copy contains non-perturbative correction terms (in                    )   

“NS limit” of some 5d compact (               ) / non-compact geometry? 
(“non-perturbative” completion of NS limit of TS [Lockhart-Vafa ’12, Hatsuda ’15]) 

For TS geometries with 5d gauge theory interpretation

R2
✏1 ⇥ S1

R ⇥ R2 =) S3
!1,!2

⇥ R2

*

D2
✏(l)1

⇥ S1
R(l) , l = 1, 2S3

!1,!2

R2
!1

⇥ S1
!2

⇥ R2 R2
!2

⇥ S1
!1

⇥ R2

�i✏(1)1 = !1 , 1/R(1) = !2 () �i✏(2)1 = !2 , 1/R(2) = !1

[Hatsuda ’15] 
[A.S. ’16, ’17]
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non-trivial symmetry: 
radius     Omega bg. 
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Revised Bethe/Gauge on                    , 2-particle “relativistic” closed Toda: 

• Exact quantization conditions (free from poles at                 ) + energy: 
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)| {z }
exact WKB (old)

+W
5d

(a,!
2
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)| {z }
non-pert. (new)

i
= 2⇡n

eEn = hWSU(2)
⇤,NS (a(n),!1,!2)i eẼn = hWSU(2)

⇤,NS (a(n),!2,!1)i

~ 2 2⇡Q

[Wang-Zhang-Huang ’15] 
[Hatsuda-Marino ‘15]



Revised Bethe/Gauge on                    , 2-particle “relativistic” closed Toda: 

• Exact quantization conditions (free from poles at                 ) + energy: 

• Good match with numerics, thanks to non-perturbative corrections: 
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Revised Bethe/Gauge on                    , 2-particle “relativistic” closed Toda: 

• Exact quantization conditions (free from poles at                 ) + energy: 

• Good match with numerics, thanks to non-perturbative corrections: 

• Need to find           common solution to Baxter + dual Baxter equation:
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• Exact solution to Baxter and dual Baxter (no poles at                 ): 

•          entire / normalizable             exact quantization conditions 

• Good match with numerics: 
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(difference)
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• Exact solution to Baxter and dual Baxter (no poles at                 ): 

•          entire / normalizable             exact quantization conditions 

• Good match with numerics: 
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TS and QM problem II: summary


TS as universal framework for QM problems: 

TS, QM non-perturbative corrections from combining TS, QM techniques: 

• QM: Separation of Variables, Baxter eq., modular dual, symmetry  
• TS: analytic formulae for energy, quantization conditions, eigenfunction 

Good match with numerics:  

• Quantization conditions, energy spectrum: checked for many 
• Baxter eigenfunction: checked for                  , i.e. 5d      = 1 SU(N)   
     (NS limit of open TS only computable from gauge theory)  

Gauge theory interpretation: need to promote 

()Topological Strings (NS) on    n     
+ non-pert. (NS) corrections

X Analytic solution QIS of      (Toda), 
all-orders WKB + QM instantons

X

!1 $ !2
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Quantum Mechanical problem I:


Spectral Theory



QM problem I: TS/ST correspondence


QM problem II: very special case of QM problem I                         : 

TS solution to QM problem I: Top. String/Spectral Theory correspondence 

Main idea: study Spectral Theory of                             via TS quantities; 
provides a non-perturbative definition of (unrefined) TS free energy 

TS/ST correspondence much in the same spirit of AdS/CFT
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QM problem I: TS/ST correspondence
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Consider     of genus 1 (like 5d pure      = 1 SU(2) theory / local     ) 

Main TS/ST conjecture: analytic TS expression for spectral determinant 

N F0X

u = u(t, ~) t X

⌅X(u, ~) ⌘ det(1� ub⇢X) ⌘
1Y

n=0

(1� ue�En) =
X

n2Z
eJX(lnu(t)+2⇡in,~)

with quantum mirror map                    and    Kahler parameters of          



Consider     of genus 1 (like 5d pure      = 1 SU(2) theory / local     ) 

Main TS/ST conjecture: analytic TS expression for spectral determinant 

Grand potential decomposes as                                                                : 

•         written in terms of unrefined (large volume) TS free energy:       

•           written in terms of NS limit of (large volume) TS free energy: 

                                

WKB analysis of        determines non-perturbative terms in unrefined TS; 
poles at                  of          cancelled by poles                     well-defined
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Spectrum of operator        or       : look for zeroes of  

Energies determined by the quantum mirror map: 

Good match with numerics; 5d pure      = 1 SU(2) theory / local     : 

Remark: closed form for        at                        exact analytic spectrum 

Higher genus    : similar story, but only one “true” modulus       quantized
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TS/ST conjecture - eigenfunction       : analytic TS expression 

Sum over sheets     of the mirror curve (single            singular)    

Open grand potential                                                                                    : 

•            contains unrefined (large volume) open TS free energy:       

•                contains NS limit of (large volume) open TS free energy: 

                                 

QM WKB again determines non-perturbative terms in open unrefined TS; 
poles at                  of             cancelled by poles               , well-defined      

[Marino-Zakany ’16, ‘17]bOX

analogue of QM II 
chiral + antichiral
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Eigenfunction normalizability:                                only for                ; 

good decay at                       quantization condition                  = 0             

Closed form for           at                        exact analytic eigenfunction 

Higher genus    : similar story; at the very special points of QM problem II,  
enhanced decay at                  (to be better understood; symmetry              ?)

 (x, u, ~) 2 L

2(R) t = t(n)

[Marino-Zakany ’16, ‘17]
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m0 = 1, ~ = 2⇡ m0 = 1, ~ = 2⇡

ground state second excited state
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TS and QM problem I: summary


TS as universal framework for QM problems: 

TS, QM non-perturbative corrections fixed à la AdS/CFT (TS/ST): 

Good match with numerics, exact analytic expressions at             :  

• Quantization condition, (single) energy spectrum: checked for many 

• Eigenfunction: fewer checks (NS limit open TS hard from top. vertex)  

Gauge theory interpretation: very unclear (“unrefined” limit of                ?)

()Topol. String (unrefined) on    n     
+ non-pert. (NS) corrections

X Analytic Spectral Theory                , 
all-orders WKB + QM instantons

b⇢ (↵)
X / bO (↵)

X ,

gs ~
Perturbative / non-perturbative 

(in    ) TS effects
Non-perturbative / perturbative 

(in   ) QM effects
()
gs ⇠ 1/~
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Summary



Topological Strings and Quantum Mechanics: summary


Deep relation between TS and QM, useful for both: 

• QM techniques and insights          fix non-perturbative terms in TS 

• TS computational tools          solve QM problems analytically 

Some of the points which must be clarified: 

• Reduction QM problem I          QM problem II (QIS) at special points 

(emergence of symmetry               , non-trivial identities NS/unrefined) 

• Application to other QM problems associated to      

• Expand to     complex, other quantization slices (            ,…):  

     no discrete spectrum, bands / gaps structure 

• TS/ST non-pert. completion and resurgence: match! 

• TS/ST non-pert. completion and wall-crossing Riemann-Hilbert problem
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Thanks!



PESCE



Remarks on TS/ST


Spectral determinant: entire function of    ; Taylor expansion 

in terms of fermionic spectral traces  

Non-perturbative definition of unrefined TS free energy (conifold frame): 

since       well-defined for                          (trace class) and in ’t Hooft limit 

u

⌅X(u, ~) = det(1� ub⇢X) = 1 +
1X

N=1

ZX(N, ~)(�u)N

ZX(N, ~) = 1

N !

Z
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FX(�, gs) = lnZX(N, ~) , gs = ~�1, � = N~�1

ZX N 2 N, ~ 2 R+

FX(�, gs) = lnZX(N, ~) ⇠
X

g�0

~2�2gFg(�)

N ! 1, ~ ! 1, N~�1 = � finite
perturbative TS free energy 
(unrefined, conifold frame). 



For general N, conjecture: 

              unrefined TS free energy (large volume) + non-perturbative terms 

Fermionic spectral traces extended to entire functions in complex N plane

ZX(N, ~) = 1

2⇡i

Z

C
eJX(lnu,~)�N lnud lnu Airy contour 

JX(lnu, ~)


