Comments on Topological Strings and Quantum Mechanics

Antonio Sciarappa

KIAS

Based on arXiv: 1606.01000, 1706.05142

Autumn Symposium on String Theory 2017

The general philosophy

Topological String (TS): framework for quantizing classical systems; can provide *analytic* solution to problems in Quantum Mechanics (QM)*

However: TS only defined perturbatively, many observables ill-defined (asymptotic series, divergences, ...) due to missing *non-perturbative* terms

To solve QM problems analytically we need a complete theory of TS \implies need to understand non-perturbative terms in TS; how?

*(QM problems: "relativistic", exponential dependence on momenta)

The general philosophy

Topological String (TS): framework for quantizing classical systems; can provide *analytic* solution to problems in Quantum Mechanics (QM)*

However: TS only defined perturbatively, many observables ill-defined (asymptotic series, divergences, ...) due to missing *non-perturbative* terms

To solve QM problems analytically we need a complete theory of TS \implies need to understand non-perturbative terms in TS; how?

TS, unknown non-pert. terms

fix non-pert. TS terms, solve QM problem

Today: review what is known so far and study QM eigenfunctions via TS

*(QM problems: "relativistic", exponential dependence on momenta)

Quantum Mechanics and

Topological Strings

Quantum Mechanics from Topological Strings

Setup: TS on a local toric Calabi-Yau threefold X (in $X \times \mathbb{R}^4_{\epsilon_1,\epsilon_2} \times S^1_R$)

Toric Calabi-Yau X:mirror symmetryMirror Calabi-Yau \tilde{X} :identified by its toric diagram; \iff identified by genus g_{Σ} mirror curve; $g_{\Sigma} + r_{\Sigma}$ Kahler parameters t_l g_{Σ} "true" moduli u_i, r_{Σ} masses m_j

Mirror curve Σ : $W_X(e^x, e^p, \{u_i\}, \{m_j\}) = 0$

Mainly focus on cases with 5d gauge theory interpretation (Σ : SW curve)

Quantum Mechanics from Topological Strings

Setup: TS on a local toric Calabi-Yau threefold X (in $X \times \mathbb{R}^4_{\epsilon_1,\epsilon_2} \times S^1_R$)

Toric Calabi-Yau X:mirror symmetryMirror Calabi-Yau \tilde{X} :identified by its toric diagram; \iff identified by genus g_{Σ} mirror curve; $g_{\Sigma} + r_{\Sigma}$ Kahler parameters t_l g_{Σ} "true" moduli u_i, r_{Σ} masses m_j

Mirror curve
$$\Sigma$$
: $W_X(e^x, e^p, \{u_i\}, \{m_j\}) = 0$

Mainly focus on cases with 5d gauge theory interpretation (Σ : SW curve)

Genus 1 example (5d pure $\mathcal{N} = 1$ SU(2) theory / local F_0): main example

For genus 1, first rewrite the mirror curve Σ as

$$W_X(e^x, e^p, u, \{m_j\}) = 0 \iff O_X(e^x, e^p, \{m_j\}) = u$$

For genus 1, first rewrite the mirror curve Σ as

$$W_X(e^x, e^p, u, \{m_j\}) = 0 \iff O_X(e^x, e^p, \{m_j\}) = u$$

Then, consider Weyl quantization of the mirror curve:

$$e^{ax+bp} \to e^{a\hat{x}+b\hat{p}}, \qquad [\hat{p},\hat{x}] = -i\hbar$$

Obtain a self-adjoint operator on $L^2(\mathbb{R})$ with discrete energy spectrum $u = u^{(n)}$

$$\widehat{O}_X(e^{\hat{x}}, e^{\hat{p}}, \{m_j\})\psi_n(x) = u^{(n)}\psi_n(x), \qquad n \in \mathbb{N}$$

and with inverse operator $\hat{\rho}_X = \left[\hat{O}_X\right]^{-1}$ of trace class

For genus 1, first rewrite the mirror curve Σ as

$$W_X(e^x, e^p, u, \{m_j\}) = 0 \iff O_X(e^x, e^p, \{m_j\}) = u$$

Then, consider Weyl quantization of the mirror curve:

$$e^{ax+bp} \to e^{a\hat{x}+b\hat{p}}, \qquad [\hat{p},\hat{x}] = -i\hbar$$

Obtain a self-adjoint operator on $L^2(\mathbb{R})$ with discrete energy spectrum $u = u^{(n)}$

$$\widehat{O}_X(e^{\hat{x}}, e^{\hat{p}}, \{m_j\})\psi_n(x) = u^{(n)}\psi_n(x), \qquad n \in \mathbb{N}$$

and with inverse operator $\hat{\rho}_X = \left[\hat{O}_X\right]^{-1}$ of trace class

Genus 1 example (pure SU(2) / local F_0): Quantum Mechanical problem

$$\left[e^{i\hbar\partial_x} + m_0 e^{-i\hbar\partial_x} + e^{-x} + e^x\right]\psi_n(x) = u^{(n)}\psi_n(x)$$

When the genus $g_{\Sigma} > 1$ we can instead define <u>*two*</u> different QM problems

When the genus $g_{\Sigma} > 1$ we can instead define <u>two</u> different QM problems I) Quantum mirror curve as g_{Σ} finite-difference Schrodinger operators First, pick up $u_{\alpha} \in \{u_i\}$ and rewrite the mirror curve Σ as

 $W_X(e^x, e^p, \{u_i\}, \{m_j\}) = 0 \iff O_X^{(\alpha)}(e^x, e^p, \{u_i\}', \{m_j\}) = u_\alpha$

When the genus $g_{\Sigma} > 1$ we can instead define <u>two</u> different QM problems I) Quantum mirror curve as g_{Σ} finite-difference Schrodinger operators First, pick up $u_{\alpha} \in \{u_i\}$ and rewrite the mirror curve Σ as

 $W_X(e^x, e^p, \{u_i\}, \{m_j\}) = 0 \iff O_X^{(\alpha)}(e^x, e^p, \{u_i\}', \{m_j\}) = u_\alpha$

After Weyl quantization, obtain g_{Σ} self-adjoint operators on $L^2(\mathbb{R})$

 $\widehat{O}_X^{(\alpha)}(e^{\hat{x}}, e^{\hat{p}}, \{u_i\}', \{m_j\})\psi_n^{(\alpha)}(x) = u_\alpha^{(n)}\psi_n^{(\alpha)}(x), \qquad \alpha = 1, \dots, g_{\Sigma}$

with inverse operators $\hat{\rho}_X^{(\alpha)} = \left[\hat{O}_X^{(\alpha)}\right]^{-1}$ of trace class and discrete energy u_{α}

- Operators $\widehat{O}_X^{(\alpha)}$ and $\widehat{O}_X^{(\beta)}$ related by similarity transformations
- Solution $\widehat{O}_X^{(\alpha)}\psi_n^{(\alpha)}(x) = u_\alpha^{(n)}\psi_n^{(\alpha)}(x) \implies \text{solution } \widehat{O}_X^{(\beta)}\psi_n^{(\beta)}(x) = u_\beta^{(n)}\psi_n^{(\beta)}(x)$
- Single quantization condition; discrete family of codimension-1 submanifolds in g_{Σ} -dimensional "energy" space $\{u_i\}$

A cartoon:

At fixed u_2 , quantized energy $u_1 = u_1(u_2)$ (and viceversa)

II) Quantum mirror curve as Baxter equation (Separation of Variables)

To each X we can associate a classical (*cluster*) integrable system with g_{Σ} Hamiltonians $u_i + r_{\Sigma}$ Casimirs m_j [Goncharov-Kenyon '11] [Franco-Hatsuda-Marino '15]

Toric diagram $X \iff$ dimer model \iff *cluster* integrable system

Mirror / SW curve: spectral curve of the classical cluster integrable system

Quantum problem: $[\hat{p}_k, \hat{x}_l] = -i\hbar\delta_{k,l}, \ [\hat{u}_i, \hat{u}_j] = 0 \implies$ $\hat{u}_i\psi_{\vec{n}}(\vec{x}) = u_i^{(\vec{n})}\psi_{\vec{n}}(\vec{x})$

look for $L^2(\mathbb{R}^{g_{\Sigma}})$ -normalizable simultaneous eigenfunctions \implies g_{Σ} quantization conditions, discrete set of points in energy space $\{u_i\}$ Quantum problem: $[\hat{p}_k, \hat{x}_l] = -i\hbar\delta_{k,l}, \ [\hat{u}_i, \hat{u}_j] = 0 \implies$ $\hat{u}_i\psi_{\vec{n}}(\vec{x}) = u_i^{(\vec{n})}\psi_{\vec{n}}(\vec{x})$

look for $L^2(\mathbb{R}^{g_{\Sigma}})$ -normalizable simultaneous eigenfunctions \implies g_{Σ} quantization conditions, discrete set of points in energy space $\{u_i\}$

Quantum problem:

$$\hat{u}_i\psi_{\vec{n}}(\vec{x}) = u_i^{(\vec{n})}\psi_{\vec{n}}(\vec{x})$$

look for $L^2(\mathbb{R}^{g_{\Sigma}})$ -normalizable simultaneous eigenfunctions

'Shortcut': study quantum mirror curve / Baxter equation

auxiliary problem

$$\widehat{W}_X(e^{\hat{x}}, e^{\hat{p}}, \{u_i\}, m_0)Q(x) = 0;$$

Requirements on Q(x) (no $L^2(\mathbb{R})$ like in QM problem I):

- $\psi_{\vec{n}}(\vec{x})$ from Q(x) via integral transform (Separation of Variables);
- Need Q(x) entire + rapidly-decaying (such that $\psi_{\vec{n}}(\vec{x}) \in L^2(\mathbb{R}^{g_{\Sigma}})$)

Conditions on Q(x) imply that all $\{u_i\}$ are quantized

How to <u>solve</u> * these QM problems in terms of TS quantities of X?

*Solution: discrete energy levels + normalizable wave-functions; analytic solution unknown in QM

How to <u>solve</u>^{*} these QM problems in terms of TS quantities of X?

• Problem I: Topological String / Spectral Theory correspondence (TS/ST) [Grassi-Hatsuda-Marino '14][Codesido, Zakany, Moriyama, Okuyama, Kashaev, Gu, Klemm, Reuter,...]

Spectral determinant via *unrefined* TS free energy (+ NS non-pert. terms):

$$\Xi_X(u,\hbar) \equiv \det(1-u\widehat{\rho}_X) \equiv \prod_{n=0}^{\infty} (1-ue^{-E_n}) = \sum_{n\in\mathbb{Z}} e^{J_X(\ln u + 2\pi i n,\hbar)}$$

*Solution: discrete energy levels + normalizable wave-functions; analytic solution unknown in QM

How to <u>solve</u>^{*} these QM problems in terms of TS quantities of X?

• Problem I: Topological String / Spectral Theory correspondence (TS/ST) [Grassi-Marino-Hatsuda '14][Codesido, Zakany, Moriyama, Okuyama, Kashaev, Gu, Klemm, Reuter,...]

Spectral determinant via *unrefined* TS free energy (+ NS non-pert. terms):

$$\Xi_X(u,\hbar) \equiv \det(1-u\widehat{\rho}_X) \equiv \prod_{n=0}^{\infty} (1-ue^{-E_n}) = \sum_{n\in\mathbb{Z}} e^{J_X(\ln u + 2\pi i n,\hbar)}$$

Problem II: (revised) "Bethe/Gauge" correspondence
 today's focus
[Nekrasov-Shatashvili '09][Huang, Wang, Zhang, Sun, Marino, Hatsuda, Franco, Kashani-Poor, A.S.,...]

Quantization conditions via NS limit of TS free energy (+ non-pert. terms):

$$a^{(n)}: \ \partial_a \mathcal{W}(a,\hbar) = 2\pi n; \ u^{(n)} = e^{E_n} = u(a^{(n)})$$

^{*}Solution: discrete energy levels + normalizable wave-functions; analytic solution unknown in QM

How to <u>solve</u>^{*} these QM problems in terms of TS quantities of X?

• Problem I: Topological String / Spectral Theory correspondence (TS/ST) [Grassi-Marino-Hatsuda '14][Codesido, Zakany, Moriyama, Okuyama, Kashaev, Gu, Klemm, Reuter,...]

Spectral determinant via *unrefined* TS free energy (+ NS non-pert. terms):

$$\Xi_X(u,\hbar) \equiv \det(1-u\widehat{\rho}_X) \equiv \prod_{n=0}^{\infty} (1-ue^{-E_n}) = \sum_{n\in\mathbb{Z}} e^{J_X(\ln u + 2\pi i n,\hbar)}$$

Problem II: (revised) "Bethe/Gauge" correspondence
 today's focus
[Nekrasov-Shatashvili '09][Huang, Wang, Zhang, Sun, Marino, Hatsuda, Franco, Kashani-Poor, A.S.,...]

Quantization conditions via NS limit of TS free energy (+ non-pert. terms):

$$a^{(n)}: \ \partial_a \mathcal{W}(a,\hbar) = 2\pi n; \ u^{(n)} = e^{E_n} = u(a^{(n)})$$

Check with <u>numerics</u>; in both cases, <u>non-perturbative</u> terms play a key role

^{*}Solution: discrete energy levels + normalizable wave-functions; analytic solution unknown in QM

Remarks on numerics ("experiment")

QM problems often unsolved analytically, but can be studied numerically

Remarks on numerics ("experiment")

QM problems often unsolved analytically, but can be studied numerically

Given a QM problem $\widehat{H}\psi(x) = E\psi(x)$ defined on $L^2(\mathbb{R})$, diagonalize it in an orthonormal basis on $L^2(\mathbb{R})$ (in practice, harmonic oscillator basis)

$$\varphi_l(x) = (2^l l!)^{-\frac{1}{2}} (\pi \hbar)^{-\frac{1}{4}} e^{-\frac{x^2}{2\hbar}} H_l(\hbar^{-\frac{1}{2}} x) \qquad (m\omega = 1)$$

Consider a truncation of the infinite-dimensional matrix

 $\langle \varphi_{l_1} | \hat{H} | \varphi_{l_2} \rangle$

and compute its eigenvalues and eigenvectors; increasing the matrix size, these should converge to eigenvalues and eigenvectors of \hat{H}

Analytical TS solution of QM problems always checked against numerics

Quantum Mechanical problem II: Quantum Integrable Systems

QM problem II: (revised) "Bethe/Gauge" correspondence

Dictionary between 4d $\mathcal{N}=2$ / 5d $\mathcal{N}=1$ SUSY gauge theories and Quantum Integrable Systems: "Bethe/Gauge correspondence" [Nekrasov-Shatashvili '09]

Bethe (QIS) Planck constant \hbar Spectral curve Quantization conditions Eigenvalues Eigenfunctions (\hat{u}_i) Eigenfunctions (Baxter)

Gauge

NS limit $\epsilon_2 \rightarrow 0$, $\epsilon_1 \rightarrow i\hbar$ Seiberg-Witten curve SUSY vacua equations codim. 4 defects (Wilson) codim. 2 defects (quiver) codim. 2 defects (free chiral)

QM problem II: (revised) "Bethe/Gauge" correspondence

Dictionary between 4d $\mathcal{N}=2$ / 5d $\mathcal{N}=1$ SUSY gauge theories and Quantum Integrable Systems: "Bethe/Gauge correspondence" [Nekrasov-Shatashvili '09]

Bethe (QIS) Planck constant \hbar Spectral curve Quantization conditions Eigenvalues Eigenfunctions (\hat{u}_i) Eigenfunctions (Baxter)

Gauge

NS limit $\epsilon_2 \rightarrow 0, \ \epsilon_1 \rightarrow i\hbar$ Seiberg-Witten curve SUSY vacua equations codim. 4 defects (Wilson) codim. 2 defects (quiver) codim. 2 defects (free chiral)

Thought to involve gauge theory on $\mathbb{R}^4_{\epsilon_1,\epsilon_2}$ (4d) or $\mathbb{R}^4_{\epsilon_1,\epsilon_2} \times S^1_R$ (5d); however, correspondence *incomplete* in 5d (disagreement with numerics)

Need to revisit and reinterpret Bethe/Gauge correspondence in 5d

4d Bethe/Gauge example: N-particle closed Toda chain / 4d $\mathcal{N} = 2$ SU(N)

N-particle closed Toda chain Hamiltonians (QM solution known):

$$u_1 = \sum_{l=1}^{N} p_l$$
, $u_2 = \sum_{l, ..., $u_N = \dots$$

Quantization: $[\hat{p}_k, \hat{x}_l] = -i\hbar \delta_{k,l} \implies \text{look for } L^2(\mathbb{R}^{N-1}) \text{ eigenfunctions } \psi(\vec{x})$

4d Bethe/Gauge example: N-particle closed Toda chain / 4d $\mathcal{N} = 2$ SU(N)

N-particle closed Toda chain Hamiltonians (QM solution known):

$$u_1 = \sum_{l=1}^{N} p_l$$
, $u_2 = \sum_{l, ..., $u_N = \dots$$

Quantization: $[\hat{p}_k, \hat{x}_l] = -i\hbar \delta_{k,l} \implies \text{look for } L^2(\mathbb{R}^{N-1}) \text{ eigenfunctions } \psi(\vec{x})$

<u>'Shortcut'</u>: study Baxter equation / quantum spectral (SW) curve; for N=2:

$$[e^{i\hbar\partial_x} + \tilde{m}_0 e^{-i\hbar\partial_x} + x^2]Q(x) = EQ(x) \qquad \qquad \begin{array}{c} \text{rigorously} \\ \text{proved} \end{array}$$

from SW curve $e^{-p} + Q_{4d}e^p + x^2 = u$ (with $E \Leftrightarrow u, \tilde{m}_0 \Leftrightarrow Q_{4d}$)

- Require Q(x) entire + rapidly decaying \implies quantized energy $E = E_n$
- Obtain $\psi(\vec{x})$ from Q(x) via integral transform (Separation of Variables)
- Similar procedure for any N

Bethe/Gauge prescription on $\mathbb{R}^4_{\epsilon_1,\epsilon_2}$ - quantization conditions + spectrum [Nekrasov-Shatashvili '09]

• Define the Yang-Yang / twisted effective superpotential function

$$\mathcal{W}_{4d}(a,\hbar,Q_{4d}) = \lim_{\epsilon_2 \to 0} \left[-\epsilon_2 \epsilon_1 \log Z_{4d}(a,\epsilon_1,\epsilon_2,Q_{4d}) \right] \Big|_{\epsilon_1 = i\hbar}$$

• Discrete energy levels $E = E_n$ obtained at SUSY vacua as

$$u^{(n)} = E_n = Q_{4d} \frac{d}{dQ_{4d}} \mathcal{W}_{4d}(a^{(n)}, \hbar, Q_{4d}) \quad \text{for} \quad a^{(n)} : \partial_a \mathcal{W}_{4d}(a, \hbar, Q_{4d}) = 2\pi\hbar n$$

$$\boxed{\text{codim. 4 defect: local observable}}$$

Bethe/Gauge prescription on $\mathbb{R}^4_{\epsilon_1,\epsilon_2}$ - quantization conditions + spectrum [Nekrasov-Shatashvili '09]

• Define the Yang-Yang / twisted effective superpotential function

$$\mathcal{W}_{4d}(a,\hbar,Q_{4d}) = \lim_{\epsilon_2 \to 0} \left[-\epsilon_2 \epsilon_1 \log Z_{4d}(a,\epsilon_1,\epsilon_2,Q_{4d}) \right] \Big|_{\epsilon_1 = i\hbar}$$

• Discrete energy levels $E = E_n$ obtained at SUSY vacua as

$$u^{(n)} = E_n = Q_{4d} \frac{d}{dQ_{4d}} \mathcal{W}_{4d}(a^{(n)}, \hbar, Q_{4d}) \quad \text{for} \quad a^{(n)} : \partial_a \mathcal{W}_{4d}(a, \hbar, Q_{4d}) = 2\pi\hbar n$$

codim. 4 defect: local observable

4d Bethe/Gauge correspondence seems to work well:

$\hbar = \sqrt{3}, Q_{4d} = \frac{1}{\sqrt{2}}$	E_0	E_1	E_2
Bethe/Gauge	$3.44076329369006\ldots$	$7.25213834512333\ldots$	$11.60628188091683\ldots$
numerics	$3.44076329369006\ldots$	$7.25213834512333\ldots$	$11.60628188091683\ldots$

Bethe/Gauge prescription on $\mathbb{R}^4_{\epsilon_1,\epsilon_2}$ - Baxter eigenfunction Q(x)[Kozlowski-Teschner '10][Gaiotto-Kim '14][A.S. '17]

Couple 4d to two 2d $\mathcal{N} = (2, 2)$ free chiral / anti-chiral on $\mathbb{R}^2_{\epsilon_1}$ (or $D^2_{\epsilon_1}$)

- $Q_{\rm NS}^{\rm (c/ac)}(x)$: 4d partition function with 2d defect (NS limit)
- Both fast-decay at x → ±∞, but not entire (poles at x → ±a); requiring cancellation of both poles fixes ξ⁽ⁿ⁾ (and a⁽ⁿ⁾)

$$\operatorname{Res}_{x=\pm a}[Q_{\rm NS}^{\rm (ac)}(x,a) - \xi Q_{\rm NS}^{\rm (c)}(x,a)] = 0 \implies a = a^{(n)}$$

• Q(x) entire / normalizable \iff SUSY vacua equations:

$$\operatorname{Res}_{x=\pm a}[Q_{\rm NS}^{\rm (ac)}(x,a) - \xi Q_{\rm NS}^{\rm (c)}(x,a)] = 0 \iff \partial_a \mathcal{W}_{\rm 4d}(a) = 2\pi\hbar n$$

Compare gauge theory result (4-instantons) with "experiment" (numerics)

Bethe/Gauge Baxter "eigenfunction" Q(x) not entire for $a \approx a^{(n)}$:

On the other hand, both poles cancelled if $a = a^{(n)}$:

5d example: N-particle "relativistic" closed Toda chain / 5d $\mathcal{N} = 1$ SU(N)

N-particle "relativistic" closed Toda Hamiltonians (QM solution unknown):

$$u_1 = \sum_{l=1}^{N} [1 + e^{x_l - x_{l+1}}] e^{Rp_l}, \quad \dots \quad , \quad u_N = \prod_{l=1}^{N} e^{Rp_l}$$

Quantization: $[\hat{p}_k, \hat{x}_l] = -i\hbar \delta_{k,l} \implies \text{look for } L^2(\mathbb{R}^{N-1}) \text{ eigenfunctions } \psi(\vec{x})$

5d example: N-particle "relativistic" closed Toda chain / 5d $\mathcal{N} = 1$ SU(N)

N-particle "relativistic" closed Toda Hamiltonians (QM solution unknown):

$$u_1 = \sum_{l=1}^{N} [1 + e^{x_l - x_{l+1}}] e^{Rp_l}, \quad \dots, \quad u_N = \prod_{l=1}^{N} e^{Rp_l}$$

Quantization: $[\hat{p}_k, \hat{x}_l] = -i\hbar \delta_{k,l} \implies \text{look for } L^2(\mathbb{R}^{N-1}) \text{ eigenfunctions } \psi(\vec{x})$

<u>'Shortcut'</u>: study Baxter equation / quantum spectral (SW) curve; for N=2:

$$[e^{i\hbar\partial_x} + m_0 e^{-i\hbar\partial_x} + e^{Rx} + e^{-Rx}]Q(x) = e^E Q(x) \qquad \frac{\text{NOT proved;}}{\text{naive guess}}$$

from SW curve (mirror curve local F_0) $e^{-p} + Q_{5d}e^p + e^{Rx} + e^{-Rx} = u$

- Require Q(x) entire + rapidly decaying \implies quantized energy $e^E = e^{E_n}$
- Obtain $\psi(\vec{x})$ from Q(x) via integral transform (Separation of Variables)
- Similar procedure for any N

(Putative) Bethe/Gauge prescription on $\mathbb{R}^4_{\epsilon_1,\epsilon_2} \times S^1_R$ - quantized spectrum [Nekrasov-Shatashvili '09]

• Define the Yang-Yang / twisted effective superpotential function

$$\mathcal{W}_{5d}(a,\hbar,R,Q_{5d}) = \lim_{\epsilon_2 \to 0} \left[-\epsilon_2 \log Z_{5d}(a,\epsilon_1,\epsilon_2,R,Q_{5d})\right]\Big|_{\epsilon_1 = i\hbar}$$

• Discrete energy levels $e^E = e^{E_n}$ obtained at SUSY vacua as

$$e^{E_n} = \langle W^{SU(2)}_{\Box, NS}(a^{(n)}, \hbar, R, Q_{5d}) \rangle \quad \text{for} \quad a^{(n)} : \partial_a \mathcal{W}_{5d}(a, \hbar, R, Q_{5d}) = 2\pi n$$

codim. 4 defect: Wilson loop
(Putative) Bethe/Gauge prescription on $\mathbb{R}^4_{\epsilon_1,\epsilon_2} \times S^1_R$ - quantized spectrum [Nekrasov-Shatashvili '09]

• Define the Yang-Yang / twisted effective superpotential function

$$\mathcal{W}_{5d}(a,\hbar,R,Q_{5d}) = \lim_{\epsilon_2 \to 0} \left[-\epsilon_2 \log Z_{5d}(a,\epsilon_1,\epsilon_2,R,Q_{5d})\right]\Big|_{\epsilon_1 = i\hbar}$$

• Discrete energy levels $e^E = e^{E_n}$ obtained at SUSY vacua as

$$e^{E_n} = \langle W^{SU(2)}_{\Box, \text{NS}}(a^{(n)}, \hbar, R, Q_{5d}) \rangle \quad \text{for} \quad a^{(n)} : \partial_a \mathcal{W}_{5d}(a, \hbar, R, Q_{5d}) = 2\pi n$$

codim. 4 defect: Wilson loop

However, 5d Bethe/Gauge correspondence on $\mathbb{R}^4_{\epsilon_1,\epsilon_2} \times S^1_R$ <u>inconsistent</u>:

	$\hbar = \sqrt{2}\pi, Q_{\rm 5d} = 1$	$\hbar = \sqrt{2}\pi, Q_{\rm 5d} = \sqrt{3}$	$\hbar = 2\pi, Q_{\rm 5d} = 1$
Bethe/Gauge E_0	$2.4607618679\ldots$	$2.7531433944\dots$	ill-defined
numerics E_0	$2.4605242719\ldots$	$2.7528481019\ldots$	$2.8818154299\dots$

5d Bethe/Gauge prescription on $\mathbb{R}^4_{\epsilon_1,\epsilon_2} \times S^1_R$ inconsistent also for Q(x)

Couple 5d to 3d $\mathcal{N} = 2$ chiral / anti-chiral on $\mathbb{R}^2_{\epsilon_1} \times S^1_R$ (or $D^2_{\epsilon_1} \times S^1_R$):

$$Q_n(x,\hbar,R,Q_{5d}) = \underbrace{Q_{\rm NS}^{(\rm ac)}(x,a^{(n)},\hbar,R,Q_{5d})}_{\text{anti-chiral, NS limit}} -\xi^{(n)} \underbrace{Q_{\rm NS}^{(\rm c)}(x,a^{(n)},\hbar,R,Q_{5d})}_{\text{chiral, NS limit}}$$

Formally satisfies Baxter, fast-decaying at $x \to \pm \infty$, but never entire:

Moreover, ill-defined for $\hbar = 2\pi$ (and, more in general, for $\hbar \in 2\pi\mathbb{Q}$)

Why 5d Bethe/Gauge quantization conditions ill-defined at $\hbar \in 2\pi \mathbb{Q}$?

Why 5d Bethe/Gauge quantization conditions ill-defined at $\hbar \in 2\pi \mathbb{Q}$?

$$\mathcal{W}_{\rm 5d}^{\rm inst}(a,\hbar) = \frac{q(1+q)Q_{\rm 5d}}{(1-q)(1-q\mu)(1-q\mu^{-1})} + O(Q_{\rm 5d}^2) \qquad (q = e^{i\hbar}, \mu = e^a)$$

Pole at $\hbar = 0$ (classical limit) but also dense set of poles at $\hbar \in 2\pi\mathbb{Q}$ (k-th instanton contribution $\sim Q_{5d}^k(1-q^k)^{-1}$)

The same problem appears in the would-be Baxter eigenfunction Q(x):

$$Q_{\rm NS}^{\rm (c),inst}(x,a,\hbar) = 1 + \frac{Q_{\rm 5d}q^2 X(\mu^{\frac{1}{2}} + \mu^{-\frac{1}{2}} - qX - q^2 X)}{(1-q)(1-q\mu)(1-q\mu^{-1})(1-qX\mu^{\frac{1}{2}})(1-qX\mu^{-\frac{1}{2}})} + O(Q_{\rm 5d}^2) \qquad (X = e^x)$$

Why 5d Bethe/Gauge quantization conditions ill-defined at $\hbar \in 2\pi \mathbb{Q}$?

$$\mathcal{W}_{5d}^{\text{inst}}(a,\hbar) = \frac{q(1+q)Q_{5d}}{(1-q)(1-q\mu)(1-q\mu^{-1})} + O(Q_{5d}^2) \qquad (q = e^{i\hbar}, \mu = e^a)$$

Pole at $\hbar = 0$ (classical limit) but also dense set of poles at $\hbar \in 2\pi\mathbb{Q}$ (k-th instanton contribution $\sim Q_{5d}^k(1-q^k)^{-1}$)

The same problem appears in the would-be Baxter eigenfunction Q(x):

$$Q_{\rm NS}^{\rm (c),inst}(x,a,\hbar) = 1 + \frac{Q_{\rm 5d}q^2 X(\mu^{\frac{1}{2}} + \mu^{-\frac{1}{2}} - qX - q^2 X)}{(1-q)(1-q\mu)(1-q\mu^{-1})(1-qX\mu^{\frac{1}{2}})(1-qX\mu^{-\frac{1}{2}})} + O(Q_{\rm 5d}^2) \qquad (X = e^x)$$

What happens? 5d Bethe/Gauge gives QM all-orders WKB expressions; however, all-orders WKB may be corrected by QM instanton effects (also related to quasi-constant (\hbar -periodic) ambiguity Toda eigenfunction)

This is <u>NOT</u> a problem of our flat-space 5d gauge theory / TS observables, but of their correct interpretation in Quantum Mechanics

Redefining all parameters, rewrite the "relativistic" Toda Hamiltonians as

$$u_1 = \sum_{l=1}^{N} [1 + e^{\frac{2\pi}{\omega_2}(x_l - x_{l+1})}] e^{\omega_1 p_l}, \quad \dots \quad , \quad u_N = \prod_{l=1}^{N} e^{\omega_1 p_l}$$

Quantizing $[\hat{p}_k, \hat{x}_l] = -i\delta_{k,l}$, ambiguity $\psi(\vec{x})$ by $i\omega_1$ -periodic functions

Redefining all parameters, rewrite the "relativistic" Toda Hamiltonians as

$$u_1 = \sum_{l=1}^{N} [1 + e^{\frac{2\pi}{\omega_2}(x_l - x_{l+1})}] e^{\omega_1 p_l}, \quad \dots \quad , \quad u_N = \prod_{l=1}^{N} e^{\omega_1 p_l}$$

Quantizing $[\hat{p}_k, \hat{x}_l] = -i\delta_{k,l}$, ambiguity $\psi(\vec{x})$ by $i\omega_1$ -periodic functions; solved by considering modular dual "relativistic" Toda system ($\omega_1 \leftrightarrow \omega_2$)

$$\tilde{u}_1 = \sum_{l=1}^N [1 + e^{\frac{2\pi}{\omega_1}(x_l - x_{l+1})}] e^{\omega_2 p_l}, \quad \dots \quad , \quad \tilde{u}_N = \prod_{l=1}^N e^{\omega_2 p_l}$$

and requiring $\psi(\vec{x})$ to be eigenfunctions of both sets of Hamiltonians $\hat{u}_i, \hat{\tilde{u}}_i$

$$\hat{u}_i \psi_{\vec{n}}(\vec{x}) = e^{E_{\vec{n}}^{(i)}} \psi_{\vec{n}}(\vec{x}), \quad \hat{\tilde{u}}_i \psi_{\vec{n}}(\vec{x}) = e^{\tilde{E}_{\vec{n}}^{(i)}} \psi_{\vec{n}}(\vec{x}) \quad ([\hat{u}_i, \hat{\tilde{u}}_j] = 0)$$

Redefining all parameters, rewrite the "relativistic" Toda Hamiltonians as

$$u_1 = \sum_{l=1}^{N} [1 + e^{\frac{2\pi}{\omega_2}(x_l - x_{l+1})}] e^{\omega_1 p_l}, \quad \dots \quad , \quad u_N = \prod_{l=1}^{N} e^{\omega_1 p_l}$$

Quantizing $[\hat{p}_k, \hat{x}_l] = -i\delta_{k,l}$, ambiguity $\psi(\vec{x})$ by $i\omega_1$ -periodic functions; solved by considering modular dual "relativistic" Toda system ($\omega_1 \leftrightarrow \omega_2$)

$$\tilde{u}_1 = \sum_{l=1}^N [1 + e^{\frac{2\pi}{\omega_1}(x_l - x_{l+1})}] e^{\omega_2 p_l}, \quad \dots \quad , \quad \tilde{u}_N = \prod_{l=1}^N e^{\omega_2 p_l}$$

and requiring $\psi(\vec{x})$ to be eigenfunctions of both sets of Hamiltonians $\hat{u}_i, \hat{\tilde{u}}_i$

$$\hat{u}_i \psi_{\vec{n}}(\vec{x}) = e^{E_{\vec{n}}^{(i)}} \psi_{\vec{n}}(\vec{x}), \quad \hat{\tilde{u}}_i \psi_{\vec{n}}(\vec{x}) = e^{\tilde{E}_{\vec{n}}^{(i)}} \psi_{\vec{n}}(\vec{x}) \quad ([\hat{u}_i, \hat{\tilde{u}}_j] = 0)$$

Consequence: symmetry $\omega_1 \leftrightarrow \omega_2$, Baxter + *dual* Baxter equation, fixes $i\omega_1$ -periodic functions ambiguity, cancels poles at $\hbar \in 2\pi\mathbb{Q}$ Gauge theory realization of modular duality (*revised* Bethe/Gauge):* [Hatsuda '15] [A.S. '16, '17] $\mathbb{R}^2_{\epsilon_1} \times S^1_R \times \mathbb{R}^2$ (NS limit) $\Longrightarrow S^3_{\omega_1,\omega_2} \times \mathbb{R}^2$

 $S^3_{\omega_1,\omega_2}$ obtained from two copies of our previous $D^2_{\epsilon_1^{(l)}} \times S^1_{R^{(l)}}, \ l = 1, 2$:

$$-i\epsilon_1^{(1)} = \omega_1, \quad 1/R^{(1)} = \omega_2 \qquad \iff \qquad -i\epsilon_1^{(2)} = \omega_2, \quad 1/R^{(2)} = \omega_1$$

Modular duality: $\mathbb{R}^2_{\omega_1} \times S^1_{\omega_2} \times \mathbb{R}^2$ (north pole), $\mathbb{R}^2_{\omega_2} \times S^1_{\omega_1} \times \mathbb{R}^2$ (south pole)

*For TS geometries with 5d gauge theory interpretation

Gauge theory realization of modular duality (*revised* Bethe/Gauge):* [Hatsuda '15] [A.S. '16, '17] $\mathbb{R}^2_{\epsilon_1} \times S^1_R \times \mathbb{R}^2$ (NS limit) $\Longrightarrow S^3_{\omega_1,\omega_2} \times \mathbb{R}^2$

 $S^3_{\omega_1,\omega_2}$ obtained from two copies of our previous $D^2_{\epsilon_1^{(l)}} \times S^1_{R^{(l)}}, \ l = 1, 2$:

$$-i\epsilon_1^{(1)} = \omega_1, \quad 1/R^{(1)} = \omega_2 \qquad \iff \qquad -i\epsilon_1^{(2)} = \omega_2, \quad 1/R^{(2)} = \omega_1$$

Modular duality: $\mathbb{R}^2_{\omega_1} \times S^1_{\omega_2} \times \mathbb{R}^2$ (north pole), $\mathbb{R}^2_{\omega_2} \times S^1_{\omega_1} \times \mathbb{R}^2$ (south pole)

Revised Bethe/Gauge: all formulas "doubled", symmetry $\omega_1 \leftrightarrow \omega_2$; dual copy contains non-perturbative correction terms (in $\hbar \sim \omega_1/\omega_2$)

$$q = e^{2\pi i\omega_1/\omega_2} \quad \Longleftrightarrow_{\hbar \leftrightarrow \hbar^{-1}} \quad \tilde{q} = e^{2\pi i\omega_2/\omega_1}$$

<u>non-trivial</u> symmetry: radius ↔ Omega bg.

*For TS geometries with 5d gauge theory interpretation

Gauge theory realization of modular duality (*revised* Bethe/Gauge):* [Hatsuda '15] [A.S. '16, '17] $\mathbb{R}^2_{\epsilon_1} \times S^1_R \times \mathbb{R}^2$ (NS limit) $\Longrightarrow S^3_{\omega_1,\omega_2} \times \mathbb{R}^2$

 $S^3_{\omega_1,\omega_2}$ obtained from two copies of our previous $D^2_{\epsilon_1^{(l)}} \times S^1_{R^{(l)}}, \ l = 1, 2$:

$$-i\epsilon_1^{(1)} = \omega_1, \quad 1/R^{(1)} = \omega_2 \qquad \iff \qquad -i\epsilon_1^{(2)} = \omega_2, \quad 1/R^{(2)} = \omega_1$$

Modular duality: $\mathbb{R}^2_{\omega_1} \times S^1_{\omega_2} \times \mathbb{R}^2$ (north pole), $\mathbb{R}^2_{\omega_2} \times S^1_{\omega_1} \times \mathbb{R}^2$ (south pole)

Revised Bethe/Gauge: all formulas "doubled", symmetry $\omega_1 \leftrightarrow \omega_2$; dual copy contains non-perturbative correction terms (in $\hbar \sim \omega_1/\omega_2$)

$$q = e^{2\pi i \omega_1/\omega_2} \quad \iff \atop{\hbar \leftrightarrow \hbar^{-1}} \tilde{q} = e^{2\pi i \omega_2/\omega_1} \qquad \boxed{\frac{\text{non-trivial symmetry:}}{\text{radius} \leftrightarrow \text{Omega bg.}}}$$

"NS limit" of some 5d compact $(S^5_{\omega_1,\omega_2,\omega_3})$ / non-compact geometry? ("non-perturbative" completion of NS limit of TS [Lockhart-Vafa '12, Hatsuda '15])

*For TS geometries with 5d gauge theory interpretation

Revised Bethe/Gauge on $S^3_{\omega_1,\omega_2} \times \mathbb{R}^2$, 2-particle "relativistic" closed Toda:

• *Exact* quantization conditions (free from poles at $\hbar \in 2\pi\mathbb{Q}$) + energy:

$$a^{(n)} : \partial_a \left[\underbrace{\mathcal{W}_{5d}(a,\omega_1,\omega_2)}_{\text{exact WKB (old)}} + \underbrace{\mathcal{W}_{5d}(a,\omega_2,\omega_1)}_{\text{non-pert. (new)}} \right] = 2\pi n \quad \text{[Wang-Zhang-Huang '15]}_{\text{[Hatsuda-Marino '15]}}$$

 $e^{E_n} = \langle W^{SU(2)}_{\Box,\mathrm{NS}}(a^{(n)},\omega_1,\omega_2) \rangle \qquad e^{\tilde{E}_n} = \langle W^{SU(2)}_{\Box,\mathrm{NS}}(a^{(n)},\omega_2,\omega_1) \rangle$

Revised Bethe/Gauge on $S^3_{\omega_1,\omega_2} \times \mathbb{R}^2$, 2-particle "relativistic" closed Toda:

• *Exact* quantization conditions (free from poles at $\hbar \in 2\pi\mathbb{Q}$) + energy:

$$a^{(n)} : \partial_a \left[\underbrace{\mathcal{W}_{5d}(a, \omega_1, \omega_2)}_{\text{exact WKB (old)}} + \underbrace{\mathcal{W}_{5d}(a, \omega_2, \omega_1)}_{\text{non-pert. (new)}} \right] = 2\pi n \quad \text{[Wang-Zhang-Huang '15]}_{\text{[Hatsuda-Marino '15]}}$$

$$e^{E_n} = \langle W^{SU(2)}_{\Box,\mathrm{NS}}(a^{(n)},\omega_1,\omega_2) \rangle \qquad e^{\tilde{E}_n} = \langle W^{SU(2)}_{\Box,\mathrm{NS}}(a^{(n)},\omega_2,\omega_1) \rangle$$

• Good match with numerics, thanks to non-perturbative corrections:

	$\hbar = \sqrt{2}\pi, Q_{\rm 5d} = 1$	$\hbar = \sqrt{2}\pi, Q_{\rm 5d} = \sqrt{3}$	$\hbar = 2\pi, Q_{\rm 5d} = 1$
(revised) Bethe/Gauge E_0	$2.4605242719\ldots$	$2.7528481019\ldots$	$2.8818154299\dots$
numerics E_0	$2.4605242719\ldots$	$2.7528481019\ldots$	$2.8818154299\ldots$

Revised Bethe/Gauge on $S^3_{\omega_1,\omega_2} \times \mathbb{R}^2$, 2-particle "relativistic" closed Toda:

• <u>Exact</u> quantization conditions (free from poles at $\hbar \in 2\pi\mathbb{Q}$) + energy:

 $a^{(n)}: \partial_a \left[\underbrace{\mathcal{W}_{5d}(a,\omega_1,\omega_2)}_{\text{exact WKB (old)}} + \underbrace{\mathcal{W}_{5d}(a,\omega_2,\omega_1)}_{\text{non-pert. (new)}}\right] = 2\pi n \quad \text{[Wang-Zhang-Huang '15]}_{\text{[Hatsuda-Marino '15]}}$

 $e^{E_n} = \langle W^{SU(2)}_{\Box,\mathrm{NS}}(a^{(n)},\omega_1,\omega_2) \rangle \qquad e^{\tilde{E}_n} = \langle W^{SU(2)}_{\Box,\mathrm{NS}}(a^{(n)},\omega_2,\omega_1) \rangle$

• Good match with numerics, thanks to non-perturbative corrections:

	$\hbar = \sqrt{2}\pi, Q_{\rm 5d} = 1$	$\hbar = \sqrt{2}\pi, Q_{\rm 5d} = \sqrt{3}$	$\hbar = 2\pi, Q_{\rm 5d} = 1$
(revised) Bethe/Gauge E_0	$2.4605242719\ldots$	$2.7528481019\dots$	2.8818154299
numerics E_0	$2.4605242719\ldots$	$2.7528481019\ldots$	$2.8818154299\dots$

• Need to find Q(x) common solution to Baxter + dual Baxter equation:

$$[e^{i\omega_1\partial_x} + m_0 e^{-i\omega_1\partial_x} + e^{\frac{2\pi x}{\omega_2}} + e^{-\frac{2\pi x}{\omega_2}}]Q(x) = e^E Q(x)$$
$$[e^{i\omega_2\partial_x} + \tilde{m}_0 e^{-i\omega_2\partial_x} + e^{\frac{2\pi x}{\omega_1}} + e^{-\frac{2\pi x}{\omega_1}}]Q(x) = e^{\tilde{E}}Q(x)$$

• *Exact* solution to Baxter and dual Baxter (no poles at $\hbar \in 2\pi\mathbb{Q}$): [A.S. '17]

• Q(x) entire / normalizable $\iff exact$ quantization conditions

 $\operatorname{Res}_{x=\pm a}[Q(x,a)] = 0 \iff \partial_a[\mathcal{W}_{5d}(a,\omega_1,\omega_2) + \mathcal{W}_{5d}(a,\omega_2,\omega_1)] = 2\pi n$

• *Exact* solution to Baxter and dual Baxter (no poles at $\hbar \in 2\pi\mathbb{Q}$): [A.S. '17]

• Q(x) entire / normalizable $\iff exact$ quantization conditions

 $\operatorname{Res}_{x=\pm a}[Q(x,a)] = 0 \iff \partial_a[\mathcal{W}_{5d}(a,\omega_1,\omega_2) + \mathcal{W}_{5d}(a,\omega_2,\omega_1)] = 2\pi n$

• Good match with numerics: [A.S. '17]

TS and QM problem II: summary

TS as universal framework for QM problems:

Topological Strings (NS) on X+ non-pert. (NS) corrections Analytic solution QIS of X (Toda), all-orders WKB + QM instantons

TS, QM non-perturbative corrections from combining TS, QM techniques:

- QM: Separation of Variables, Baxter eq., modular dual, symmetry $\omega_1 \leftrightarrow \omega_2$
- TS: analytic formulae for energy, quantization conditions, eigenfunction

TS and QM problem II: summary

TS as universal framework for QM problems:

Topological Strings (NS) on X+ non-pert. (NS) corrections Analytic solution QIS of X (Toda), all-orders WKB + QM instantons

TS, QM non-perturbative corrections from combining TS, QM techniques:

- QM: Separation of Variables, Baxter eq., modular dual, symmetry $\omega_1 \leftrightarrow \omega_2$
- TS: analytic formulae for energy, quantization conditions, eigenfunction

Good match with numerics:

- Quantization conditions, energy spectrum: checked for many X
- Baxter eigenfunction: checked for $X = Y^{N,0}$, i.e. 5d $\mathcal{N} = 1$ SU(N) (NS limit of open TS only computable from gauge theory)

Gauge theory interpretation: <u>need</u> to promote $\mathbb{R}^2_{\epsilon_1} \times S^1_R \times \mathbb{R}^2 \Longrightarrow S^3_{\omega_1,\omega_2} \times \mathbb{R}^2$

same 4d limit!

Quantum Mechanical problem I: Spectral Theory

QM problem I: TS/ST correspondence

QM problem II: <u>very</u> special case of QM problem I $(\alpha = 1, ..., g_{\Sigma})$:

$$W_X(e^x, e^p, \{u_i\}, \{m_j\}) = 0 \iff O_X^{(\alpha)}(e^x, e^p, \{u_i\}', \{m_j\}) = u_\alpha \quad \text{(classical)}$$

$$\implies \qquad \widehat{O}_X^{(\alpha)}\psi_n^{(\alpha)}(x) = u_\alpha^{(n)}\psi_n^{(\alpha)}(x) \qquad (\text{quantum})$$

QM problem I: TS/ST correspondence

QM problem II: <u>very</u> special case of QM problem I $(\alpha = 1, ..., g_{\Sigma})$:

 $W_X(e^x, e^p, \{u_i\}, \{m_j\}) = 0 \iff O_X^{(\alpha)}(e^x, e^p, \{u_i\}', \{m_j\}) = u_\alpha \quad \text{(classical)}$

$$\implies \qquad \widehat{O}_X^{(\alpha)}\psi_n^{(\alpha)}(x) = u_\alpha^{(n)}\psi_n^{(\alpha)}(x) \qquad (\text{quantum})$$

TS solution to QM problem I: Top. String/Spectral Theory correspondence [Grassi-Hatsuda-Marino '14][Codesido-Grassi-Marino '15]

Main idea: study Spectral Theory of $\hat{\rho}_X^{(\alpha)} = \left[\hat{O}_X^{(\alpha)}\right]^{-1}$ via TS quantities; provides a non-perturbative definition of (unrefined) TS free energy

Perturbative / non-perturbative \iff Non-perturbative / perturbative / $\inf_{g_s \sim 1/\hbar}$ Non-perturbative / perturbative / $\inf_{g_s \sim 1/\hbar}$

TS/ST correspondence much in the same spirit of AdS/CFT

Consider X of genus 1 (like 5d pure $\mathcal{N} = 1$ SU(2) theory / local F_0)

Main TS/ST conjecture: analytic TS expression for spectral determinant $\Xi_X(u,\hbar) \equiv \det(1-u\widehat{\rho}_X) \equiv \prod_{n=0}^{\infty} (1-ue^{-E_n}) = \sum_{n\in\mathbb{Z}} e^{J_X(\ln u(\mathbf{t})+2\pi i n,\hbar)}$

with quantum mirror map $u = u(\mathbf{t}, \hbar)$ and \mathbf{t} Kahler parameters of X

Consider X of genus 1 (like 5d pure $\mathcal{N} = 1$ SU(2) theory / local F_0)

Main TS/ST conjecture: analytic TS expression for *spectral determinant*

$$\Xi_X(u,\hbar) \equiv \det(1-u\widehat{\rho}_X) \equiv \prod_{n=0}^{\infty} (1-ue^{-E_n}) = \sum_{n\in\mathbb{Z}} e^{J_X(\ln u(\mathbf{t})+2\pi i n,\hbar)}$$

with quantum mirror map $u = u(\mathbf{t}, \hbar)$ and \mathbf{t} Kahler parameters of X

Grand potential decomposes as $J_X(\ln u, \hbar) = J_X^{WS}(\ln u, \hbar) + J_X^{WKB}(\ln u, \hbar)$:

• J_X^{WS} written in terms of unrefined (large volume) TS free energy:

$$J_X^{WS}(\ln u(\mathbf{t}),\hbar) \qquad \iff \qquad F_{TS,X}^{unref}(\mathbf{t},g_s) \qquad \qquad (g_s \sim 1/\hbar)$$

• J_X^{WKB} written in terms of NS limit of (large volume) TS free energy:

$$J_X^{\text{WKB}}(\ln u(\mathbf{t}),\hbar) \qquad \Longleftrightarrow \qquad F_{\text{TS},X}^{\text{NS}}(\mathbf{t},\hbar) \qquad (\epsilon_1 = i\hbar, \epsilon_2 = 0)$$

WKB analysis of $\hat{\rho}_X$ determines non-perturbative terms in unrefined TS; poles at $g_s = 2\pi \mathbb{Q}$ of J_X^{WS} cancelled by poles $J_X^{\text{WKB}} \implies$ well-defined J_X Spectrum of operator \hat{O}_X or $\hat{\rho}_X$: look for zeroes of $\Xi_X(u,\hbar)$

$$\Xi_X(u(\mathbf{t},\hbar),\hbar) = \sum_{n\in\mathbb{Z}} e^{J_X(\ln u(\mathbf{t},\hbar) + 2\pi i n,\hbar)} = 0 \quad \Longrightarrow \quad \mathbf{t} = \mathbf{t}^{(n)}$$

Energies determined by the quantum mirror map:

$$e^{E_n} = u(\mathbf{t}^{(n)}, \hbar)$$

Spectrum of operator \widehat{O}_X or $\widehat{\rho}_X$: look for zeroes of $\Xi_X(u,\hbar)$

$$\Xi_X(u(\mathbf{t},\hbar),\hbar) = \sum_{n\in\mathbb{Z}} e^{J_X(\ln u(\mathbf{t},\hbar) + 2\pi i n,\hbar)} = 0 \quad \Longrightarrow \quad \mathbf{t} = \mathbf{t}^{(n)}$$

Energies determined by the quantum mirror map:

$$e^{E_n} = u(\mathbf{t}^{(n)}, \hbar)$$

Good match with numerics; 5d pure $\mathcal{N} = 1$ SU(2) theory / local F_0 :

$$\widehat{O}_{F_0} = e^{-\hat{p}} + m_0 e^{\hat{p}} + e^{\hat{x}} + e^{-\hat{x}}$$

	$\hbar = \sqrt{2}\pi, m_0 = 1$	$\hbar = \sqrt{2}\pi, m_0 = \sqrt{3}$	$\hbar = 2\pi, m_0 = 1$
$TS/ST E_0$	$2.4605242719\dots$	$2.7528481019\dots$	$2.8818154299\dots$
numerics E_0	2.4605242719	$2.7528481019\dots$	$2.8818154299\dots$

Remark: closed form for Ξ_X at $\hbar = 2\pi \implies \underline{exact \ analytic}$ spectrum

Spectrum of operator \widehat{O}_X or $\widehat{\rho}_X$: look for zeroes of $\Xi_X(u,\hbar)$

$$\Xi_X(u(\mathbf{t},\hbar),\hbar) = \sum_{n\in\mathbb{Z}} e^{J_X(\ln u(\mathbf{t},\hbar) + 2\pi i n,\hbar)} = 0 \quad \Longrightarrow \quad \mathbf{t} = \mathbf{t}^{(n)}$$

Energies determined by the quantum mirror map:

$$e^{E_n} = u(\mathbf{t}^{(n)}, \hbar)$$

Good match with numerics; 5d pure $\mathcal{N} = 1$ SU(2) theory / local F_0 :

$$\widehat{O}_{F_0} = e^{-\hat{p}} + m_0 e^{\hat{p}} + e^{\hat{x}} + e^{-\hat{x}}$$

	$\hbar = \sqrt{2}\pi, m_0 = 1$	$\hbar = \sqrt{2}\pi, m_0 = \sqrt{3}$	$\hbar = 2\pi, m_0 = 1$
$TS/ST E_0$	$2.4605242719\dots$	$2.7528481019\dots$	$2.8818154299\dots$
numerics E_0	2.4605242719	$2.7528481019\dots$	$2.8818154299\dots$

Remark: closed form for Ξ_X at $\hbar = 2\pi \implies \underline{exact \ analytic}$ spectrum

Higher genus X: similar story, but only one "true" modulus u_{α} quantized

TS/ST conjecture - eigenfunction \hat{O}_X : analytic TS expression [Marino-Zakany '16, '17]

analogue of QM II
chiral + antichiral
$$\psi(x, u, \hbar) = \sum_{\sigma} \psi_{\sigma}(x, u, \hbar), \quad \psi_{\sigma}(x, u, \hbar) = \sum_{n \in \mathbb{Z}} e^{J_X^{(o)}(x, \ln u + 2\pi i n, \hbar)}$$

Sum over sheets σ of the mirror curve (single $\psi_{\sigma}(x)$ singular)

TS/ST conjecture - eigenfunction \hat{O}_X : analytic TS expression [Marino-Zakany '16, '17]

analogue of QM II
chiral + antichiral
$$\psi(x, u, \hbar) = \sum_{\sigma} \psi_{\sigma}(x, u, \hbar), \quad \psi_{\sigma}(x, u, \hbar) = \sum_{n \in \mathbb{Z}} e^{J_X^{(o)}(x, \ln u + 2\pi i n, \hbar)}$$

Sum over sheets σ of the mirror curve (single $\psi_{\sigma}(x)$ singular)

Open grand potential $J_X^{(o)}(x, \ln u, \hbar) = J_X^{(o), WS}(x, \ln u, \hbar) + J_X^{(o), WKB}(x, \ln u, \hbar)$:

• $J_X^{(o),WS}$ contains unrefined (large volume) open TS free energy:

$$J_X^{(o),WS}(x,\ln u(\mathbf{t}),\hbar) \iff F_{TS,X,open}^{unref}(x,\mathbf{t},g_s) \qquad (g_s \sim 1/\hbar)$$

• $J_X^{(o),WKB}$ contains NS limit of (large volume) open TS free energy:

$$J_X^{(o),WKB}(x,\ln u(\mathbf{t}),\hbar) \iff F_{TS,X,open}^{NS}(x,\mathbf{t},\hbar) \qquad (\epsilon_1 = i\hbar, \epsilon_2 = 0)$$

QM WKB again determines non-perturbative terms in open unrefined TS; poles at $g_s = 2\pi \mathbb{Q}$ of $J_X^{(o),WS}$ cancelled by poles $J_X^{(o),WKB}$, well-defined $J_X^{(o)}$ Eigenfunction normalizability: $\psi(x, u, \hbar) \in L^2(\mathbb{R})$ only for $\mathbf{t} = \mathbf{t}^{(n)}$; good decay at $x \to \infty \implies$ quantization condition $\Xi_X(u, \hbar) = 0$ [Marino-Zakany '16, '17]

ground state

$$m_0 = 1, \hbar = 2\pi$$

second excited state

Closed form for $\psi(x)$ at $\hbar = 2\pi \implies \underline{exact \ analytic}$ eigenfunction

Eigenfunction normalizability: $\psi(x, u, \hbar) \in L^2(\mathbb{R})$ only for $\mathbf{t} = \mathbf{t}^{(n)}$; good decay at $x \to \infty \Longrightarrow$ quantization condition $\Xi_X(u, \hbar) = 0$ [Marino-Zakany '16, '17]

ground state

$$m_0 = 1, \hbar = 2\pi$$

second excited state

Closed form for $\psi(x)$ at $\hbar = 2\pi \implies \underline{exact \ analytic}$ eigenfunction

Higher genus X: similar story; at the very special points of QM problem II, <u>enhanced decay</u> at $x \to -\infty$ (to be better understood; symmetry $\omega_1 \leftrightarrow \omega_2$?)

TS and QM problem I: summary

TS as universal framework for QM problems:

Topol. String (unrefined) on X+ non-pert. (NS) corrections Analytic Spectral Theory $\hat{\rho}_X^{(\alpha)} / \hat{O}_X^{(\alpha)}$, all-orders WKB + QM instantons

TS, QM non-perturbative corrections fixed à la AdS/CFT (TS/ST):

Perturbative / non-perturbative $(in g_s)$ TS effects

 $\iff g_s \sim 1/\hbar$

Non-perturbative / perturbative $(in \hbar)$ QM effects

TS and QM problem I: summary

TS as universal framework for QM problems:

Topol. String (unrefined) on X+ non-pert. (NS) corrections Analytic Spectral Theory $\hat{\rho}_X^{(\alpha)} / \hat{O}_X^{(\alpha)}$, all-orders WKB + QM instantons

TS, QM non-perturbative corrections fixed à la AdS/CFT (TS/ST):

Perturbative / non-perturbative (in g_s) TS effects

 $\iff Non-perturbative / perturbative$ $<math>g_s \sim 1/\hbar$ $(in \hbar) QM effects$

Good match with numerics, <u>exact</u> <u>analytic</u> <u>expressions</u> at $\hbar = 2\pi$:

- Quantization condition, (single) energy spectrum: checked for many X
- Eigenfunction: fewer checks (NS limit open TS hard from top. vertex)

Gauge theory interpretation: very unclear ("unrefined" limit of $S_{\omega_1,\omega_2,\omega_3}^5$?)

Summary

Topological Strings and Quantum Mechanics: summary

Deep relation between TS and QM, useful for both:

- QM techniques and insights \implies fix non-perturbative terms in TS
- TS computational tools \implies solve QM problems analytically

Topological Strings and Quantum Mechanics: summary

Deep relation between TS and QM, useful for both:

- QM techniques and insights \implies fix non-perturbative terms in TS
- TS computational tools \implies solve QM problems analytically

Some of the points which must be clarified:

- Reduction QM problem I \implies QM problem II (QIS) at special points (emergence of symmetry $\omega_1 \leftrightarrow \omega_2$, non-trivial identities NS/unrefined)
- Application to other QM problems associated to X [Hatsuda's talk]
- Expand to ħ complex, other quantization slices (x ∈ iℝ,...):
 no discrete spectrum, bands / gaps structure [Grassi-Marino '17]
- TS/ST non-pert. completion and resurgence: match! [Santamaria-Marino-Schiappa '16]
- TS/ST non-pert. completion and wall-crossing Riemann-Hilbert problem [Bridgeland '16, '17]
Thanks!

Remarks on TS/ST

Spectral determinant: <u>entire</u> function of u; Taylor expansion

$$\Xi_X(u,\hbar) = \det(1-u\widehat{\rho}_X) = 1 + \sum_{N=1}^{\infty} Z_X(N,\hbar)(-u)^N$$

in terms of fermionic spectral traces

$$Z_X(N,\hbar) = \frac{1}{N!} \int \det[\rho_X(p_i, p_j)] d^N p$$

Non-perturbative definition of unrefined TS free energy (conifold frame):

$$F_X(\lambda, g_s) = \ln Z_X(N, \hbar), \qquad g_s = \hbar^{-1}, \ \lambda = N\hbar^{-1}$$

since Z_X well-defined for $N \in \mathbb{N}$, $\hbar \in \mathbb{R}_+$ (trace class) and in 't Hooft limit

$$N \to \infty, \quad \hbar \to \infty, \quad N\hbar^{-1} = \lambda \text{ finite}$$

 $F_X(\lambda, g_s) = \ln Z_X(N, \hbar) \sim \sum_{g \ge 0} \hbar^{2-2g} F_g(\lambda)$

perturbative TS free energy (unrefined, conifold frame). For general N, conjecture:

$$Z_X(N,\hbar) = \frac{1}{2\pi i} \int_{\mathcal{C}} e^{J_X(\ln u,\hbar) - N\ln u} d\ln u \qquad \text{Airy contour}$$

 $J_X(\ln u, \hbar)$ unrefined TS free energy (large volume) + non-perturbative terms Fermionic spectral traces extended to *entire* functions in complex N plane