Star formation in z > 1.4 early-type galaxies

#### **R. Gobat (KIAS)**

+ E. Daddi, V. Strazzullo, S. Jin, G. Magdis, M. Sargent, F. Bournaud, M. Martig & others

6<sup>th</sup> Survey Science Group Meeting, Ulleungdo, June 29 2017

#### Introduction



what processes quench galaxies during the cosmic noon?

indices from abundances, stellar population structure, residual gas

how do quenched galaxies stay quiescent for ~9 Gyr ?

#### **COSMOS pBzK + UVJp sample**



#### Mass-matched pBzK + UVJp sample



early-type morphologies: n ~ 3,  $r_{eff}$  ~ 1.5 kpc

#### Far-infrared stacks (2D)



Spitzer/MIPS













100 µm





JCMT/SCUBA2

ASTE/AzTEC

VLA

#### **Far-infrared stacks (2D)**



distance from central (arcsec)

#### **Far-infrared stacks (2D)**



distance from central (arcsec)



#### **Satellite halos**

Gobat et al. 2015, A&A 581, 56



Diffuse X-ray emission:  $M_{200} = 1-3 \times 10^{13} M_{\odot}$ 

**Depressed sSFR closer to the central** 

SFR density does not follow SF satellite number density

#### **Far-infrared stacks (SED)**



#### **Far-infrared stacks (SED)**









#### High dust & gas fractions in z > 1.5 quiescent galaxies

(Gobat et al., arXiv:1703.02207)



 $f_{gas} = M_{gas}/(M_{gas}+M_{*}) = 7.4^{+4.6}_{-3.0}$  % (1/4 of the MS)

#### **Mass-matched spectroscopic ETG subsample**



VLT/VIMOS observations of 31 BzK-selected quiescent galaxies in COSMOS

 $\langle z \rangle = 1.51, \langle M_* \rangle = 1.2 \times 10^{11} M_{\odot}$  (Salpeter IMF),  $\langle E(B-V) \rangle = 0.12$ 

Stellar metallicity from rest-frame UV spectroscopy ~ 1 Z<sub>o</sub>

#### Spectroscopic ETG subsample: stacked 2D spectrum

Median stacked 2D spectra (same relative scale)



outer aperture
inner aperture (~PSF FWHM)

Decomposition in core and wings components:

 $\begin{pmatrix} \text{in} \\ \text{out} \end{pmatrix} = \begin{pmatrix} w_{ic} & w_{iw} \\ w_{oc} & w_{ow} \end{pmatrix} \begin{pmatrix} \text{core} \\ \text{wings} \end{pmatrix} + \begin{pmatrix} \delta_{\text{in}} \\ \delta_{\text{out}} \end{pmatrix}$ 

First detection of **spectroscopic gradients** at high redshift (Gobat et al. 2017, A&A 599, 95)



#### Spectroscopic ETG subsample: resolved [OII] emission



extended [OII]3727Å flux: (3.4±0.3)×10<sup>-18</sup> erg s<sup>-1</sup> cm<sup>-2</sup>

flux calibration + dust & aperture corrections

if star formation, SFRoII = 4.5 ± 1 M<sub>☉</sub> yr<sup>-1</sup>

close to the FIR value SFR<sub>IR</sub> ≅ 4.8 M<sub>☉</sub> yr<sup>-1</sup>



# Hydrodynamical simulations

- non-expulsive quenching process leaves significant amounts of gas
- 2. transition to low SFE mode when  $f_{gas} \approx 15\%$
- 3. **bulge stabilisation keeps SFE low**, even after later reaccretion of gas

### Summary

low residual star formation in z >1.4 ETGs from both emission-line and far-infrared diagnostics. ~1.5 dex below the MS

> Iow T<sub>dust</sub> (-10 K) Iow SFE (×1/3)

stabilization by bulge and halo

high dust and gas fractions (10%) ~1-2 dex above the MS

> non-exhaustive quenching process

## Thank you