Project: Z' boson in E_6 GUT model

In the supersymmetric E_6 model, there are two additional U(1) factors beyond the SM gauge group since the rank of E_6 group is 6. The canonical decomposition of ψ and χ models are as follows:

$$E_6 \to SO(10) \times U(1)_{\psi},\tag{1}$$

$$SO(10) \to SU(5) \times U(1)_{\chi}.$$
 (2)

After the extra U(1)'s are spontaneously broken by heavy Higgs fields (which we would not care in this project), the gauge bosons Z_{ψ} and Z_{χ} of $U(1)_{\psi} \times U(1)_{\chi}$, respectively, got masses and the mass eigenstates are linear combinations of the two bosons. We call the lighter one Z' and represent it as a linear combination of Z_{ψ} and Z_{χ} parametrized by a mixing angle θ_E :

$$Z'(\theta_E) = \cos\theta_E Z_{\gamma} + \sin\theta_E Z_{\psi},\tag{3}$$

which is assumed to be in TeV range and mix with the standard model Z boson sizably. (Here assume the heavier boson, Z'' is much heavier than 1 TeV so that it does not affect the low energy phenomenology)

There are three particular cases we are mostly interested in:

- ψ model: $Z' = Z'(0) = Z_{\psi}$
- χ model: $Z' = Z'(\frac{\pi}{2}) = Z_{\chi}$
- η model: $Z' = Z'(\tan^{-1}(-\sqrt{\frac{5}{3}}) = Z_{\eta}$

The interaction Lagrangian for Z' with the SM fermion field f is described by

$$\mathcal{L}_{Z'} = -\frac{g_{Z'}}{2} \sum_{f} \overline{\Psi}_{f} \gamma^{\mu} \left(f_V - f_A \gamma_5 \right) \Psi_f Z'_{\mu},\tag{4}$$

where model parameters in each model are

	ψ		χ		η	
	$f_V/\sqrt{\frac{5}{72}}$	$f_A/\sqrt{\frac{5}{72}}$	$2\sqrt{6}f_V$	$2\sqrt{6}f_A$	$12f_V$	$12f_A$
ν	0	1	4	-1	6	-4
e	0	1	2	1	3	-1
u	0	1	2	1	3	-1
d	0	1	-2	1	-3	-1
_						

Table 1: Z' charge assignment for the standard model fermions

After the electroweak symmetry breaking, the gauge sector with neutral gauge bosons \hat{A}, Z, Z' are given by

$$\mathcal{L} = -\frac{1}{4} \left(\hat{F}_{\mu\nu} \hat{F}^{\mu\nu} + Z_{\mu\nu} Z^{\mu\nu} + Z'_{\mu\nu} Z'^{\mu\nu} \right) - \frac{1}{2} \left(m_Z^2 Z^\mu Z_\mu + m_{Z'}^2 Z'^\mu Z'_\mu \right) - \frac{\sin \epsilon}{2} Z'_{\mu\nu} B^{\mu\nu} + \delta M^2 Z'_\mu Z^\mu$$
(5)

where $\hat{F}_{\mu\nu}, Z_{\mu\nu}, Z'_{\mu\nu}$ are the usual field strength tensor for \hat{A}, Z and Z', respectively. The fields \hat{A} and Z are obtained by usual weak mixing angle as

$$\begin{pmatrix} Z\\ \hat{A} \end{pmatrix} = \begin{pmatrix} c_W W_3 - s_W B\\ s_W W_3 + c_W B \end{pmatrix}$$
(6)

where $c_W = \cos \theta_W$ and $s_W = \sin \theta_W$. The kinetic mixing with $B_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu}$ (for the hypercharge gauge boson) is generically allowed and also mass mixing ($\sim \delta M^2$).

I. MASS EIGENSTATES

Show that the mass eigenstates (A, Z_1, Z_2) are obtained by rotation

$$\begin{pmatrix} A\\Z_1\\Z_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & c_W s_\chi\\ 0 & c_\zeta & -c_\zeta s_W s_\epsilon + s_\zeta c_\epsilon\\ 0 & -s_\zeta & c_\zeta c_\epsilon + s_\zeta s_W s_\epsilon \end{pmatrix} \begin{pmatrix} \hat{A}\\Z\\Z' \end{pmatrix}$$
(7)

where

$$\tan 2\zeta \equiv \frac{-2c_{\epsilon}(\delta M^2 + m_Z^2 s_W s_{\epsilon})}{m_{Z'}^2 - m_Z^2 s_W^2 s_{\epsilon}^2 + 2\delta M^2 s_W s_{\epsilon}},\tag{8}$$

with $s_{\chi} = \sin \chi$, $c_{\chi} = \cos \chi$, and $s_{\zeta} = \sin \zeta$, $c_{\zeta} = \cos \zeta$. Find mass eigenvelues (M_A, M_1, M_2) .

II. INTERACTION LAGRANGIAN WITH MASS EIGENSTATES

Recast the interaction Lagrangian of neutral gauge bosons with the SM fermions in terms of mass eigenstates (A, Z_1, Z_2) :

$$-\mathcal{L} = eJ_{em}^{\mu}\hat{A}_{\mu} + g_{Z}\sum_{f}\overline{\psi}_{f}\gamma^{\mu} \left(T_{3}P_{L} - s_{W}^{2}Q_{f}\right)\psi_{f}Z_{\mu} - \mathcal{L}_{Z'}$$
$$\equiv eJ_{em}^{\mu}A_{\mu} + \sum_{f}\overline{\psi}_{f}\gamma_{\mu} \left(V_{1}^{f} - A_{1}^{f}\gamma_{5}\right)\psi_{f}Z_{1}^{\mu} + \sum_{f}\overline{\psi}_{f}\gamma_{\mu} \left(V_{2}^{f} - A_{2}^{f}\gamma_{5}\right)\psi_{f}Z_{2}^{\mu}$$
(9)

where $P_L = (1 - \gamma_5)/2$ and $J^{\mu}_{em} = \sum_f \overline{\psi}_f \gamma^{\mu} Q \psi_f$.

Hint: You can write the expression as

$$-\mathcal{L}_{Z_{i}f\bar{f}} = \frac{e}{2s_{W}c_{W}} \left[\left(1 + \frac{\alpha T}{2} \right) \sum_{f} \bar{\Psi}_{f} \gamma^{\mu} [(g_{V}^{f} + \zeta \tilde{f}_{V}^{f}) - (g_{A}^{f} + \zeta \tilde{f}_{A}^{f})\gamma_{5}] \Psi_{f} Z_{1\mu} + \sum_{f} \bar{\Psi}_{f} \gamma^{\mu} [(h_{V}^{f} - \zeta g_{V}^{f}) - (h_{A}^{f} - \zeta g_{A}^{f})\gamma_{5}] \Psi_{f} Z_{2\mu} \right]$$
(10)

and find $g_{V,A}^f, h_{V,A}^f$ and corrections $\tilde{f}_{V,A}^f$ with the Peskin-Takeuchi variable S and T are given by

$$\alpha S = 4\zeta c_W^2 s_W \tan \epsilon,$$

$$\alpha T = \zeta^2 \left(\frac{M_2^2}{M_1^2} - 1\right) + 2\zeta s_W \tan \epsilon,$$
(11)

up to the leading order of ζ .

III. DISCUSSION

- Discuss the differences and similarities in ψ, χ and η models.
- Discuss how to find Z' at the LHC and also at other low energy experiments.