5d/6d DE instantons from trivalent gluing of web diagrams

Kantaro Ohmori

Institute for Advanced Study, Princeton

arXiv:1702.07263 w/ Hirotaka Hayashi

Autumn Symposium on String Theory @KIAS Sep. 14th 2017

Introduction

How to compute top. string?

- · genus 0: localization, Picard-Fuchs etc.
- For general genus, general CY3: dream
- B-model: BCOV (but holomorphic part is nontrivial)
- A-model: when CY3 is toric (hence non-compact)
 → topological vertex
- A-model on non-compact CY3 → Nekrasov Z of a 5d SQFT
- Some non-compact non-toric CY3 → Non-SU SQFT
- "Geometric-ish" computation for such CY3's?

Toric CY and Topological Vertex

Gauge theory and Top. Vertex

5d SU(N) quiver gauge theories w/ (bi)fundundamentals can be engineered by toric CY3 / (p,q) web.

pure
$$SU(2)_{\theta=0}$$

pure $SU(3)_{k=1}$

local $\mathbb{P}^1 \times \mathbb{P}^1$

 $Z^{\text{top}}(\text{CY}_3) = Z^{\text{Nek}}(\text{gauge theory})|_{\text{unrefined}}$

* every theory (in my talk) has 8 supercharges

Base-Fiber duality

$$SU(2) - SU(2)$$

$$SU(3)_{k=0}$$
 with 2 flavors

These two gauge theories have common UV SCFT

Different mass def.s of the SCFT gives different IR gauge theories

 $Z^{
m Nek}$ of the two coincides in 5d

Non-SU gauge theory?

Can a 5d non-SU gauge theory be engineered?

```
SO/Sp: (p,q) web with O-planes [Zafrir '15, Hayashi-Kim-Lee-Taki-Yagi '15]
```

SO/E: M-theory on a D,E-orbifolded of the resolved conifold $\mathbb{C}^2/\Gamma_{\!D,E}$ singular locus wrapping a sphere non-toric

Non-Lagrangian base-fiber dual:

```
pure D,E gauge theory 

SU(2) w/ non-Lagrangian matters some 6d SCFT on circle 

SU(2) w/ non-Lagrangian matters [DelZotto-Vafa-Xie 15', DelZotto-Heckman-Morrison 17']
```

"trivalent gluing" enables us to compute RHS

For some of 6d theories, this is the first systematic way to compute high string number part.

Outline

- Base-fiber duality for pure DE gauge theories
- Trivalent gluing
- Generalization to 6d SCFTs
- other generalizations

Base-fiber duality for DE gauge theories

The orbifolded resolved conifold

D4 singularity wrapping sphere → pure SO(8)

Swapping base and fiber

Near each sphere in the "new base", the geometry contains a sphere bundle over the sphere.

[DelZotto-Heckman-Morrison 17'] [Hee-Cheol's talk]

Dual description

 $local \mathbb{F}_0 = local \mathbb{P}^1 \times \mathbb{P}^1$

→ SU(2) vector multiplet

Dual description of E-type $\widehat{D}_2(SU(2))$ $\widehat{D}_2(\mathrm{SU}(2))$ (immediate generalization to SO(N)) $\widehat{D}_2(SU(2))$ $\widehat{D}_2(\mathrm{SU}(2))$ $\widehat{D}_3(SU(2))$ pure E_6 gauge theory \rightleftharpoons

Dual description of E-type

Trivalent Gluing

top. str. partition function?

 $\widehat{D}_2(SU(2))$ $\widehat{D}_2(\mathrm{SU}(2))$ $\widehat{D}_2(SU(2))$ $\widehat{D}_2(SU(2))$:

How the SU(2) gauging can be implemented?

More general: G— T

Gauging 4d SCI and Nekrasov Z

$$I_{\text{SCI}} = \int_{G} d\mu_{G}(g) I_{\mathscr{T}}(g) I_{\text{vec}}(g)$$

For Nekrasov Z (and 5d SCI), not this easy.

In the localization context, G integration above comes from remaining saddle locus direction (holonomies abound the circle).

For Nekrasov Z, corresponding integration is integration over the moduli space, which is complicated.

Nevertheless, for G=(S)U(N), the original symplectic localization still holds, so that the integration reduces to sums over Young diagrams.

Nekrasov part. func. with matter

SU(2) with hyper:

$$Z = \sum_{\lambda,\mu} Q_g^{|\lambda|+|\mu|} Z_{\lambda,\mu}^{\text{hyper}}(Q_g, Q_m) Z_{\lambda,\mu}^{\text{SU(2) vector}}(Q_g)$$

 $Z_{\lambda,\mu}^{\mathrm{hyper}}(Q_g,Q_m):$ Z of hyper with flavor instanton background (λ,μ) Not all instanton backgrounds are necessary.

SU(2) with any \mathscr{T} :

$$Z = \sum_{\lambda,\mu} Q_g^{|\lambda|+|\mu|} Z_{\lambda,\mu}^{\mathcal{T}}(Q_g, Q_{\text{other}}) Z_{\lambda,\mu}^{\text{SU(2) vector}}(Q_g)$$

 $Z_{\lambda,\mu}^{\mathscr{T}}(Q_g,Q_{\text{other}})$: Z of \mathscr{T} with flavor instanton background (λ,μ) How to compute? \to Topological vertex!

$Z_{\lambda,\mu}^{\mathrm{hyper}}(Q_g,Q_m)$ from top. vertex

(for simplicity, we use unrefined vertices)

SU(2) with hyper:
$$Z = \sum_{\lambda,\mu} Q_g^{|\lambda|+|\mu|} Z_{\lambda,\mu}^{\text{hyper}}(Q_g, Q_m) Z_{\lambda,\mu}^{\text{SU(2) vector}}(Q_g)$$

$Z_{\lambda,\mu}^{\mathrm{hyper}}(Q_g,Q_m)$ from top. vertex

$$Z_{\lambda,\mu}^{ ext{hyper}}$$

$$Z_{\lambda,\mu}^{
m vec}$$

$Z_{\lambda,\mu}^{\mathrm{hyper}}(Q_g,Q_m)$ from top. vertex

Numerator is what's called "extra factor" in the literature, Which counts strings bridging parallel external branes.

$Z_{\lambda,\mu}^{\mathscr{T}}$ from top. vertex

Assumption: \mathcal{T} is engineered by a web w/ manifest SU(2) sym.

$$Z_{\lambda,\mu}^{\mathcal{T}} = \left(\begin{array}{c} \mu \\ \downarrow \\ \overline{\lambda} \end{array}\right) Q_a \left(\begin{array}{c} \mu \\ Q_a \end{array}\right) \left(\begin{array}{c} \mu \\ \downarrow \\ \overline{\lambda} \end{array}\right)$$

Gauging two non-Lag. theories

$$= \left(\mathcal{T}_1 \right) \left(\mathcal{T}_2 \right)$$

Just connecting two web diagram getting a usual web diagram. (nothing new)

Gauging three non-Lag. theories

Trivalent glueing (=trivalent gauging)

Caveat: in general modification is needed

Checking SO(8) duality

Checked explicitly at 0,1,2- instantons and a high order of Coulomb branch parameters.

Duality for E-type theories also works w/ Hilbert series conjecture

Generalization to 6d SCFTs

Dual description of 6d "O(-4)"

 $\widehat{D}_2(SU(2))$ $\widehat{D}_2(\mathrm{SU}(2))$ $\widehat{D}_2(SU(2))$ $\widehat{D}_2(SU(2))$ $\widehat{D}_2(\mathrm{SU}(2))$ $\widehat{D}_2(SU(2))$ $\widehat{D}_2(SU(2))$

[DelZotto-Vafa-Xie 15']

6d "O(-4)" theory on $S^1 \rightleftharpoons$ tensor branch tensor+ SO(8) vector "affine SO(8) gauge theory"

Dual description of 6d NHCs

 $\widehat{D}_3(\mathrm{SU}(2))$ 6d SCFTs: [DelZotto-Vafa-Xie 15'] $\widehat{D}_3(SU(2))$ $\widehat{D}_3(SU(2))$ O(-6) theory \rightleftharpoons " \hat{E}_6 " $\widehat{D}_2(\mathrm{SU}(2))$ O(-8) theory \rightleftharpoons $\widehat{D}_4(\mathrm{SU}(2))$ $\widehat{D}_4(\mathrm{SU}(2))$ " \hat{E}_7 " $\widehat{D}_2(\mathrm{SU}(2))$ O(-12) theory \rightleftharpoons $\widehat{D}_6(SU(2))$ " \hat{E}_{8} "

Dual description of 6d NHCs

local \mathbb{P}^2 6d SCFTs: [DelZotto-Vafa-Xie 15'] local \mathbb{P}^2 $local \mathbb{P}^2$ O(-3) theory \rightleftharpoons $\widehat{D}_2(SU(2))$ "232 NHC" *⇌*

Checking O(-4) duality

string fugacity = $Q_a \times dressing$

Checked explicitly at 0,1 - string sectors

For other NHCs, the vertex is the first method w/ general parameters.

Other generalizations

in progress w/ Hirotaka Hayashi w/ Hirotaka Hayashi, Hee-Cheol Kim

Adding matter to 5d SO(8)

SO(8) w/ Nf vectors \rightleftharpoons Nf=1,2,3,4,5

SO(8) w/ Nf spinors ⇌

SO(8) w/ 1v+ 1s ⇌

Constraint is needed

w/ particular constraint on parameters

w/ particular constraint on parameters

(as far as I know) first explicit formula

Quiver

What quiver theory w/ E-type possible?

Hee-Cheol's SU(3) k=9

Thank you!