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• Review of 5d gauge theories and Coulomb branch physics.

• Full classification of 5d gauge theories with simple gauge groups.

• Construction of Shrinkable Calabi-Yau threefolds.

• Rank 2 Shrinkable Calabi-Yau threefolds.

Plan of talk
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Five-dimensional           theories with gauge group    
• Preserve 8 supercharges.
• Matter content

• Vector multiplet          
• Hypermultiplet   

•           Lorentz symmetry  +             R-symmetry.
•         theory  :    vector multiplet   +   adjoint hypermultiplet

5d gauge theories are non-renormalizable. But certain class of SUSY theories 
admit non-trivial UV CFT fixed points.

Interesting 5d gauge theories can be constructed by

1. (p,q) five-brane web in Type IIB

2. M-theory on Calabi-Yau 3-fold

(qA; )

(Aµ,�;�)

SU(2)R

GN = 1

(A = 1, 2 : SU(2)R doublet)

5d supersymmetric gauge theories

[Seiberg 96], [Morrison, Sieberg 96], 
[Intriligator, Morrison, Seiberg 97]

[Aharony, Hanany 97], [Aharony, Hanany, Kol 97],
[DeWolfe, Iqbal, Hanany, Katz 99], …

[Morrison, Seiberg 96], [Douglas, Katz, Vafa 96],
[Katz, Klemm, Vafa 96], [Intriligator, Morrison, Seiberg 97], …

N = 2

SO(1, 4)
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Coulomb branch is parametrized by the real scalar      in vector multiplet.
• With generic      , gauge group will be broken to         .
• Low energy abelian theory is characterized by prepotential         .

Prepotential is at most cubic polynomial in      and it is 1-loop exact :

• Effective coupling :                   

• Metric on Coulomb branch :

• Tension of magnetic monopole string :

Effective Prepotential
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�i U(1)r r : rank of G
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g0 : gauge coupling, mf : masses, hij = Tr(TiTj), dijk = TrT(iTjTk),  : CS� level for SU(N > 2)

[Witten 96], [Seiberg 96], [Intriligator, Morrison, Seiberg 97]

⌧ij = @i@jF

TMi ⇠ �Di ⌘ @iF

ds2 = ⌧ijd�
id�j
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5d gauge theories with non-trivial fixed points were classified using the 
condition that metric on Coulomb branch is non-negative everywhere.

•  

• At strong coupling limit              , we expect interacting CFT fixed point.
• This condition provides a classification of non-trivial 5d QFTs.

Intriligator-Morrison-Seiberg (IMS) bounds :

This condition rules out quiver-type gauge theories.

Intriligator-Morrison-Seiberg (IMS) classification

[Seiberg 96], [Intriligator, Morrison, Seiberg 97]eigen(⌧ij(�)) > 0

g20 ! 1

Sp(N) nA = 0, nf  2N + 4

nA = 1, nf  8

nA = 0, nf + 2||  2N

nA = 1, nf  8�N � 2||
SU(N) gauge group :

gauge group :
Ex ) nA : # of antisymmetric hypers

nf : # of fund. hypers
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However, string theory and CY3-compactification predict huge class of non-
trivial gauge theories beyond IMS bounds, in particular quiver gauge theories.

This implies that IMS bounds are too strong.

Beyond IMS classifications

Aharony, Hanay, Kol, DeWolfe, Vafa, Katz, Mayr, Leung, Iqbal,
Bergman, Rodrguez-Gomez, Zafrir, Tachikawa,Yonekura,
Hayashi, S-S. Kim, K. Lee, Taki, Yagi, Gaiotto, H-C. Kim, ….

SU(2)⇥ SU(2) SU(3) w/ Nf = 10 Sp(N) w/ Nf = 2N + 5

[Yonekura 15], [Hayashi, Kim, Lee, Taki, Yagi 15], [Zafrir 15]
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The condition that metric should be non-negative in entire Coulomb branch 
turns out to be too strong.

There could be non-perturbative massless particles (instantons) or 
tensionless strings at some point in Coulomb branch. Effective gauge theory 
description breaks down beyond the point. In this case, physical Coulomb 
branch is a smaller sub-region.

Therefore we should impose the condition
only within the physical sub-region in Coulomb
branch.

Effective Coulomb branch

eigen(⌧ij(�)) > 0 Too strong constraint

eigen(⌧ij(�)) > 0

Unphysical

Massless particles
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We propose that non-trivial 5d gauge theories must have non-negative 
metric on the physical Coulomb branch.

Our Conjecture :
Non-trivial 5d gauge theories have positive metric on a subset of the Coulomb 
branch                at infinite classical coupling.  Namely,

where                                                     , when               .

New criteria on physical Coulomb branch

eigen(⌧ij(�)) > 0

Unphysical

Massless particles

Cphys ✓ C

⌧e↵(�) > 0 , � 2 Cphys
1/g2 ! 0
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Cphys = {� 2 C, |T (�) > 0,m(�) > 0}



                       gauge theory has two-dimensional Coulomb branch 
parametrized by            with                     .

As we decrease     , we meet massless instantons.

Example

SU(2)⇥ SU(2)

�1 > �2 > 0�1,�2

�2 ⇠ 0.25�1Det(⌧ij) = 0 at

�1

�2

�1�2

�2

�1�2

�2 ⇠ 0.25�1Det(⌧ij) = 0 at

�1

�2

massless instantons at �2 ⇠ 0.5�1

Det(⌧ij) > 0

g1, g2 ! 1
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Thus, this is a good theory with positive metric in a chamber with physical states.



Our Conjecture :
Non-trivial 5d gauge theories have positive metric on a subset of the Coulomb 
branch                at infinite classical coupling.  Namely,

where                                                     , when               .

  However, we need to know all spectrum of physical states including instantons!

Classification :
  We will instead use the following criteria for classification:

      1.  All                 somewhere in    .

      2.  Prepotential            everywhere in    .

Note that the condition 1. is necessary condition and the condition 2. is new 
conjecture (based on convergence of sphere partition function).
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Cphys ✓ C

⌧e↵(�) > 0 , � 2 Cphys
1/g2 ! 0Cphys = {� 2 C, |T (�) > 0,m(�) > 0}

T (�) > 0 C
F > 0 C



• These theories are “marginal” theories which may uplift 6d theories in UV.

• All their descendants (by integrating out heavy matters) have 5d CFT fixed points. 

• Global symmetry is from 1-instanton analysis, so it could be different from the full 
fixed point symmetry.

Full Classification of rank 2 simple gauge theory

Ns Nf  F Cphys
1 0 3

2 SU(2)⇥ U(1) 2�1 = �2 � 0

1 1 0 A
(1)
1 ⇥ U(1) �1 = �2 � 0

0 10 0 D
(1)
10 �1 = �2 � 0

0 9 3
2 E

(1)
8 ⇥ SU(2) 2�1 = �2 � 0

0 6 4 SO(12)⇥ U(1) 2�1 = �2 � 0
0 3 13

2 U(3)⇥ U(1) 2�1 = �2 � 0
0 0 9 U(1) 2�1 = �2 � 0

A(1)
n , B(1)

n , C(1)
n , D(1)

n , E(1)
n : a�ne gauge group
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Na Nf F Cphys
3 0 A(2)

5 2�1 = �2 � 0

2 4 A(2)
11 2�1 = �2 � 0

1 8 E(1)
8 �1,�2 � 0

0 10 D(1)
10 �1 = �2 � 0

Nf F C
6 A(2)

11 2�1 = �2 � 0

Ns : # of symmetric hypers, Na : # of antisymmetric hypers, Nf : # of fundamental hypers,

 : CS level, F : Global symmetry

SU(3) Sp(2) G2



We can fully classify non-trivial 5d gauge theories with simple gauge groups (or 
single gauge nodes).

We found standard theories which exist for arbitrary rank gauge groups and 
finite number of exceptional theories which exist only at lower rank           .

Standard theories : 

Full Classification of all simple gauge groups

Ns Na Nf || F

1 1 0 0 A
(1)
1 ⇥ U(1)

1 0 N�2 0 A
(1)
N�2 ⇥ U(1)

1 0 0 N
2

0 2 8 0 Even N : E
(1)
7 ⇥A

(1)
1 ⇥A

(1)
1 ⇥SU(2)

Odd N : D
(1)
8 ⇥A

(1)
1 ⇥ SU(2)

0 2 7 3
2 Even N : D

(1)
8 ⇥ SU(2)

Odd N : E
(1)
7 ⇥ SU(2)⇥ SU(2)

0 1 N+6 0 A
(1)
N+6 ⇥ U(1)

0 1 8 N
2 SO(16)⇥ U(1)2

0 0 2N+4 0 D
(1)
2N+4

Na Nf F

1 8 E(1)
8 ⇥ SU(2)

0 2N + 6 D(1)
2N+6

Nf F
N � 2 A(2)2N�5

Marginal SU(N) theories with Ns symmetric, Na anti-symmetric, and

Nf fundamental hypermultiplets.

Marginal Sp(N) theories with Na anti-symmetric and

Nf fundamental hypermultiplets

Marginal SO(N>4) theories

with Nf fundamental hypermultiplets

rG  8
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SU(2)⇥ U(1)



All of these marginal theories are 6d SCFTs. For example,
•                                                             theories are 6d                     

conformal matter theories.
•                                     theories are 6d                                         .
•                                                           theories are 6d rank-N E-string 

theories.
• Their descendants are 5d SCFTs.

Ns Na Nf || F

1 1 0 0 A
(1)
1 ⇥ U(1)

1 0 N�2 0 A
(1)
N�2 ⇥ U(1)

1 0 0 N
2

0 2 8 0 Even N : E
(1)
7 ⇥A

(1)
1 ⇥A

(1)
1 ⇥SU(2)

Odd N : D
(1)
8 ⇥A

(1)
1 ⇥ SU(2)

0 2 7 3
2 Even N : D

(1)
8 ⇥ SU(2)

Odd N : E
(1)
7 ⇥ SU(2)⇥ SU(2)

0 1 N+6 0 A
(1)
N+6 ⇥ U(1)

0 1 8 N
2 SO(16)⇥ U(1)2

0 0 2N+4 0 D
(1)
2N+4

Na Nf F

1 8 E(1)
8 ⇥ SU(2)

0 2N + 6 D(1)
2N+6

Nf F
N � 2 A(2)2N�5

Marginal SU(N) theories with Ns symmetric, Na anti-symmetric, and

Nf fundamental hypermultiplets.

Marginal Sp(N) theories with Na anti-symmetric and

Nf fundamental hypermultiplets

Marginal SO(N>4) theories

with Nf fundamental hypermultiplets

SU(N)0 + (2N + 4)F, Sp(N � 1) + (2N + 4)F (DN+4, DN+4)

SU(N)0 + 1AS + (N + 6)F SU(N � 1) + 1AS + (N + 7)F

SU(N)N
2
+ 1AS + 8F, Sp(N � 1) + 1AS + 8F

Standard theories

SU(2)⇥ U(1)
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Full classification of simple gauge groups involves finite number of exceptional 
theories only at low rank            which are not in the list of standard theories.

Rank-4 theories 

Exceptional theories at low rank < 9

rG  8
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Geometric construction of 5d CFTs



11d M-theory compactified on a ‘contractible’ Calabi-Yau threefold       will 
engineer a 5d SCFT.
 

• Contractible CY3 : Surfaces             can contract to a singular point.

Ex : del Pezzo surfaces        in CY3

• In fact, ‘contractible CY3’ can be generalized to ‘shrinkable CY3’.

• Shrinkable CY3 :             can contract to a point or non-compact 2-cycles.

Ex : 

M-theory on Calabi-Yau threefold
14/27

[Morrison, Sieberg 96], [Douglas, Katz, Rafa 96], [Intriligator, Morrison, Seiberg 97]

X6

Si ⇢ X6

dP0 = P2 dP1 ! SU(2)✓=⇡

Si ⇢ X6

F2 ! SU(2)✓=0

[Jefferson, Katz, H-C Kim, Vafa 2017]

dPn



Generic shrinkable CY3 can be constructed by gluing rank 1 surfaces.

• Gluing two surfaces      and       yields a rank 2 surface                        .

• We glue a curve class       in      and another curve class      in     .

• Final geometry                        is a smooth CY3 corresponding to               
          gauge theory with CS-level         .

Gluing surfaces in Calabi-Yau threefold
15/27

S
tot

= F
0

[ F
2

F0

F2

S
tot

= F
0

[ F
2

H0 F0 E2 F2

S
tot

= F
0

[ F
2

SU(3)  = 1

H0

E2

H0 = E2

F0 F2



All shrinkable CY3 are constructed by a gluing                   .

1. Building blocks

 a. Hirzebruch surfaces and their blowups             .

 b. del Pezzo surfaces        .

2. Two surfaces      and      are glued along a curve

 a.      is a smooth irreducible rational curve.

 b.                                   .

3. All 2-cycles have non-negative volumes (when all masses are turned off).

4. At least one 4-cycle has positive volume.

• Dimension (or rank) of Coulomb branch = number of compact surfaces

• Number of mass parameters = number of blowups

Construction algorithm of  ‘Shrinkable CY3’s
16/27

S
tot

= [iSi

Si

SjSi

(Cg|1)2 + (Cg|2)2 = �2

Cg

Cg = S1 \ S2

V ol(C) = �C · J � 0 , C ⇢ S

tot

J =
X

i

�iSi, �i > 0

Blp(Fn)

dPn



Different geometries can give the same SCFT (up to decoupled free sector) 
when all Kahler parameters are turned off.
We claim that geometries are ‘Deformation Equivalent’ if they are related by

1. Flop : 

2. Hanany-Witten (HW) transition : a complex structure deformation

Deformation Equivalence of CY3’s
17/27

C C 0

V ol(C) = �V ol(C 0)

⌦

⌦

⌦

⌦

ex) F2 ! F0

C2 = C 02 = �1



3. Complex structure deformation by tuning mass parameters.

• Deformation equivalent CY3’s give rise to same SCFT up to decoupled free 
fields.

Deformation Equivalence of CY3’s
18/27

(0, 1) (0, 1) (0, 2)



All rank 1 SCFTs are engineered by CY3s of del Pezzo surfaces           and a 
Hirzebruch surface      .

• Classification :

• Brane constructions

Rank 1 classification
19/27

[Morrison, Seiberg 96], [Douglas, Katz, Vafa 96],
[Intriligator, Morrison, Seiberg 97]

F0

S G M
P2 · 0
F0 SU(2)✓=0 1

dP1 = F1 SU(2)✓=⇡ 1
dPn>1 SU(2), Nf = n�1 n

P2 F0 dP1 dP2 dP3

dPn7

M : # of mass parameters



We claim that

 1.            is a blowup of       at     generic points.
 2. Two surfaces are glued along rational curves                            .
 3. Gluing curves satisfy                       .
 4.                              .

 Ex ) 

Rank 2 classification
20/27

All rank 2 shrinkable CY3 can be realized as
for which                   and                          .

S = S1 [ S2
S1 = BlpFm S2 = dPn or F0

BlpFm Fm p
C1 ⇢ S1, C2 ⇢ S2

C2
1 + C2

2 = �2

C1 = E, C2
1 = �m

, C2 = H, H2 = 1

1. SU(3)2

F3 [ dP1 Bl2F2 [ F0, C2 = H, H2 = 0

2. SU(3)1 + 2F



We can blow down exceptional curves with self-intersection ‘-1’ which do not 
intersect with gluing curves. This defines an RG-flow to a new geometry and 
thus a new SCFT with one mass parameter less than the original geometry.

In field theory, such deformations are ‘rank-preserving mass deformation’.

If no such deformation exists, we will call the geometry as endpoint geometry.

Rank 1 examples : 

All other geometries are blown-ups of these endpoint geometries with same 
rank.

Geometric RG-flow and Endpoint geometries
21/27

P2

Endpoints Not an Endpoint

F0 ! SU(2)✓=0 F1 ! SU(2)✓=⇡



Rank 2 endpoint geometries have only               .

All other rank 2 geometries are blown-ups of these endpoint geometries.

Endpoint classification : Rank 2
22/27

M = 0, 1



Some brane constructions
23/27

⌦ ⌦⌦

⌦

⌦⌦

⌦

⌦

F0 [ F2 F0 [ F4 F0 [ F6

F1 [ F1 F1 [ F3

F1 [ F7

F1 [ F5

F1 [ F2 F1 [ F6

⌦

P2 [ F3

P2 [ F6

M = 1M = 0



Gauge theory analysis predicts

Geometric classification : 

Note that geometry cannot engineer             gauge theory!

Geometry and gauge theory : rank 2 with M=1
24/27

[Jefferson, H-C. Kim, 
Vafa, Zafrir 2015]

SU(3)8

SU(3), 0  ||  9
Sp(2),✓ = 0,⇡

G2



Geometric duality can lead to dualities between gauge theories. 

• Fiber class      with            in each surface                      can form a Cartan 
matrix             of Lie group     .  Namely,

• Choice of fiber classes is not unique.

• Different choices correspond to different gauge theory descriptions.

• Ex :

Dualities from geometry
25/27

Si ⇢ S = [iSi

Aij(G) G

⌦⌦

F0 [ F6

1.   

2.                    

, C1 = H1 + 2F1

, C2 = E2 ⇢ F6

�WiSj = Aij(G)

Wi

W1 = F1, W2 = F2 ! SU(3)5

W1 = H1, W2 = F2 ! Sp(2)✓=0

[Gaiotto, H-C. Kim 2015]

W 2
i = 0

Since                      , we have two choices :  F 2
1 = H2

1 = 0

[Intriligator, Morrison, Seiberg 97]

Thus,                 leads to                          duality. SU(3)5 $ Sp(2)F1 $ H1



•                         duality from 

• Gluing curves are                                                       .

• Two fiber class choices :

          
•                                                                               duality from

•        has three exceptional curves                    with self-intersection ‘-1’.

• Gluing curves are                                                         .

• Three fiber class choices : 
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New dualities from geometry
SU(3)7 $ G2

C1 = H1 + 3F1 ⇢ F0, C2 = E2 ⇢ F8

dP3 [ F6

F0 [ F8

C1 = 3l �X1 � 2X2, C2 = E2 ⇢ F6

dP3 X1, X2, X3

1. W1 = l �X1, W2 = F2 ! Sp(2), NA = 2

2. W1 = l �X2, W2 = F2 ! SU(3)6, Nf = 2

3. W1 = l �X3, W2 = F2 ! G2, Nf = 2

SU(3)6, Nf =2 $ G2, Nf =2 $ Sp(2)✓=0, NA=2

1. W1 = F1, W2 = F2 ! SU(3)7

2. W1 = H1, W2 = F2 ! G2



• We propose that QFT with 5d CFT fixed points should have positive
 metric on the physical Coulomb branch at infinite coupling.

• We classified 5d SCFTs with simple gauge group.

• We propose a systematic way to construct shrinkable Calabi-Yau 
 threefolds which give 5d SCFTs.

• Geometric constructions confirm gauge theory predictions and also this 
constructions provide new dualities.

Future directions
• Topologial string partition functions

• Gauge theory classification including non-perturbative analysis.

• Full classification of 5d SCFTs and shrinkable Calabi-Yau threefolds.

Summary and future directions
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on progress with H. Hayashi and K. Ohmori



Thank you very much !


