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Compactification to 6d N = (1, 0)

Compactify F-theory on an elliptically fibered Calabi-Yau

three-fold. The complex structure of the elliptic fiber is described

in terms of a Weierstrass equation:

y2 = x3 + f x + g

where f and g are functions on the base (locally).The fiber

develops singularities over a codimension one locus defined by

vanishing of the discriminant of the above equation:

∆ = 4f 3 + 27g2 = 0
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Compactification to 6d N = (1, 0) (contd.)

The discriminant locus can be divided into irreducible complex

curves. We refer to these irreducible components of the

discriminant locus as simply “curves” in what follows.

The type of singular fiber over each curve is determined by the

behavior of f , g and ∆ in the vicinity of the curve. The different

behaviors were classified by Kodaira and further refined by Tate.

Physically, a type of singular fiber in Kodaira’s list corresponds to a

type of 7-brane wrapped on the curve. Each 7-brane carries an 8d

gauge algebra which contributes in a particular way to the 6d

gauge algebra visible at low energies.
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Traditional map from 8d to 6d

Traditionally, the map from the 8d gauge algebra living on 7-branes

to the low-energy 6d gauge algebra has the following features:

I Each curve is associated either to a simple factor of the 6d

gauge algebra or to no gauge algebra, and

I Each simple factor of 6d gauge algebra is associated to a

single curve.

This correspondence between simple factors of 6d gauge algebra

and curves is critical for the anomaly cancellation of the 6d theory

as we now explain.
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6d Anomaly Cancellation

Coupling tensor multiplets to a 6d theory induces a counterterm in

the anomaly polynomial which can be used to cancel certain kinds

of anomalies in the 6d theory. This mechanism of anomaly

cancellation is known as Green-Schwarz mechanism.

It was shown

by Sadov that F-theory induces a particular counterterm which can

be expressed geometrically as follows:

TradjF
2
a − TrρaF

2
a = 6(K · Da) trF 2

a (1)
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4
a = −3(Da · Da) (trF 2
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b ) = (Da · Db) trF 2
a trF 2
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Today’s map from 8d to 6d

Today, we are going to consider compactifications where the

correspondence between curves and simple factors of 6d gauge

algebra is violated. We will see that in general:

I Each curve is associated either to a semi-simple factor of the

6d gauge algebra or to no gauge algebra, and

I A simple factor of 6d gauge algebra can be associated to

multiple curves.
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O7+

The star of the talk will be a new 7-brane in F-theory: the O7+

plane of Type IIB string theory.

This 7-brane is not included in traditional F-theory

compactifications. We will see that including O7+ forces the

violation of the correspondence between curves and simple factors

of 6d gauge algebra.
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Goal

In this talk, our goal will be:

1. To understand why the correspondence is violated in the

presence of O7+,

2. To understand how 6d anomaly cancellation works in the

presence of O7+, and

3. To see that one can construct new 6d SCFTs using F-theory

compactifications involving O7+.
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More about O7+

The RR-charge of O7+ is equal to that of O7− + 8 D7 branes.

Also, both of them induce the same Z2 orbifolding action on the

geometry. These two facts imply that the Weierstrass equation

governing both O7+ and O7− + 8 D7 branes is the same, and

corresponds to I ∗4 Kodaira singularity.

Witten further showed that the full F-theory geometry

corresponding to O7+ is such that the singularity is not resolved.

Hence, we have two physical situations with exactly the same

F-theory geometry. It is still unknown which physical quantity

distinguishes them in F-theory.
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Frozen singularities

One difference between the two situations is that the I ∗4 singularity

corresponding to O7+ cannot be resolved because there are no D7

branes in the Type IIB description that can be moved around. In

other words, I ∗4 corresponding to O7+ is frozen.

We can stack more D7 branes to find that each I∗n≥4 singularity in

F-theory has two physical descriptions: the traditional one being

O7− + (n + 4) D7 branes and the partially frozen one being

O7+ + (n − 4) D7 branes. In what follows, we will denote a

(partially) frozen I ∗n singularity as Î ∗n .

In a recent work, Tachikawa argued that these are the only

examples of partially frozen singularities in F-theory.
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Anomaly Cancellation

Now we describe anomaly cancellation conditions for most general

F-theory compactifications involving shared gauge algebras and

frozen singularities. We will modify the original argument of Sadov

to achieve this.

Consider an F-theory compactification with irreducible components

of discriminant locus being Da. Each Da carries an 8d gauge

algebra ga. Call the simple factors in the 6d gauge algebra as hi .

Each hi is shared between some Da. Define ni ,a = 1 if hi is shared

with Da and define ni ,a = 0 otherwise.
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Gravitational Coupling without O7+

When there are no O7+, the stack of 7-branes on Da has a ten

dimensional coupling to gravity given by∫
B(4)

(
−Na

24
trR2

)
δ(2)(Da)

where B(4) is the chiral 4-form of type IIB, Na is the order of

vanishing of discriminant ∆ on Da, and δ(2)(Da) is the

delta-function supported on Da.

In particular, a D7 brane contributes −1/24 and an O7−

contributes −2/24.
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Gravitational Coupling with O7+

It is known that the contribution of O7+ to this gravitational

coupling is of opposite sign to that of O7−, that is 2/24. Since an

Î ∗k singularity corresponds to O7++(k − 4)D7 branes, it contributes

2
24 −

(k−4)
24 = −k−6

24 but −Na
24 = −k+6

24 .

Hence, in the presence of O7+, the above ten dimensional coupling

can be written as∫
B(4)

(
−Na − 12sa

24
trR2

)
δ(2)(Da)

where sa = 1 when the curve Da carries an O7+ and sa = 0 when

it does not.
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Gauge Coupling due to a Single Curve

In the traditional case, the stack of 7-branes on Da has a ten

dimensional coupling given by∫
B(4)

(
2 trF 2

a

)
δ(2)(Da)

where Fa is the field strength valued in ga.

In our case, there are some holonomies on Da breaking ga to

⊕ini ,ahi . Thus the gauge coupling becomes∫
B(4)

(
2
∑
i

ni ,aoi ,a trF 2
i ,a

)
δ(2)(Da)

where Fi ,a is the field strength valued in hi and oi ,a describes how

the Casimir of ga is decomposed into Casimirs of hi .
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Total Gauge Coupling

Now we have to account for the fact that hi is actually shared

among some Da.

From the 8d perspective, this is done by imposing

a boundary condition on the gauge connection Ai ,a = Ai ,b at the

points of intersection of Da and Db. This identifies all the different

hi living over different Da into a single gauge algebra hi living over

multiple Da. Thus we can write Fi ,a = Fi for all a such that

ni ,a = 1. And the total gauge coupling becomes∫
B(4)

∑
i

(
2 trF 2

i

)
δ(2)(Di )

where Di =
∑

a ni ,aoi ,aDa is the gauge divisor corresponding to

hi .
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6d Counterterm

The full six dimensional coupling relevant for Green-Schwarz

mechanism is then∫
B
B(4)

(∑
a

1

2
(c1(B) + saδ

(2)(Da))trR2 +
∑
i

2δ(2)(Di )trF 2
i

)

where the integral is performed only over the base B, B(4) has two

legs on the base B and we have used the Calabi-Yau condition

c1(B) = − 1
12Naδ

(2)(Da).

The contribution to anomaly polynomial is then a square of the

coefficient of B(4):

I8,GS = −1

2

∫
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(
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Anomaly Cancellation Conditions

Expanding the square, we find the anomaly cancellation conditions:

TradjF
2
i − TrρiF

2
i = 6[(K + F ) · Di ] trF 2

i (4)

TradjF
4
i − TrρiF

4
i = −3(Di · Di ) (trF 2

i )2 (5)

Trρij (F
2
i ⊗ F 2

j ) = (Di · Dj) trF 2
i trF 2

j (6)

Notice that there are two differences from the traditional case:

1. On the right hand side, the gauge divisor Di =
∑

a ni ,aoi ,aDa

appears instead of a single curve Da.

2. The canonical divisor K is replaced by K + F where

F =
∑

a saDa is the divisor corresponding to the location of

frozen singularities.
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Potential SCFT 1

Consider a 6d N = (1, 0) gauge theory having gauge group

SU(n)×SO(n + 8) with a hypermultiplet charged in the

bifundamental and n − 8 hypermultiplets charged in the

fundamental of SU(n).

The gauge anomaly can be cancelled by the Green-Schwarz

mechanism and hence this theory can appear as a low-energy

effective theory on the tensor branch of a 6d N = (1, 0) SCFT.
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SCFT is Missing

If this SCFT were to have a traditional F-theory realization without

O7+, the anomaly cancellation conditions will tell us that

DSU · DSO = 2.

However, it is impossible for two components of discriminant locus

to intersect twice in an F-theory configuration manufacturing a 6d

SCFT.

Thus this SCFT does not appear in the classification of Heckman,

Morrison, Rudelius and Vafa based on traditional F-theory

compactifications.



SCFT is Found Using O7+
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SCFT Satisfies Anomaly Cancellation

Label the curves carrying Î ∗4 , I nsn+8, In and In−8 as D1, D2, D3 and

D4 respectively.

The frozen locus is F = D1. The gauge divisors are DSU = D3 and

DSO = 2D2. The factor of 2 comes from the fact that

trF 2
su(k) = 2 trF 2

so(k).

Using these divisors, it can be checked that the anomaly

cancellation presented in this talk is satisfied. In particular,

DSU · DSO = 2 as expected from gauge theory.



A More Non-Trivial Example which is Compact

Consider an F-theory model with base P1 × P1 with coordinates

z ,w .

Say we have an I ∗12 singularity at z = 0 and an Î ∗12 singularity

at w = 0. This model has a perturbative Type IIB dual in terms of

O7 planes on T 4. The perturbative spectrum is:

I Gauge algebra su(8)⊕ usp(8)1 ⊕ usp(8)2.

I A hypermultiplet in the bifundamental of each pair of gauge

algebras.

I Two hypermultiplets in 2-index antisymmetric of su(8).

I 1+4 tensor multiplets.
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F-Theory Construction

Since we have 4 tensor multiplets, we have 4 exceptional divisors.

The F-theory geometry is as follows:

The gauge divisors are:

I 2(C1 + D) for su(8).

I D + 1
2C2 + D1 for usp(8)1.

I D2 + 1
2C2 + D3 for usp(8)2.
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