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Question: Why nilpotent orbits?

They are important in representation theory...
They form a very nice class of examples of symplectic varieties
and they have many interesting geometrical properties...
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What problems on the geometry?

Birational geometry: well-understood by works of Namikawa and
Myself, connected by stratified Mukai flops.

NOT GOING TO
BE TALKED
Today:

Problem
Geometrical characterizations of nilpotent orbit closures among
symplectic varieties.

Problem
Determine generic singularities of nilpotent orbit closures.

Problem
Study the geometry of special pieces.
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Symplectic varieties

Definition (Beauville)
(i) A symplectic variety is a variety W , smooth in codimension

1, with a symplectic form ω on Wreg such that for any
resolution π : Z →W , the pull-back π∗ω extends to a regular
2-form Ω on Z .

(ii) If Ω is everywhere non-degenerate, then π : Z →W is called
a symplectic resolution of W .

Remark
For a symplectic variety W , a resolution π : Z →W is
symplectic iff π is crepant, i.e. KZ = OZ .
The normalization of a symplectic variety is again a symplectic
variety and it has only rational Gorenstein singularities.
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Memo: symplectic varieties

Theorem (Namikawa)
Normal symplectic variety = rational Gorenstein + symplectic
form.

and
Symplectic resolution = crepant resolution
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Finite symplectic quotient C2n/H

(i) ADE-singularities: C2/H, where H ⊂ SL(2) is a finite
subgroup. Symplectic resolution = Minimal resolution

(ii) [Fu-Namikawa] Symn(C2) = C2n/Sn has a unique
symplectic resolution given by Hilbn(C2)→ Symn(C2).

(iii) Symn(C2/H) has many symplectic resolutions obtained by
Mukai flops from Hilbn(Ĉ2/H)→ Symn(C2/H), where
Ĉ2/H → C2/H is the minimal resolution.
[Bellamy] has a formula for how many .

(iv) Except two more examples in dim. 4, no other (irreducible)
C2n/H is expected to admit a symplectic resolution. For
example, C2n/± 1 has no symplectic resolution if n ≥ 2.
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Another important classes of symplectic varieties are given by
nilpotent orbit closures in semi-simple Lie algebras.
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Nilpotent matrices

Definition
A ∈ Mn×n(C) is called nilpotent if An = 0.
The nilpotent orbit of A is the set of all matrices conjugate
to A.
The nilpotent cone N is the set of all nilpotent matrices.

Every nilpotent matrice has its Jordan form Diag(Jd1 , · · · , Jdk ),
where Jdi is the Jordan matrix of size di with zeros on diagonal.
Hence nilpotent orbits in Mn×n(C) are parametrized by
partitions of n.

Note that N is defined by polynomials in Mn×n(C) ' Cn2 , hence it
is an affine algebraic variety.
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sl2(C)
Let A ∈ sl2(C) be as (

a b
c −a

)
A is nilpotent iff A2 = 0 iff a2 + bc = 0. The nilpotent cone
consists of two orbits: [2], [1, 1].

The nilpotent cone is the union of nilpotent orbits
Nilpotent orbits are not closed
Nilpotent orbits are stable under dilations
Nilpotent orbits are of even dimension
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Nilpotent orbit closures

g a complex simple Lie algebra and G the adjoint Lie group of g.
0 6= x ∈ g a nilpotent element, Ox := G · x the nilpotent orbit of
x . This homogeneous manifold enjoys the following properties:

Ox admits a holomorphic symplectic structure ω (K-K-S form)
Ox is stable under the dilation action of C∗ and we have
λ∗ω = λω.
The closure Ōx is singular and it is a union of finitely many
nilpotent orbits.
Nilpotent orbits are classified by weighted Dynkin diagrams
(and by partitions in the case of classical types).

Theorem (Hinich, Payushev)
Nilpotent orbit closures in semisimple Lie algebras are symplectic
varieties.
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Hasse diagram

Partial order between orbits: denote by O′ < O if O′ ( O.

Unique maximal nilpotent orbit Oreg of dimension equal to
the number of roots. Called the regular or principal nilpotent
orbit.
Unique orbit Osubreg containing all non-regular orbits in its
closure. It is of codimension 2 in Oreg . Called the subregular
nilpotent orbit.
Omin is the minimal non-zero nilpotent orbit. Its closure Ōmin
is normal with an isolated singularity at 0. It is the orbit of a
highest root vector.

0 < Omin < · · · could be very complicated · · · < Osubreg < Oreg
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Hasse diagram of A5

(6) 30

(5, 1) 28

(4, 2)
ppp LLL 26

(4, 12)
NNN

(32)
rrr

24

(3, 2, 1)
ppp LLL 22

(3, 13)
NNN

(23)
sss

18

(22, 12) 16

(2, 14) 10

(16) 0
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Symplectic resolutions of nilpotent orbit closures

If P ⊂ G is a parabolic subgroup, we have the moment map
T ∗(G/P)→ g ' g∗, whose image is a nilpotent orbit closure (by
Richardson), which gives

π : T ∗(G/P)→ Ō.

π is only generically finite. If it is birational, we get a Springer
resolution which is also a crepant resolution.

Theorem (Fu)
For nilpotent orbit closures, crepant resolutions = Springer
resolution.
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Orbits with no crepant resolutions

In general, Õ (or equivalently Ō) does not admit any crepant
resolution. Examples:

Ōmin ⊂ sp2n is isomorphic to C2n/± 1, which has no
symplectic resolution if n ≥ 2.
In general, Ōmin admits a sympl. resol. iff g is of type A. In
this case, we get T ∗Pn → Ōmin =rank ≤ 1 matrices in sln+1

Conjecture
A normal isolated symplectic singularity of dim ≥ 4 which admits a
crepant resolution is analytically isomorphic to Ōmin ⊂ sln.

Known in dimension 4 by the work of Wierzba-Wisniewski.
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Problem
How to characterize nilpotent orbit closures among symplectic
varieties?

Special features of nilpotent orbits:
affine variety in g, stable under the dilation action of C∗ and the
symplectic form satisfies λ∗ω = λω.
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Conical symplectic varieties

Definition
A conical symplectic variety is an affine symplectic variety
W ⊂ CN , stable under the dilation action of C∗ such that
λ∗ω = λω.

i) Nilpotent orbit closures are conical symplectic varieties.
ii) Some birational projections of nilpotent orbit closures are
conical symplectic varieties: O ⊂ g and L ⊂ g a linear subspace.
π : g→ g/L the projection, then π(Ō) is conical if O → π(O) is
birational and π(Ō) is smooth in codim. 1.

Problem (Namikawa)
Are conical symplectic varieties either nilpotent orbits in
semisimple Lie algebras or their linear birational projections?
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Characterization of maximal and minimal nilpotent orbits

Recall that the nilpotent cone N is the union of all nilpotent
elements in g, which is the closure of the maximal orbit Oreg .

Theorem (Namikawa 2013)
If a conical symplectic variety W ⊂ CN is a complete intersection,
then it is the nilpotent cone N ⊂ g.

Proposition (Brion-Fu 2014)
If a conical symplectic variety W ⊂ CN has only isolated
singularities, then it is the minimal orbit closure Ōmin ⊂ g.

These gives characterisations of nilpotent cones and minimal
nilpotent orbit closures, the two extremeties in Hasse diagram.
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Symplectic resolutions for conical symplectic varieties

Theorem (Brion-Fu 2014)
If a conical symplectic variety has a symplectic resolution
π : Z →W , then W is a birational linear quotient of a nilpotent
orbit closure Ō and π factorizes through a Springer resolution of Ō.

This generalizes my previous classification of symplectic
resolutions for nilpotent orbit closures.
The proof uses contact geometry.
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Contact structure

Definition
A contact structure on a smooth variety Y is a corank 1
sub-bundle D ⊂ TY such that [, ] : D × D → TY /D =: L is
non-degenerate.

Equivalently, there exist L ∈ Pic(Y ) and θ ∈ H0(ΩY ⊗ L) such that
θ ∧ (dθ)n everywhere non-vanishing. Hence get KY ' L−(n+1).

Remark
Let p : L× = L∗ \ zero − section→ Y be the principal C∗-bundle.
Then a symplectic form ω on L× such that λ∗ω = λω if and only if
ω = d(p∗θ) for some contact structre θ on Y .

Examples of contact manifolds:
1) P(T ∗M) with L× = T ∗M \ zero − section.
2) PO is a contact manifold with L× = O.
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Projective contact manifolds

Theorem (Kebekus-Peternell-Sommese-Wisniewski, Demailly)
Let (Y , L) be a projective contact manifold, then
(Y , L) ' (PT ∗M,OPT∗M(1)) unless Y is Fano contact with
b2 = 1.

Conjecture (LeBrun-Salamon)
A Fano contact manifold with b2 = 1 is isomorphic to POmin, for
Omin in a simple Lie algebra.
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Sketch of the proof

Let π : Z →W be a symplectic resolution with W being conical.
(i) [Namikawa] C∗-action on W lifts to Z and

π̄ : PZ := (Z \ π−1(0))//C∗ → PW

is a resolution and Z is a contact manifold with contact
bundle L ' π̄∗OPW (1).

(ii) if PW is smooth, then W = Ōmin. This is the
characterization of Omin.

(iii) By (ii) and [KPSW+D], get (PZ , L) ' (PT ∗M,OPT∗M(1)). L
is pull-back of an ample Line bundle, hence globally generated
and so is TM. Thus M is homogeneous, i.e. M ' G/P × A.
Then get PZ ' PT ∗(G/P).

(iv) Recover Z from PZ and L and π from the Springer map of
T ∗(G/P)→ ŌP .
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Recall our second problem:

Problem
Determine generic singularities of nilpotent orbit closures.

Question: Why generic singularities?

Motivated by representation theory (modular Springer
correspondence...)

This gives isolated symplectic singularities...
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Isolated symplectic singularities

Let (Y , L) be a projective contact manifold with b2 = 1, then L∗
can be contracted along the zero section, giving f : L∗ →W with
an isolated symplectic singularity. As L× has a symplectic form,
hence f becomes an isolated symplectic singularity.

Motivated by LeBrun-Salamon conjecture,

Speculation
A normal isolated symplectic singularity is analytically locally
isomorphic to a finite quotient of either C2n or of Omin.

Evidences:

(i) [Beauville] OK if the projective tangent cone is smooth.
(ii) A conjecture of Kollár implies π1(Wreg ) is finite.
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Slodowy slice

Theorem (Jacobson-Morozov)
Let e ∈ N be a nilpotent element, then there exists an sl2-triple
(e, h, f ) in g, i.e. find h and f such that

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f

We denote by gf the centralizer of f in g. One can show that the
affine subspace

Se := e + gf

is transverse to the orbit Oe of e in g.

The variety Se ∩N carries all essential information of singularities
of N to Oe .
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Generic singularities

Definition
O′ ⊂ Ō is a minimal degeneration if there is no other orbits lies
between O and O′.

Take an element e ∈ O′, the singularity of Se ∩ Ō at e is called
generic singularity of Ō along O′, denoted by Sing(O,O′).
Each irreducible componente of Sing(O,O′) is an isolated
symplectic singularity of dimension = codimŌ(O′).

Problem
Determine/recognize generic singularities of nilpotent orbit
closures.
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Theorems of Brieskorn

The regular nilpotent orbit Oreg is dense in N , and there is a a
unique subregular nilpotent orbit Osubreg open in N −Oreg. It is of
codimension 2.

Theorem (Brieskorn, 1970)
Suppose that g is of ADE type Γ. Then

Sing(Oreg,Osubreg) = Γ

is a simple surface singularity of the same type, and Grothendieck’s
simultaneous resolution restricted to the slice gives a versal
deformation.
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Non simply-laced cases

Slodowy explained what happens for non simply-laced types:

Bn = A+
2n−1 := A2n−1 with S2-action

Cn = D+
n+1 := Dn+1 with S2-action

F4 = E +
6 := E6 with S2-action

G2 = D++
4 := D4 with S3-action
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Results of Kraft and Procesi for sln

Motivated by the normality problem for nilpotent orbit closures,
Kraft and Procesi described minimal degenerations in nilpotent
cones in classical type.

Theorem (Kraft-Procesi, case of sln)
If the r first lines and the s first columns of λ et µ are identical,
and if λ̂ and µ̂ are the partitions obtained by removing those
common lines and columns, then

Sing(Oλ,Oµ) = Sing(Oλ̂,Oµ̂)

It follows that all minimal degenerations are
either Ak (codimension 2)
or ak (codimension > 2)!
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Example: type A5

(6)
A5

30

(5, 1)
A3

28

(4, 2)

A1
ppp

A1
LLL 26

(4, 12)

A2
NNN

(32)

A2
rrr

24

(3, 2, 1)

a2
ppp a2

LLL 22

(3, 13)

a1
NNN

(23)

a1
sss

18

(22, 12)
a3

16

(2, 14)
a5

10

(16) 0
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Other classical groups

Theorem (Kraft-Procesi)
In other classical types, if O′ < O a minimal degeneration, then
Sing(O,O′) is equivalent to one of the following:

A2k−1
Dk

A2k−1 ∪ A2k−1

bk
ck
dk
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Observation for classical types

Assume g is of classical type and O′ < O a minimal degeneration.
Sing(O,O′) is isom. to some Ōmin if dim ≥ 4.
Sing(O,O′) is non-normal ⇔ it is isom. to 2A2k−1.
The non-normality of Ō can be detected by its generic
singularites of dim. 2.

Upshot of this work
Many funny phenomena appear when g is of exceptional type.
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Notations for singularities: dim=2

The component group A(O′) acts on Sing(O,O′). We keep track
of this action.

An, Dn, En (no action);
A2n−1 with S2-action, denoted Bn;
Dn+1 with S2-action, denoted Cn;
E6 with S2-action, denoted F4;
D4 with S3-action, denoted G2;
A2 and A4 with S2-action, denoted A+

2 and A+
4 ;

Sing(Ã1,A1) in G2 is denoted by m.
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Notations for singularities: dim ≥ 4

the minimal orbit closure an, bn, cn, dn, g2, en, f4 with trivial
action of A(O′);
the minimal orbit closure in dn with S2-action, denoted d+

n ;
the minimal orbit closure in d4, with S3-action, denoted d++

4 ;
the minimal orbit closure in a2, a3, a4, or a5 with S2-action,
denoted a+

n .
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Main theorem in short

Theorem (FJLS)
We determined all general singularities of nilpotent orbit closures in
exceptional Lie algebras (up to normalization for a few surface
cases in E7,E8).
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Main theorem in more details

Theorem (FJLS)
Let g be a simple exceptional Lie algebra and O′ < O a minimal
degeneration. Let S = Sing(O,O′). Then
(a) If dim S = 2, then S is a union of surfaces of one of the

following types
Ak(k = 1, 2, 5),A+

k (k = 2, 4),
B3,Ck(k = 2, 3, 4, 5, 6),D6,
Ek(k = 6, 7, 8),F4,G2,
m

(b) If dim S ≥ 4, then it is equivalent to one of the following
ak(k = 1, 2, 5), a+

k (k = 2, 3, 4),
bk(k = 2, 3, 4, 5, 6), ck(k = 3, 4), d6, d++

4 ,
ek(k = 6, 7, 8), e+

6 ,
one of four exceptional singularities of codimension 4, each
occuring only once.
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Main Theorem itself: G2 (Kraft)

G2
G2

12

G2(a1)
a1

10

Ã1
m

8

A1
g2

6

0 0

G2
G2

12

G2(a1)
g sp

2

10

0 0

All orbit closures are normal except for Ã1, for which the
normalization is a homeomorphism.
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Main Theorem itself: F4
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Ã1
c3

22

A1
f4

16

0 0

Baohua FU GeometryNilpOrbits



Main Theorem itself: E6
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Main Theorem itself: E7, E8
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Main Theorem itself: E7, E8
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The singularity m

Proposition
The singularity m can be described as the image of the morphism:

C2 → C7 = C3 ⊕ C4

(u, v) 7→ (u2, uv , v2; u3, u2v , uv2, v3)
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The exceptional codimension 4 singularities

Sing(2A2 + A1,A2 + 2A1)E6 = C4/µ3

Here µ3 acts on C4 by ξ · (z1, z2, z3, z4) = (ξz1, ξz2, ξ
−1z3, ξ

−1z4)

Sing(A4 + A1,A3 + A2 + A1)E7 = a2/S2

Sing(A3 + 2A1, 2A2 + 2A1)E8 = Spec(C⊕ C[s, t, u, v ]≥2)

It is a pinched C4, in the same way as m is a pinched C2.

Sing(A4 + A3,A4 + A2 + A1)E8

Consider the dihedral group Γ of order 10 acting on its reflection
representation V . Our singularity is the blow-up of (V ⊕ V ∗)/Γ at
the singular locus.
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Immediate Corollaries

Corollary
The isolated symplectic singularities coming from generic
singularities of nilpotent orbit closures are finite quotient of either
Ōmin or C2n, except possibly the case τ ′ in E8.

Conjecture (Andreatta-Wisniewski, Arxiv.1101.4884)
There is no symplectic resolution π : Z → X with a codimension 2
locus of A2n singularities of X and a non-trivial numerical
equivalence in Z of curves in a general fiber of π over this locus.

Corollary
The conjecture of Andreatta-Wisniewski is false. We have an
example of A+

2 and A+
4 in E7 and E8.
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Recall: Observation for classical types

Assume g is of classical type and O′ < O a minimal degeneration.
Sing(O,O′) is isom. to some Ōmin if dim ≥ 4.
Sing(O,O′) is non-normal ⇔ it is isom. to 2A2k−1.
The non-normality of Ō can be detected by its generic
singularites of dim. 2.
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Observation for exceptional types

g is of exceptional type and S = Sing(O,O′) is a generic
singularity of a nilpotent orbit closure.

A completely new non-normal surface singularity m appears,
whose normalization is C2. It appears in each type several
times.

Several other non-normal surfaces singularities like 4G2 etc
appear.
A non-normal 4-dimensional isolated singularity appears in E8.
A quotient singularity C4/Z3 appears.
A quotient of Ōmin ∈ sl3 by Z2 appears in E7.
An isolated symplectic singularity appears which looks like
not to be a finite quotient of Ōmin or C2n.
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A quotient of Ōmin ∈ sl3 by Z2 appears in E7.
An isolated symplectic singularity appears which looks like
not to be a finite quotient of Ōmin or C2n.
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Normality of orbit closures

[Kraft-Procesi]+[Sommers]: in the classical groups, the
non-normality of Ō is detected by its generic singularities

In the exceptional groups, normality can fail in more ways:

it is branched at a minimal degeneration (e.g. 3.a1 or 2.g2).
it is branched at a point farther down (detected by Green
functions).
the singularity m arises (non-normal and unibranched).
the one case in E8 (non-normal and unibranched).

Actually, these are not all: the orbits B2, Ã2 in F4 are non-normal
while not of the above cases.
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Three methods to determine generic singularities

Three methods are applied to accomplish the proof.

Use the slice of reductive centralizers
This determines most of singularities with dim ≥ 4 or those of
type A1.
Use geometrical method via minimal resolutions
This determines all surface singularities (up to normalization)
Use computer-aided ad hoc methods
This deals with the remaining hard cases, which also removes
”up to normalization” in several cases.
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Geometric method in more details

(Namikawa, Fu) Every nilpotent orbit closure has an explicit
minimal model given by generalized Springer maps or by
normalizations.
The preimage over the slice gives the minimal resolution of
the surface singularity.
We can use Springer correspondence and a formula of
Borho-MacPherson to compute the number of P1’s in the
minimal resolution and also the monodromy action.
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Special nilpotent orbits

Springer correspondence:
W = Weyl Group.

{irreducible W −modules} ↪→

{(O, φ)|O nilp. orbit, φ irredu. representation of A(O)}.

A nilp. orbit O is called special if the irred. rep. ρ(O,1) is a special
W -representation.
Special nilpotent orbits play a key role in several problems in
representation theory:

Classification of irred. complex rep. of a reductive gp over a
finite field
classification of primitive ideals in the enveloping alg. of a
semi-simple Lie algebra
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Special orbits in F4

F4
F4

48

F4(a1)

A3

46

F4(a2)
A1
rrr A1LLL 44

B3

G2
LLL C3

4.D4
rrr 42

F4(a3)

A1

40

C3(a1)
msss

2.A1KKK 38

A1Ã2
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Special pieces

Definition
For O a special orbit, the special piece of O is

P(O) = O −
⋃

O′<Ospecial
O′

The special pieces form a partition of the nilpotent cone. N
(Spaltenstein).
Lusztig conjectured in 1981 that every special piece is
rationally smooth (i.e. for any x ∈ P(O), we have
IH i

x (P(O),Q) = Q if i = 0 and zero otherwise). This has
been proved by Kraft-Procesi (for classical types),
Beynon-Spaltenstein (for En), Shoji (for F4) and Lusztig (for
G2).
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A conjecture of Lusztig

In 1997, Lusztig formulated the following conj. to explain the
rationally smoothness:

Conjecture (Lusztig)
Every special piece P(O) is a finite quotient of a smooth variety
P/H, and the orbits in P(O) correspond to the images of points in
P whose H-stabilizer are in the same conjugacy classes of H.

Known for classical Lie algebras by Kraft-Procesi (1989).
Lusztig has predicted the group H and the correspondence
between conj. classes in H and nilpotent orbits contained in
P(O).

Conjecture (Achar-Sage, 2009)
Every special piece is normal.
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The special piece of F4(a3)

F4(a3)
A1

C3(a1)
mqqq A1MMMM

A1Ã2 m
VVVVVVVVVVV B2

2.A1

A2Ã1

(14)

(212)
uuu III

(31)

TTTTTTTTTT (22)

(4)

Observation: The right-hand diagram is nothing but the Hasse
diagram of strata in W := (C3 ⊕ (C3)∗)/S4. If S is a transverse
slice to the special piece, then S and W are of the same
dimension, both symplectic with the same Hasse diagram...
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The special piece of F4(a3)
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A special piece in E8

E8(a7)

E7(a5)

E6(a3)+A1 D6(a2)

A5+A1 D5(a1)+A2

A4+A3

a1

m
2a1

m

a1a1

m

m
m

(15)

(213)

(312) (221)

(32) (41)

(5)

1
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Brave guess

Summing up the observations so far:

The group H is predicted to be Sk , k = 2, 3, 4, 5.
The slice S of a special piece looks like very similar to
W := (Ck−1 ⊕ (Ck−1)∗)/Sk .

Could it be that S is isomorphic to W ?

Not always! There are examples of special pieces consisting of
two orbits, with generic singularities being cn. Note that
cn = C2n/± 1, which can be written as (C⊕ C)⊕n/S2.
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Main theorem on special pieces

Theorem (FJLS)
Consider a special piece in a simple Lie algebra. A Slodowy
transverse slice to the minimal orbit in the piece is isomorphic to

(hn ⊕ h∗n)k/Sn+1

where k and n are (uniquely determined) integers and hn is the
n-dimensional reflection representation of the symmetric group
Sn+1.
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Immediate consequences

Going back to Lusztig’s conjecture, we obtain

Corollary
For every special piece P(O), there exists a vector space V
endowed with an action of Sn+1 (for some n uniquely determined
by O) such that we have a surjective smooth morphism

G × V /Sn+1 → P(O).

Going back to the conjecture of Achar-Sage, we have

Corollary
Every special piece is rationally smooth and normal.
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Words about the proof

For classical types, this can be proved based on previous work
of Kraft-Procesi.
If the special piece consists of two orbits, then the result
follows from our previous result on generic singularities of
nilpotent orbit closures. (all of type ck)
For the special piece [G2(a1), Ã1,A1] in G2, a slice to it is
isomorphic to (h2 ⊕ h∗2)/S3. This solves several others in
E6,E7,E8.
The remaining cases are : [D4(a1) + A1, 2A2 + 2A1]E8 is
equivalent to (h2 ⊕ h2 ⊕ h2 ⊕ h2)/S3; [F4(a3),A2 + Ã1]F4 is
equivalent to (h3 ⊕ h3)/S4 and [E8(a7),A4 + A3]E8 is
equivalent to (h4 ⊕ h4)/S5.
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Summarise

A geometrical characterization of nilpotent orbits with
symplectic resolutions.

We have determined all general singularities of nilpotent orbits
in exceptional types (up to normalization for a handful surface
cases in E7,E8).

A transverse slice to any special piece is isomorphic to a
natural finite quotient.

Duality between general singularities in nilpotent orbit
closures.
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