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Classical Physics
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Perfect Measurement in Classical Physics

T. Christ / H. Hinrichsen
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Classical objective reality

Objective reality: Objects are in a definite state.

• The bit c is in the state c = 0 or c = 1.
• The particle is is in the state (q(t), p(t)) at time t

Ideal measurement:
Read off all information without disturbing the experiment.

Deterministic dynamics:
Principle of least action, leading to equations of motion

ṗ(t) = −∂qH , q̇(t) = ∂pH

T. Christ / H. Hinrichsen
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Realistic Measurement in Classical Physics

T. Christ / H. Hinrichsen
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Subjective lack of knowledge: Classical probability theory

Incomplete knowledge caused by imperfect measurement:
• The bit c is in the state c = 0 or c = 1, but we don’t know
exactly in which one.

• The particle is is in the state (q(t), p(t)) at time t, but we
don’t know exactly where.

Classical probability theory:

• Think of an ensemble of identical systems
• Imagine a repeated uncorrelated measurement

Relative frequencies ⇒ limN→∞ ⇒ Probabilities

T. Christ / H. Hinrichsen
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Subjective lack of knowledge: Classical probability theory

Concept of probabilities

• The bit c is in the state c = 0 or c = 1, with probability

p(0), p(1) normalized by p(0) + p(1) = 1

• The particle is in the state (q(t), p(t)) at time t with
probability

ρ(p, q, t) with
∫

d3q
∫

d3p ρ(q, p, t) = 1

⇒ Deterministic equations of motion for the probabilities

T. Christ / H. Hinrichsen
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Quantum Physics

No objective reality any more.

T. Christ / H. Hinrichsen
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Quantum states

Classical mechanics:

• Of all possible configurations Nature selects the one with the
minimal action δS = 0.

Quantum physics:

• All configurations “exist in parallel”.

• Each configuration is weighted by a complex number e
i
~S

• The probability of a measurement result is proportional to the
squared absolute value of the sum of all weights of those
configutations which are compatible with the result.

T. Christ / H. Hinrichsen
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Quantum states

The catalog of all phases at a given time with respect to a
measurement basis (e.g. position x) is summarized in a wave
function ψ(x), or equally, as a vector |ψ〉 in Hilbert space.

• Normalization
∫
|ψ(x)|2dx = |ψ〉〈ψ| = 1

• Deterministic evolution equation i~∂t |ψ〉 = H|ψ〉

Two aspects:

Probabilities represent a subjective uncertainty about facts.

Quantum amplitudes represent an objective uncertainty:
Reality is only produced in the interaction / measurement.

T. Christ / H. Hinrichsen
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Perfect Measurement in Quantum Physics

T. Christ / H. Hinrichsen



Quantum Statistical Ensembles Quantum Measurements Classical and quantum correlations Entanglement criteria Entanglement measures

Realisitc Measurement in Quantum Physics

T. Christ / H. Hinrichsen
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Quantum Ensembles

Probabilistic ensemble of quantum states:

|ψ〉 occurs with probability p(ψ).

〈M〉 =

∫
ψ
p(ψ)〈ψ|M|ψ〉 (1)

=

∫
ψ
p(ψ)Tr

[
M|ψ〉〈ψ|

]
(2)

= Tr
[
M
∫
ψ
p(ψ)|ψ〉〈ψ|︸ ︷︷ ︸

=:ρ

]
= Tr[Mρ] (3)

All information is encoded in the density matrix ρ.
T. Christ / H. Hinrichsen
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Quantum Statistical Ensembles

Different ensembles may correspond to the same density matrix.
Example: ρ =

∫
dα p(α)|ψα〉〈ψα| , |ψα〉 = cosα| ↑〉+ sinα| ↓〉

ρ =

(1
2 0
0 1

2

)
in all cases.

T. Christ / H. Hinrichsen
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Quantum Statistical Ensembles

The density matrix ρ characterizes equivalence classes of
statistical ensembles of quantum states that cannot be
distinguished by measurements.

ρ = ρ† , Trρ = 1

Spectral decomposition:

ρ =
∑

i

pi |ψi 〉〈ψi | =
∑

i

piρi

⇑ The eigenvalues pi are probabilities.

T. Christ / H. Hinrichsen
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Time evolution

Schrödinger equation: ∂t |ψ〉 = 1
i~H|ψ〉

∂tρ =
∑

i

pi∂t |ψ〉〈ψ| =
∑

i

pi

( 1
i~
H|ψ〉〈ψ| − 1

i~
|ψ〉〈ψ|H

)
.

i~∂tρ = [H, ρ]

Solution: Unitary evolution

ρ(t) = e−
i
~Ht︸ ︷︷ ︸

U(t)

ρ(0) e+ i
~Ht︸ ︷︷ ︸

U−1(t)

T. Christ / H. Hinrichsen



Quantum Statistical Ensembles Quantum Measurements Classical and quantum correlations Entanglement criteria Entanglement measures

Density matrix formalism

vector formalism: operator formalism:

|ψ〉 ρ := |ψ〉〈ψ| (pure)

ρ :=
∑

i pi |ψi 〉〈ψi | (mixed)

〈ψ|ψ〉 = 1 Tr[ρ] = 1

i∂t |ψ〉 = H|ψ〉 i∂tρ = [H, ρ]

〈M〉ψ = 〈ψ|M|ψ〉 〈M〉ρ = Tr[Mρ]

coherent superposition convex probabilistic mixture
|ψ〉 = α|ψ1〉+ β|ψ2〉 ψ = p1ρ1 + p2ρ2
|α|2 + |β|2 = 1 p1 + p2 = 1

T. Christ / H. Hinrichsen
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The smallest quantum system: The qubit

Classical bit: Configurations 0,1

Quantum bit: Amplitudes ψ(0) and ψ(1) with
|ψ(0)|2 + |ψ(1)|2 = 1.

Bloch ball representation:
ρ = 1

2

(
1 + xσx + yσy + zσz

)
The vector (x , y , z) on the
Bloch ball can be interpreted as
expectation value of ~σ = (σx , σy , σz).

Points on the sphere represent pure states.

T. Christ / H. Hinrichsen
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Positive operators

An operator ρ is called positive if one of the following equivalent
statements holds:

• ρ = ρ† and 〈ρψ, ψ〉 = 〈ψ|ρ|ψ〉 ≥ 0
• ρ = ρ† and all eigenvalues of ρ are non-negative.
• ρ can be written as ρ = A†A.

Density matrices are positive normalized operators.

Positive maps are functions mapping positive operators to other
positive operators.

T. Christ / H. Hinrichsen
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Von-Neumann entropy

Statistical mixture of quantum states:

ρ =
∑

i

pi |ψi 〉〈ψi | =
∑

i

piρi

The von Neumann entropy quantifies the uncertainty in the
ensemble:

S(ρ) = −
∑

i

pi ln pi = −Tr
[
ρ ln ρ

]
Pure states ρ = |ψ〉〈ψ| have entropy zero.

Mixtures have a positive entropy.

0 ≤ S(ρ) ≤ ln d

T. Christ / H. Hinrichsen



Quantum Statistical Ensembles Quantum Measurements Classical and quantum correlations Entanglement criteria Entanglement measures

Entropy “units”

• Physicists: S(ρ) = −kBTr
[
ρ ln ρ

]
[S ] = J/K

• Mathematicians: S(ρ) = −Tr
[
ρ ln ρ

]
[S ] = 1

• Information scientists: S(ρ) = −Tr
[
ρ log2 ρ

]
[S ] = bit

T. Christ / H. Hinrichsen
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Properties of the von-Neumann entropy

S(ρ) = −Tr
[
ρ ln ρ

]

• Concavity under probabilistic mixing:

S
(∑

i

piρi

)
≥
∑

i

piS(ρi )

• Invariance under unitary transformations

S(ρ) = S(UρU†)

⇒ Unitary transformations are information-preserving.
⇒ Schrödinger time evolution does not change entropy.

T. Christ / H. Hinrichsen
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Thermostatics:
Isolated quantum systems: Microcanonical ensemble

Entropy should be maximal.

Classical physics: S = ln |Ω|

Quantum physics: S(ρ) = ln dimH

⇒ ρ =
1

dimH

(identity matrix normalized to trace 1)

Example: Microcanonical qubit: ρ =

(
1/2 0
0 1/2

)
T. Christ / H. Hinrichsen
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Systems in a heat bath: Canonical ensemble

If energy is exchanged with a heat bath, the entropy is maximised
under the constraint that the energy average E = 〈H〉 is constant.

δS [ρ] = δTr[ρ ln ρ] = 0 , δTr[ρ] = 0 , δTr[Hρ] = 0

Introduce Lagrange multiplyer α, β:

⇒ δ
(
Tr[ρ ln ρ] + αTr[ρ] + βTr[Hρ]

)
= Tr

[
δρ(ln ρ+ α+ βH)

]
= 0 .

Solution: ρ = e−α−βH =
1
Z
e−H/kBT ; Z = Tr

[
e−βH]

E = 〈H〉 = Tr[ρH] =
Tr[He−βH]

Tr[e−βH]
= −∂β lnZ

T. Christ / H. Hinrichsen
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Von-Neumann measurement postulate

A Measurement is represented by a Hermitean operator

M = M† =
∑
m

m|m〉〈m|

If a system in a pure state |ψ〉 is measured by M it is
instantaneously projected onto one of its eigenstates |m〉

with probability |〈ψ|m〉|2.

ρ → ρ′ =
∑
m

|m〉〈m| ρ |m〉〈m|

A measurement usually generates classical randomness (=entropy).
T. Christ / H. Hinrichsen
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Realistic measurements

A realistic measurement has a finite precision.

Simple model for a non-perfect measurement:

T. Christ / H. Hinrichsen
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Realistic measurements

Usual projective measurement (von Neumann):

M =
∑
m

λm|m〉〈m| ⇒ ρ→ ρ′ =
∑
m

|m〉〈m| ρ |m〉〈m|

Generalized measurement (take Mj with probability qj):

ρ→ ρ′ =
∑

j

qj
∑
mj

|mj〉〈mj | ρ |mj〉〈mj |

• cannot be written as a projective measurement
• is a legal quantum operation (ρ′ is again a density matrix)

T. Christ / H. Hinrichsen
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Kraus Theorem

University of Würzburg
• Nobel prize for X-rays
• Nobel prize Quantum Hall effect
• Karl Kraus: Important theorem in QI

T. Christ / H. Hinrichsen
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Kraus Theorem

Let H1 and H2 be two Hilbert spaces.

Let Φ : H1 → H2 be a quantum operation
(meaning that Φ applied to a density matrix is again a density
matrix).

Then Φ can be written in the form

ρ′ = Φ(ρ) =
∑
k

BkρB
†
k

with
∑

k BkB
†
k = 1.

The operators {Bk} are called Kraus Operators.
They are unique up to unitary transformations.

T. Christ / H. Hinrichsen
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POVMs

ρ→ ρ′ =
∑

j

qj
∑
mj

|mj〉〈mj | ρ |mj〉〈mj |

Applying the Kraus theorem this can be written as

ρ′ = Φ(ρ) =
∑
k

BkρB
†
k

A measurement described by a set of operators {Bk}
with

∑
k BkBk

† = 1 is called a
positive operator-valued measurement (POVM).

T. Christ / H. Hinrichsen
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von Neumann measurement as a special case

ρ → ρ′ =
∑
m

|m〉〈m| ρ |m〉〈m|

ρ′ = Φ(ρ) =
∑
m

BmρBm
†

⇒ Bm = |m〉〈m| are projection operators.

Von-Neumann measurements are projective measurements.

T. Christ / H. Hinrichsen
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Bipartite systems

Hilbert space HAB = HA ⊗HB

T. Christ / H. Hinrichsen
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Bipartite systems

There are two different types of correlations
between the two subsystems:

- Quantum correlations (entanglement)

- Classical correlations (probabilistic)

T. Christ / H. Hinrichsen
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Classical correlations

Classical correlations are simply due
to the composition of the ensemble:

ρ = 1
2| ↑〉〈↑ |+

1
2 | ↓〉〈↓ |

T. Christ / H. Hinrichsen
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Quantum correlations (entanglement)

Quantum correlations are due
to a superposition of amplitudes

|ψ〉 = 1√
2
| ↑↑〉+ 1√

2
| ↓↓〉

ρ = |ψ〉〈ψ|
Quantum correlations can be
present in pure quantum states.

T. Christ / H. Hinrichsen
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Cartoon of correlation landscape

T. Christ / H. Hinrichsen
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States of maximal classical and quantum corrleation

Two qubit system:
Maximal classical correlations:

ρclass =
1
2

(
| ↑↑〉〈↑↑ |+ | ↓↓〉〈↓↓ |

)
=

1
2


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


Maximal quantum correlations:

ρquant =
1
2

(
| ↑↑〉+ | ↓↓〉

)(
〈↑↑ |+ 〈↓↓ |

)
=

1
2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1



T. Christ / H. Hinrichsen
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How to distinguish classical and quantum correlations

Two qubit system:
Measurement questions: ↑↑ or ↑↓ or ↓↑ or ↓↓ ?

Measurement operator: σz ⊗ σz

Measurement projectors: P↑↑ = | ↑↑〉〈↑↑ |, P↑↓ = | ↑↓〉〈↑↓ | ,
P↓↑ = | ↓↑〉〈↓↑ | ,P↓↓ = | ↓↓〉〈↓↓ |.

Tr[ρclassP↑↑] = Tr[ρquantP↑↑] = 1/2
Tr[ρclassP↑↓] = Tr[ρquantP↑↓] = 0
Tr[ρclassP↓↑] = Tr[ρquantP↓↑] = 0
Tr[ρclassP↓↓] = Tr[ρquantP↓↓] = 1/2

In both cases we find only ↑↑ and ↓↓, each with probability 1/2.

T. Christ / H. Hinrichsen
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How to distinguish classical and quantum correlations

In order to detect quantum correlations, we have to measure several
observables (different analyzer orientations):

〈σz ⊗ σz〉class = Tr[ρclassσ
z ⊗ σz ] = 1

〈σz ⊗ σz〉quant = Tr[ρquantσ
z ⊗ σz ] = 1

〈σx ⊗ σx〉class = Tr[ρclassσ
x ⊗ σx ] = 0

〈σx ⊗ σx〉quant = Tr[ρquantσ
x ⊗ σx ] = 1

To see the difference between classical and quantum correlations,
one has to use several kinds of measurements (rotate the analyzer).

T. Christ / H. Hinrichsen
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T. Christ / H. Hinrichsen
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Pure states

• Pure states ρ = |ψ〉〈ψ| are always classically uncorrelated
(no classical statistics involved).

• A pure state is said to be separable if it factorizes:

|ψ〉 = |ψA〉 ⊗ |ψB〉

ρ = |ψA〉〈ψA| ⊗ |ψB〉〈ψB|

• A pure state is said to be entangled if it is not separable.

T. Christ / H. Hinrichsen



Quantum Statistical Ensembles Quantum Measurements Classical and quantum correlations Entanglement criteria Entanglement measures

Measurement on subsystems

Measuring subsystem A with MA = M†A ...

T. Christ / H. Hinrichsen
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Measurement on subsystems

Measuring subsystem A with MA = M†A
is the same as measuring the combined system with M = MA ⊗ 1.

T. Christ / H. Hinrichsen
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Partial trace

〈M〉 = Tr
[
ρM
]

= Tr
[
ρ(MA ⊗ 1)

]
= Tr

[
TrB[ρ]︸ ︷︷ ︸
⇑

MA

]
partial trace over B

Reduced density matrices: ρA = TrB[ρ] , ρB = TrA[ρ]

T. Christ / H. Hinrichsen
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Partial trace

Pure state entanglement, seen from the perspective of a
subsystem, looks like classical randomness.

ρ =
1
2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 ⇒ ρA = TrB[ρ] =
1
2

(
1 0
0 1

)

T. Christ / H. Hinrichsen
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Partial trace

In quantum physics, subsystems may have a higher entropy
than the composite system.

T. Christ / H. Hinrichsen
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Measuring the entanglement of pure quantum states

SA = S(ρA) = −Tr[ρA ln ρA]

SB = S(ρB) = −Tr[ρB ln ρB]

SA = SB

Undisputed unique entanglement measure for pure states:

E = SA = SB

For a maximally entangled state:
ρquant = 1

2

(
| ↑↑〉+ | ↓↓〉

)(
〈↑↑ |+ 〈↓↓ |

)
: E = ln 2 [1 bit]

T. Christ / H. Hinrichsen
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Measuring classically correlated states

Use mutual information: IA:B = SA + SB − SAB

For a maximally classically correlated state:

ρquant = 1
2

(
| ↑↑〉+ | ↓↓〉

)(
〈↑↑ |+ 〈↓↓ |

)
: IA:B = ln 2 [1 bit]

T. Christ / H. Hinrichsen
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The Problem

State IA:B E
no correlations (pure & separable) 0 0
maximal classical correlations 1 1
maximal quantum correlations 2 1

“supercorrelated”

Problem: These measures cannot be combined to distinguish
quantum and classical correlations for general mixed states. ⇒

Different entanglement measures needed.

T. Christ / H. Hinrichsen
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The Problem

T. Christ / H. Hinrichsen
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Separable quantum states

• Factorizing density matrix:
Neither classical nor quantum correlations:

ρ = ρA ⊗ ρB

• Mixtures are said to be separable if they can be written as
convex combinations of factorizing density matrices:

ρ =
∑

i

pi ρ
(i)
A ⊗ ρ

(i)
B

T. Christ / H. Hinrichsen
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Schmidt decomposition

Every pure state |ψ〉 of a bipartite system can be decomposed as

|ψ〉 =
r∑

n=1

αn|n〉A ⊗ |n〉B

with r ≤ min(dA, dB) and Schmidt numbers αn ≥ 0 obeying∑
n

α2
n = 1

T. Christ / H. Hinrichsen
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Schmidt decomposition

|ψ〉 =
r∑

n=1

αn|n〉A ⊗ |n〉B

For the density matrix of a pure state:

⇒ ρ = |ψ〉〈ψ| =
r∑

n,m=1

αnαm|n〉〈m|A ⊗ |n〉〈m|B

For reduced density matrices:

ρA = TrB[ρ] =
r∑

n=1

α2
n|n〉〈n|A , ρB = TrA[ρ] =

r∑
n=1

α2
n|n〉〈n|B

The α2
n are just the probabilities in the reduced state.

Proof: Singular value decomposition

T. Christ / H. Hinrichsen
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Purification

• Take an arbitrary mixed state ρA on the Hilbert space HA:

ρA =
∑
n

pn|n〉〈n|A

• Extend HA by an auxiliary Hilbert space HB of the same
dimension.

• Define an orthonormal basis |n〉B in HB.
• Define the pure state

|ψ〉 =
∑
n

√
pn|n〉A ⊗ |n〉B

⇒ |ψ〉〈ψ| =
∑
n,m

√
pnpm |n〉〈m|A ⊗ |n〉〈m|B

T. Christ / H. Hinrichsen
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Purification

⇒ |ψ〉〈ψ| =
∑
n,m

√
pnpm |n〉〈m|A ⊗ |n〉〈m|B

• Take the partial trace over the auxiary space HB

TrB
[
|ψ〉〈ψ|

]
=
∑
k

∑
n,m

√
pnpm |n〉〈m|A 〈k ||n〉〈m||k〉B︸ ︷︷ ︸

=δknδkn

=
∑
k

pk |k〉〈k |A = ρA

The reduced density matrix is just the original mixed state.

In a suitably extended Hilbert space a mixed state
can be represented as a pure state.

T. Christ / H. Hinrichsen
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Recall definition of entanglement
• A pure state |ψ〉 is said to be separable if it factorizes:

|ψ〉 = |ψ〉A ⊗ |ψ〉B

⇒ ρ = |ψ〉〈ψ|A ⊗ |ψ〉〈ψ|B
• A mixed state ρ is said to be separable if it can be expressed
as a probabilistic combination of pure separable states:

ρ =
∑

i

pi |ψi 〉〈ψi | , |ψi 〉 separable.

• One can show that a state is separable if and only if it can be
written in the form

ρ =
∑

i

pi ρ
(i)
A ⊗ ρ

(i)
B , 0 ≤ pi ≤ 1,

∑
i

pi = 1

• entangled ≡ non-separable
T. Christ / H. Hinrichsen
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Entanglement criteria vs. entanglement measures

Entanglement criteria are simple checks which provide a
sufficient condition for the existence of entanglement.
• PPT criterion
• CCNR criterion
• ...

Entanglement measures are quantitative measures which tell us
how much entanglement is there.
• Entanglement distance measures
• Entanglement of formation
• Quantum discord
• ...

T. Christ / H. Hinrichsen



Quantum Statistical Ensembles Quantum Measurements Classical and quantum correlations Entanglement criteria Entanglement measures

PPT criterion

Definition of the partial transpose TA,TB:

For a factorizing operator C = CA ⊗ CB the partial transpose is
defined as the transposition of one of the tensor slots:

CTA := CT
A ⊗ CB , CTB := CA ⊗ CT

B .

A non-factorizing operator can be written as a linear combination
of factorizing ones. So the partial transpose is also well-defined on
general operators.

TA ◦ TB = TB ◦ TA = T , T ◦ TA = TA ◦ T = TB .

T. Christ / H. Hinrichsen
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PPT criterion

Observation:

Transposition is a positive operation:
If ρ is a density matrix, then ρT is also a valid density matrix.

Peres-Horodecki-Criterion (positive partial transpose, PPT):

If ρ is separable, then ρTA and ρTB are positive operators, that is,
they are both physically valid density matrices.

Or the other way round:

If ρTA or ρTB are not valid density matrices, then we know that the
subsystems A and B are entangled.

T. Christ / H. Hinrichsen
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PPT criterion

Example:

Maximally entangled state (Bell state):

ρ =
1
2

(
| ↑↑〉+ | ↓↓〉

)(
〈↑↑ |+ 〈↓↓ |

)
=

1
2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1



⇒ ρTA = ρTB =
1
2


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


Eigenvalues of ρ : {0, 0, 0, 1}
Eigenvalues of ρTA = ρTB : {0,−1

2 ,
1
2 ,

1
2}

T. Christ / H. Hinrichsen
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Interpretation of the PPT criterion

• Classical mechanics is invariant under time reversal(
q(t), p(t)

)
→

(
q(−t),−p(−t)

)
• Schrödinger unitary evolution is also invariant under time
reversal

ψ(t),H → ψ(−t)∗,H∗

which is the same as taking

ρ(t) → ρ∗(−t) = ρT (−t)

Transposition ∼ Time reversal

T. Christ / H. Hinrichsen
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Interpretation of the PPT criterion

PPT: If this is not a physically valid scenario,
then there must be entanglement between the two parts.

T. Christ / H. Hinrichsen
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Side remark: Completely positive maps

• Completely positive maps Φ : ρ→ Φ(ρ) are physically
realizable positive maps.

• Not all positive maps are physically realizable.

Example: Transposition ρ→ ρT is positive but not physically
realizable because it could be entangled with another
unknown external object.

• Definition: Φ is called completely positive on H if Φ⊗ 1 is
positive on H⊗Haux for every external Hilbert space Haux .

T. Christ / H. Hinrichsen
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CCNR criterion

Operator realignment:
Let |i〉X und |i〉Y be a basis of the bipartite Hilbert space
HAB = HA ⊗ HB and let C be an operator with the matrix
representation

C =
∑
ijkl

Cij ,kl |ij〉〈kl |.

Define the realigned Matrix CR by

CR =
∑
ijkl

Cij ,kl |ik〉〈jl | =
∑
ijkl

Cik,jl |ij〉〈kl |

CR
ij ,kl = Cik,jl

T. Christ / H. Hinrichsen
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CCNR criterion

Operation Components Exchanged indices

Normal transpose T CT
ij ,kl = Ckl ,ij (12)↔ (34)

Partial transpose TX CTX
ij ,kl = Ckj ,il 1↔ 3

Partial transpose TY CTX
ij ,kl = Cil ,kj 2↔ 4

Realignment R CR
ij ,kl = Cik,jl 2↔ 3

T. Christ / H. Hinrichsen
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CCNR criterion
Operator Schmidt decomposition:

The vector Schmidt decomposition

|ψ〉 =
r∑

n=1

αn|n〉A ⊗ |n〉B

works also for operators

C =
∑
n

αnCX
n ⊗ CY

n,

where αn are the singular values of CR

(the positive square root of the eigenvalues of CRTCR)

Induced trace norm:
||C||s =

∑
n

αn

T. Christ / H. Hinrichsen
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CCNR criterion
Computable Cross Norm or Realignment Criterion (CCNR):

Consider a separable pure state:

ρ = |ψ〉〈ψ| = |ψ〉〈ψ|A ⊗ |ψ〉〈ψ|B

⇒ Only a single Schmidt number α1 = 1 ⇒ ||ρ||s = 1

Consider a separable mixed state. Then ρ is a probabilistic
combination of pure separable states ρk :

||ρ||s = ||
∑
k

pkρk ||s ≤
∑
k

pk ||ρk ||︸ ︷︷ ︸
=1

= 1

meaning that
∑

k αk ≤ 1. In opposite direction, we have CCNR:∑
αk

> 1 ⇒ non-separable ⇔ entangled

T. Christ / H. Hinrichsen
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Outline

Quantum Statistical Ensembles

Quantum Measurements

Classical and quantum correlations

Entanglement criteria

Entanglement measures

T. Christ / H. Hinrichsen
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Entanglement measure E (ρ) – List of desired properties

1. Separable state ⇔ E (ρ) = 0.
2. EPR / Bell states ⇔ E (ρ) is maximal.
3. Pure states: E (ρ) = S(ρA) = S(ρB)

4. E (ρ) should be invariant under local unitary transformations.
5. E (ρ) should not increase under LOCC operations.
6. Symmetry A↔ B .
7. Convexity on probabilistic mixtures:

E
(∑

k

pkρk

)
≤
∑
k

pkE (ρk)

T. Christ / H. Hinrichsen
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Entanglement measure based on distance

ED(ρ) = inf
σ separabel

D(ρ, σ) .

T. Christ / H. Hinrichsen
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Entanglement measure based on distance

Example:

Relative entropy DR(ρ, σ) = Tr[ρ(ln ρ− lnσ)]
(Quantum-mechanical version of Kullback-Leibler divergence)

This allows us to define the

• Quantum mutual information: SA:B = DR(ρ, ρA ⊗ ρB)

• Relative entanglement entropy: ER(ρ) = infσ separabel DR(ρ, σ) .

Er (ρ) ≤ SA:B

T. Christ / H. Hinrichsen
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Entanglement of formation

• A mixed state is represented
by a collection of pure states.

• Each pure state has a
well-defined entanglement.

• The representation is not unique.

T. Christ / H. Hinrichsen
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Entanglement of formation

The entanglement of the representing pure states may be higher
than the entanglement of the mixture.

Example:

|±〉 =
1√
2

(
| ↑↑〉 ± | ↓↓〉

)

⇒ |±〉〈±| =
1
2


1 0 0 ±1
0 0 0 0
0 0 0 0
±1 0 0 1



ρ =
1
2

(
|+〉〈+|+ |−〉〈−|

)
=

1
2


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


(no correlation, no entanglement)

T. Christ / H. Hinrichsen



Quantum Statistical Ensembles Quantum Measurements Classical and quantum correlations Entanglement criteria Entanglement measures

Entanglement of formation

Main idea:

Find the representation of the ensemble for which the averaged
entanglement of the representing pure states is minimal:

Ef (ρ) = inf
{∑

i

pi E (|ψi 〉〈ψi |)
∣∣∣ ρ =

∑
i

pi |ψi 〉〈ψi |
}

= inf
{∑

i

pi Sρi,A

∣∣∣ ρ =
∑

i

pi |ψi 〉〈ψi |
}
.

...very hard to compute!

T. Christ / H. Hinrichsen
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Entanglement of formation

Exact formula for Ef for a 2-qubit system:

EF (ρ) = S
[1 +

√
1− C 2(ρ)

2

]
where

S [x ] = −x log2 x − (1− x) log2(1− x)

C (ρ) = max(0, λ1 − λ2 − λ3 − λ4)

Here λi are the decreasingly sorted square roots of the eigenvalues
of the following 4× 4 matrix:

Λ = ρ(σy ⊗ σy )ρ∗(σy ⊗ σy )

Wooters et al.

T. Christ / H. Hinrichsen
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Main message of this last part

Separable state:
ρ =

∑
i

pi ρ
(i)
A ⊗ ρ

(i)
B

A bipartite system in a mixed state is defined to be entangled if the
state is non-separable.

entangled ⇔ non-separable

But, as we will see:

QUANTUM CORRELATIONS CAN BE PRESENT IN SEPARABLE STATES.

’NON-ENTANGLED’ DOES NOT AUTOMATICALLY MEAN ’CLASSICAL’.

T. Christ / H. Hinrichsen
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Separability vs. quantum correlation

Consider the following two-qubit state

ρ =
1
4

(|+〉〈+| ⊗ |0〉〈0| + |−〉〈−| ⊗ |1〉〈1|

+ |0〉〈0| ⊗ |−〉〈−| + |1〉〈1| ⊗ |+〉〈+|)

where |0〉, |1〉, |+〉, |−〉 are four non-orthogonal states of each
qubit.

Even though ρ is separable (i.e. non-entangled),
we will see that the quantum correlation is non-zero.

Dakić et al., PRL 105, 190502 (2010)

T. Christ / H. Hinrichsen
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Definition of the quantum discord

Consider two subsystems A and B .

Classical information theory:
Let us define
• I (A : B) = H(A) + H(B)− H(A,B)

• J(A : B) = H(B)− H(B|A)

with the Shannon entropy H(X ) = −
∑
i
p(i)
X log p(i)

X .

Thanks to Bayes rule these expressions are identical, i.e. we have
two equivalent descriptions of the mutual information.

T. Christ / H. Hinrichsen
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Definition of the quantum discord

Quantum information theory:
Analogously to the classical case we have defined the quantum
mutual information as

IA:B = S(ρA) + S(ρB)− S(ρ)

with the von Neumann entropy S(X ) = −Tr[X logX ].

The quantum mutual information I is a measure for
the total correlation between A and B .

T. Christ / H. Hinrichsen
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Definition of the quantum discord

How does J transform under a measurement?

We use a complete set of orthogonal projectors {Πj} to take
measurements on subsystem A. After applying Πj to A
the state of subsystem B will be

ρB|j =
1
pj
TrA[(Πj ⊗ 1)ρ],

where pj = Tr[(Πj ⊗ 1)ρ].

This allows us to write

J{Πj}(A : B) = S(ρB)−
∑

j

pjS(ρB|j).

Note: J{Πj} depends on the chosen set of projectors {Πj}.

T. Christ / H. Hinrichsen



Quantum Statistical Ensembles Quantum Measurements Classical and quantum correlations Entanglement criteria Entanglement measures

Definition of the quantum discord
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Definition of the quantum discord

How does J transform?
Our aim is to cover all classical information in J , so we take the
maximum over all complete sets of orthogonal projectors {Πj}:

J (A : B) = max
{Πj}
J{Πj}(A : B) = S(ρB)− min

{Πj}

∑
j

pjS(ρB|j)

Unlike the classical case I and J do not coincide!

T. Christ / H. Hinrichsen
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Definition of the quantum discord
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J{Πj}(A : B) = S(ρB)− min

{Πj}

∑
j

pjS(ρB|j)

Unlike the classical case I and J do not coincide!

T. Christ / H. Hinrichsen



Quantum Statistical Ensembles Quantum Measurements Classical and quantum correlations Entanglement criteria Entanglement measures

Definition of the quantum discord

Total amount of correlation:
I(A : B) = S(ρA) + S(ρB)− S(ρ)

Classical correlation:
J (A : B) =

S(ρB)− min
{Πj}

∑
j pjS(ρB|j)

Quantum correlation:
D(A : B) = I(A : B)−J (A : B)

D(A : B) is called the quantum discord.

T. Christ / H. Hinrichsen
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Properties of the quantum discord

• The quantum discord is not symmetric: D(A : B) 6= D(B : A).
• The quantum discord is always non-negative: D(A : B) ≥ 0.
• The upper bound of the quantum discord is the von Neumann
entropy of the measured subsystem: D(A : B) ≤ S(A).

• The following equivalence holds:

D(A,B) = 0 ⇔ ∃ complete set of orthogonal

projectors {Πk = |Ψk〉〈Ψk |} :
∑
k

(Πk ⊗ 1)ρ(Πk ⊗ 1) = ρ

T. Christ / H. Hinrichsen
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Separability vs. quantum correlation

Let’s get back to the introducing example:

ρ =
1
4

(|+〉〈+| ⊗ |0〉〈0| + |−〉〈−| ⊗ |1〉〈1|

+ |0〉〈0| ⊗ |−〉〈−| + |1〉〈1| ⊗ |+〉〈+|).

The state ρ is separable (i.e. non-entangled), but computing the
quantum discord gives D(A : B) = 3

4 log
4
3 = 0.311 > 0. Hence:

QUANTUM CORRELATIONS CAN BE PRESENT IN SEPARABLE STATES.

’NON-ENTANGLED’ DOES NOT AUTOMATICALLY MEAN ’CLASSICAL’.

T. Christ / H. Hinrichsen
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Werner states

Consider the two-qubit system

ρz =
1− z
4

1 + z |Ψ〉〈Ψ|,

where 0 ≤ z ≤ 1 and |Ψ〉 =
|01〉 − |10〉√

2
.

One can show:
• ρz is for z ≤ 1

3
• ρz is for z > 1

3

BUT ∀{Πk}, z ∈ [0, 1] :
2∑

k=1

(Πk ⊗ 1)ρz(Πk ⊗ 1) 6= ρz

⇒ D(A : B) 6= 0

T. Christ / H. Hinrichsen
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Entanglement of Formation vs. Quantum Discord
in a Werner state

T. Christ / H. Hinrichsen
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SUMMARY

• There are two types of correlations, namely classical and
quantum-mechanical correlations.

• States are defined as entangled if they are not separable.
• There is no unique entanglement measure.
• The entanglement of formation is the standard choice, but
hard to compute.

• Quantum correlations may even be present in non-entangled
states.

• The quantum dicord is probably a better measure for quantum
correlations.

T. Christ / H. Hinrichsen
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Thank you !

T. Christ / H. Hinrichsen
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