Autumn Symposium on String Theory 13.9.2017@KIAS

Hofstadter, Toda & Calabi-Yau

Yasuyuki Hatsuda (Rikkyo University) 初田 泰之(立教大学) Autumn Symposium on String Theory 13.9.2017@KIAS

Hofstadter, Toda & Calabi-Yau

(2d electrons, integrable systems & geometry)

Yasuyuki Hatsuda (Rikkyo University)

初田 泰之(立教大学)

The aim of this talk is to introduce an attempt to relate string theory to relatively a realistic electron system

In 1976, Douglas Hofstadter considered an interesting 2d electron model in a magnetic field

He predicted a novel electron spectrum, which is now known as Hofstadter's butterfly

He predicted a novel electron spectrum, which is now known as Hofstadter's butterfly

40 years later, Katsura, Tachikawa and myself found that the completely same figure appears in the context of Calabi-Yau geometry

YH, Katsura & Tachikawa, arXiv:1606.01894 "Hofstadter's butterfly in quantum geometry"

I would like to explain its idea

YH-Katsura-Tachikawa New J.Phys. 18 (2016) 10, 103023

$$ho(E;q) = rac{1}{2\pi} \, {
m Im} \left[rac{\partial t(E;q)}{\partial E}
ight]$$

YH-Katsura-Tachikawa New J.Phys. 18 (2016) 10, 103023

Magnetic effect

YH-Katsura-Tachikawa New J.Phys. 18 (2016) 10, 103023

Magnetic effect

YH-Katsura-Tachikawa New J.Phys. 18 (2016) 10, 103023

Magnetic effect = "Quantum" parameter

Contents

1. Hofstadter Model

- 2. Toda Lattice
- **3. Relation to Calabi-Yau**
- 4. Weak Magnetic Expansion

1. Hofstadter Model

2d Electron in Magnetic Field

2d Electron in Magnetic Field

$$[\Pi_x, \Pi_y] = \frac{\hbar e}{i} (\partial_x A_y - \partial_y A_x) = -i\hbar eB$$

2d Electron in Magnetic Field

• This Hamiltonian is the same as that for the harmonic oscillator

$$E_n = \hbar \omega_c \left(n + \frac{1}{2} \right)$$

$$\omega_c = \frac{eB}{m}$$
Landau level

 The spectrum of the 2d electron is quantized by the magnetic effect

An Electron on 2d Lattice

 In this case, the spectrum is obtained by the tight-biding approximation

$$E = 2\cos(k_x a) + 2\cos(k_y a)$$

• The allowed range of the energy:

Single energy band

The Hofstadter Model

• An electron on a 2d lattice with a magnetic flux

Lattice

$$E = e^{ik_x a} + e^{-ik_x a} + e^{ik_y a} + e^{-ik_y a}$$

The Hofstadter Model

• An electron on a 2d lattice with a magnetic flux

Lattice

$$E = e^{ik_x a} + e^{-ik_x a} + e^{ik_y a} + e^{-ik_y a}$$

$$H = e^{\frac{ia}{\hbar}\Pi_x} + e^{-\frac{ia}{\hbar}\Pi_x} + e^{\frac{ia}{\hbar}\Pi_y} + e^{-\frac{ia}{\hbar}\Pi_y}$$

The Hofstadter Model

• By fixing the Landau gauge A = (0, Bx, 0), the eigenvalue problem finally leads to Harper's equation Hofstadter '76

$$\psi(n+1) + \psi(n-1) + 2\cos(2\pi n\alpha + \nu)\psi(n) = E\psi(n)$$

$$\alpha = \frac{a^2 eB}{2\pi\hbar}$$

• If $\alpha = P/Q$ (rational), the spectrum of this equation gives Q energy bands

Hofstadter's Butterfly

2. Toda Lattice

The Toda Lattice

 The Toda lattice is the well-known quantum integrable system Toda '67

$$H_1 = \sum_{n=1}^{N} \left(\frac{p_n^2}{2} + e^{x_n - x_{n+1}} \right), \quad x_{N+1} = x_1$$

• There are N mutually commuting operators

 $[H_n, H_m] = 0$

• The eigenvalue problem

$$H_k\Psi(x_1,\ldots,x_N)=E_k\Psi(x_1,\ldots,x_N)$$

Generalized Toda Lattice

• There is a one-parameter deformation of the Toda lattice Ruijsenaars '90

$$H_{1} = \sum_{n=1}^{N} \left(1 + q^{-1/2} R^{2} e^{x_{n} - x_{n+1}} \right) e^{Rp_{n}}$$
$$q = e^{iR\hbar}$$

Generalized Toda Lattice

• There is a one-parameter deformation of the Toda lattice Ruijsenaars '90

N=2 gToda

• Let us consider the case of N=2

$$H = e^{Rp_1} + e^{Rp_2} + R^2(e^{x_1 - x_2 + Rp_1} + e^{x_2 - x_1 + Rp_2})$$

$p_1 + p_2 = 0$ (Center of mass frame)

$$p := Rp_1, \quad x := x_1 - x_2 + Rp_1$$

N=2 gToda

• Let us consider the case of N=2

$$H = e^{Rp_1} + e^{Rp_2} + R^2(e^{x_1 - x_2 + Rp_1} + e^{x_2 - x_1 + Rp_2})$$

$p_1 + p_2 = 0$ (Center of mass frame)

$$p := Rp_1, \quad x := x_1 - x_2 + Rp_1$$

$$H = e^{p} + e^{-p} + R^{2}(e^{x} + e^{-x})$$

$$[x,p] = iR\hbar$$

N=2 gToda

 The eigenvalue equation is thus a difference equation

$$\psi(x + iR\hbar) + \psi(x - iR\hbar) + 2R^2 \cosh x \,\psi(x) = E\psi(x)$$

 This equation is very similar to Harper's equation, but their spectra are quite different

Harper \rightarrow Continuous (Bands)Toda \rightarrow Discrete

3. Relation to Calabi-Yau

So far...

The Hofsdater model (Harper's equation)

$$\psi(n+1) + \psi(n-1) + 2\cos(2\pi n\alpha + \nu)\psi(n) = E\psi(n)$$

The generalized Toda lattice

$$\psi(x+i\hbar) + \psi(x-i\hbar) + 2\cosh x \,\psi(x) = E\psi(x)$$

 The situation is similar to the difference between the Mathieu (cos) and the modified Mathieu (cosh) potentials

To Calabi-Yau

 $E = e^{ik_{x}a} + e^{-ik_{x}a} + e^{ik_{y}a} + e^{-ik_{y}a}$

 $E = e^{p} + e^{-p} + e^{x} + e^{-x}$ \downarrow $X + X^{-1} + Y + Y^{-1} = E$

This equation defines a genus one **Riemann surface**

To Calabi-Yau

• The complex 3d space

$$VW = X + X^{-1} + Y + Y^{-1} - E$$

describes a Calabi-Yau manifold

- The Riemann surface has enough information to describe this CY manifold
- In this way, one can see a connection to the CY geometry

Mirror Symmetry

 The Calabi-Yau geometry has a remarkable hidden duality, called mirror symmetry

Spectral Solution 1

 The spectral problem of the N=2 generalized Toda lattice is solved by the exact version of the quantization condition in terms of string theory

Grassi, YH & Marino '14; Wang, Zhang & Huang '15

 $\begin{aligned} \frac{\partial}{\partial t} F_{\rm NS}^{\mathbb{P}^1 \times \mathbb{P}^1}(t;\hbar) &+ \frac{\partial}{\partial \tilde{t}} F_{\rm NS}^{\mathbb{P}^1 \times \mathbb{P}^1}(\tilde{t};\tilde{\hbar}) = 2\pi \left(n + \frac{1}{2}\right) \\ t &= t(E;q) \qquad q = e^{i\hbar}, \quad \tilde{t} = \frac{2\pi t}{\hbar}, \quad \tilde{\hbar} = \frac{4\pi^2}{\hbar} \end{aligned}$

[Sciarappa's talk]

Spectral Solution 2

 On the other hand, the spectrum of the Hofstadter problem is encoded in the quantum deformed mirror map

YH, Katsura & Tachikawa '16

$$\rho(E) = \frac{1}{2\pi} \operatorname{Im} \left[\frac{\partial t(E;q)}{\partial E} \right], \quad q = e^{2\pi i \alpha}$$

Schematic Similarity

Local CP¹×CP¹ Toric diagram

Square lattice

Triangular lattice

Local B₃

YH, Sugimoto & Xu '17

Claro & Wannier '79

4. Weak Magnetic Expansion

 In the weak magnetic regime, the band width of the Hofstadter model is extremely narrow, and one can see Landau level splitting

 This fact is easily seen by the Hamiltonian analysis

$$H = e^{\frac{ia}{\hbar}\Pi_{x}} + e^{-\frac{ia}{\hbar}\Pi_{x}} + e^{\frac{ia}{\hbar}\Pi_{y}} + e^{-\frac{ia}{\hbar}\Pi_{y}}$$
$$= 4 - \frac{a^{2}}{\hbar^{2}}(\Pi_{x}^{2} + \Pi_{y}^{2})$$
$$+ \frac{a^{4}}{12\hbar^{4}}(\Pi_{x}^{4} + \Pi_{y}^{4}) + \cdots$$

 This fact is easily seen by the Hamiltonian analysis

 E_n

 This fact is easily seen by the Hamiltonian analysis

• There is a systematic way to compute the weak magnetic expansion

MATHEMATICA package: Sulejmanpasic & Ünsal '16 Extension: Gu & Sulejmanpasic '17

$$E_0 = 4 - \phi + \frac{\phi^2}{8} - \frac{\phi^3}{192} + \frac{\phi^4}{768} + \frac{67\phi^5}{245760} + \frac{653\phi^6}{5898240}$$

• There is a systematic way to compute the weak magnetic expansion

MATHEMATICA package: Sulejmanpasic & Ünsal '16 Extension: Gu & Sulejmanpasic '17

$$E_0 = 4 - \phi + \frac{\phi^2}{8} - \frac{\phi^3}{192} + \frac{\phi^4}{768} + \frac{67\phi^5}{245760} + \frac{653\phi^6}{5898240} + \dots + 6.79 \times 10^{39}\phi^{99} + 4.59 \times 10^{40}\phi^{100} + \mathcal{O}(\phi^{101})$$

• There is a systematic way to compute the weak magnetic expansion

MATHEMATICA package: Sulejmanpasic & Ünsal '16 Extension: Gu & Sulejmanpasic '17

$$E_0 = 4 - \phi + \frac{\phi^2}{8} - \frac{\phi^3}{192} + \frac{\phi^4}{768} + \frac{67\phi^5}{245760} + \frac{653\phi^6}{5898240}$$

 $+\cdots + 6.79 \times 10^{39} \phi^{99} + 4.59 \times 10^{40} \phi^{100} + \mathcal{O}(\phi^{101})$

- Obviously, this expansion looks divergent
- One needs a resummation method

Borel Sum

- The standard way to resum a factorially divergent series is the Borel sum
- Let us review it briefly
- Consider the following formal divergent series

$$f(z) = \sum_{n=0}^{\infty} f_n z^n, \quad f_n \sim n!$$

• Borel transform

$$\mathcal{B}f(\zeta) := \sum_{n=0}^{\infty} \frac{f_n}{n!} \zeta^n$$
 Convergent series!

• Borel sum

$$Sf(z) = \frac{1}{z} \int_0^\infty d\zeta \, e^{-\zeta/z} \mathcal{B}f(\zeta)$$

- The Borel sum gives a meaning to a formal divergent series
- One has to be careful about singularities of the Borel transform

Borel(-Pade) Singularities

$$\mathcal{B}E_{0}(\zeta) = \sum_{n=0}^{100} \frac{E_{0}^{(n)}}{n!} \zeta^{n}$$
$$\approx \frac{P_{50}(\zeta)}{Q_{50}(\zeta)}$$

Borel(-Pade) Singularities

Borel(-Pade) Singularities

Borel(-Pade) Resum

 $\mathcal{S}_{\pm} E_0 := \frac{1}{\phi} \int_{C_+} d\zeta \, e^{-\zeta/\phi} \mathcal{B} E_0(\zeta)$

Borel(-Pade) Resum

 $\operatorname{Re}\zeta$

 $\mathcal{S}_{\pm}E_0 = 2.935649214 \pm 0.000378867i$

-150

Borel(-Pade) Resum

 $S_{\pm}E_0 = 2.935649214 \pm 0.000378867i$ This ambiguity should be canceled by "nonperturbative" corrections

What does this value mean?

YH, in progress

 The Borel resummed value is very close to the energy at the Van Hove singularity

• For $\alpha = 1/5$, the positions of the Van Hove singularities are analytically determined by

$$E\left(E^4 - 10E^2 + \frac{35 - 5\sqrt{5}}{2}\right) = 0$$

• For $\alpha = 1/5$, the positions of the Van Hove singularities are analytically determined by

$$E\left(E^4 - 10E^2 + \frac{35 - 5\sqrt{5}}{2}\right) = 0$$

 $E_{\rm VHS} = \pm 2.935648819, \pm 1.175570505, 0$

• For $\alpha = 1/5$, the positions of the Van Hove singularities are analytically determined by

$$E\left(E^4 - 10E^2 + \frac{35 - 5\sqrt{5}}{2}\right) = 0$$

 $E_{\rm VHS} = \pm 2.935648819, \pm 1.175570505, 0$

 $\mathcal{S}_{\pm}E_0 = 2.935649214 \pm 0.000378867i$

• The coincidence is probably not accidental

- The coincidence is probably not accidental
 - $\alpha = 1/10$

$E_{\rm VHS}^{\rm max} = 3.41997695020118566$ $S_{\pm}E_0 = 3.41997695020118576 \pm 4.0 \times 10^{-9}i$

• The coincidence is probably not accidental

 $E_{\rm VHS}^{\rm max} = 3.41997695020118566$ $S_{\pm}E_0 = 3.41997695020118576 \pm 4.0 \times 10^{-9}i$

 $\alpha = 1/15$

 $E_{\rm VHS}^{\rm max} = \mathbf{3.602714983890327032980205}$ $\mathcal{S}_{\pm}E_0 = \mathbf{3.602714983890327032980207} \pm 3.6 \times 10^{-14}i$

Summary

- The Hofstadter model (2d electrons) and the generalized Toda lattice (integrable system) has a nontrivial relation to the Calabi-Yau geometry
- The weak magnetic expansion in the Hofstadter model is not Borel summable
- The resummation seems to reproduce the value at the Van Hove singularity

Open Questions

- The full weak magnetic expansion must be a transseries expansion
- P/NP (Dunne-Ünsal) relations?
- If α is irrational, the spectrum is much more involved
- What does the Borel resum for the irrational case mean?

Thank you!