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Overview

© Lecture 1
e SM in PDG
o Why QFT?
@ Spacetime symmetry
@ Lagrangian

© Lecture 2
o Gauge symmetry(Abelian): QED
@ Gauge symmetry(non-Abelian, Yang-Mills:Weak, QCD)
@ Higgs mechanism
@ The standard model
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SM in PDG

Why QFT?
Spacetime symmetry
Lagrangian

PDG: where you can find data
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QUARKS

The u-, d-, and s-quark masses are estimates of so-called “current-
quark masses,” in a mass-independent subtraction scheme such as
MS at a scale 1 ~ 2 GeV. The c- and b-quark masses are the
“running” masses in the MS scheme. For the b-quark we also
quote the 15 mass. These can be different from the heavy quark
masses obtained in potential models.

o]

10P) = 33)

my=2370IMeV  Charge=3e I, =+}
my/mg = 0.38-0.58

[ 1P = 0(3*)

Charge = 3 e Top = +1

Mass (direct measurements) m = 173.21 £ 0.51 = 0.71 GeV [#6]
Mass (MS from cross-section measurements) m = 160*5 GeV (4]
Mass (Pole from cross-section measurements) m = 176.7 49 Gev
me —mg=—02%05GeV (S=11)
Full width [ = 2.0 0.5 GeV'
r(Wb)/T(Wq(q = b, s, d)) =0.91 + 0.04

t-quark EW Couplings
Fo = 0.690 + 0.030

14P) = §(

mg = 4.8%33 Mev Charge = —Le [, =—
my/my = 17-22
= (m,+mg)/2 = 3573] Mev

Fo
Fy I
Fyia < 029, CL=95%
»
¢ DECAY MODES Fraction (I;/T)  Confidence level (MeV/c)

Wq(q = b, s, d) -
Wb

1Py =033

my =054 5MeV Charge = —4 e Strangeness — —1
m [ ((my + mg)/2) = 27.5 £ 1.0

Lvpanything [ed] (0.4:24)% -
vq(g=u.c) [e] < 5.9 x 1073 95% -
AT = 1 weak neutral current (T1) modes
Zq(q=u,c) T [fl<21 x 1073 95% -

b’ (4 Generation) Quark, Searches for

10P) =03 )

me = 1.275 + 0.025 GeV Charge = 3 e Charm = +1

Mass m > (pP. quasi-stable b')
Mass m > (pp. neutral-current decays)
Mass m > 675 GeV, CL = 95%  (pp, charged-current decays)

10P) =03
Charge = —% e Bottom = —1

mp(MS) = 4.18  0.03 GeV/
my(1S) = 4.66 = 0.03 GeV/

Mass m > 46.0 GeV, CL = 95% (e* e, all decays)

| t' (4th Generation) Quark, Searches for

Mass m > 782 GeV, CL = 95%  (pp, neutral-current decays)
Mass m > 700 GeV, CL = 95%  (pp, charged-current decays)

Free Quark Searches

All searches since 1977 have had negative results.




LEPTONS |

J=3

Mass m = (548.57990946 + 0.00000022) x 10~ ® u
Mass m = 0.510998928 + 0.000000011 MeV'
[mge —m, |/m< 8x107% CL=90%
[Gee + g |/e < 4x10°8
Magnetic moment anomaly

(8-2)/2 = (1159.65218076 - 0.00000027) x 10~6
(8 = 8,) / Baverage = (-05 +21) x 10712
pole moment d < 10.5 x 10-28 ecm, CL = 90%
Mean life 7 > 4.6 x 10% yr, CL = 90% 1)

SM in PDG

—1
=2

1134289267 <+ 0.0000000029 u
05.6583715 + 0.0000035 MeV

1.00002  0.00008

o = 658.6384 m

Magnetic moment anomaly (g-2)/2 = (11659200 = 6) x 10-10
(8, = 8,-) / Baverage = (011 £ 0.12) x 10°8

Electric dipole moment d = (—0.1 % 0.9) x 1019 ecm

Decay parameters (2]
0.74979 + 0.00026
0.057 £ 0.034

= 0.75047  0.00034
£P, = 1000973002 [c]
§P3/p = 10018 6056 €]
€ =1.00 + 0.04
€' =07+04
a/A=(0+4)x 1073
o'/ —10 + 20) x 1073
BIA = (4+6) x 1073
FA=(@2+7)x1073
=002+ 008

Why QFT?
Spacetime symmetry
Lagrangian
»
4~ DECAY MODES Fraction (F;/F)  Confidence level (MeV/c)
=~ 100% 53
e Teuy [ (1.4+04)% 53
e Ve, ete le] (3.4%0.4) x10-5 53
Lepton Family number (LF) violating modes
P A<12 % 90% 53
LF <57 x 10713 90% 53
LF <10 x 10712 90% 53
LF <12 % 10711 90% 53
-1
J=3

Mass m = 1776.82 % 0.16 MeV/
(Mmoo — m_)/Myerage < 2.8 % 1074, CL = 90%
Mean life 7 = (290.3 + 0.5) x 105 s
cr = 87.03 um
Magnetic moment anomaly > —0.052 and < 0.013, CL = 95%
—0.220 to 0.45 x 10716 ecm, CL = 95%
|m(d,) = —0.250 to 0.0080 x 10716 ecm, CL = 95%
Weak dipole moment
Re(d¥) < 0.50 x 1077 ecm, CL = 95%
Im(d¥) < 1.1x 107 ecm, CL = 95%
Weak anomalous magnetic dipole moment
Re(a¥) < 1.1x 1073, CL = 95%
Im(a¥) < 2.7 x 102, CL = 95%
= Ky, (RATE DIFFERENCE) / (RATE SUM) =
(~0.36 + 0.25)%
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I GAUGE AND HIGGS BOSONS ||

1PCY =011~ )

Mass m < 1x 10738 ev.
Charge g < 1x 10735 ¢

Mean life = = Stable J=1
Charge = 0
1JP) =0a7) Mass m = 91.1876 = 0.0021 GeV [4]
Full width [ = 24952 & 0.0023 GeV
Mass m = 0 (4] r(£+67) = 83.984 + 0.086 MeV [
SU(3) color octet T (invisible) = 499.0 1.5 MeV [}

I (hadrons) = 1744.4 & 2.0 MeV

J=2 [ (it =) /T (e+e™) = 1.0009 + 0.0028

+ro)(ete) = Gl
Mass m < 6 x 10732 v [(7+77)/T(e*e”) = 1.0019 + 0.0032

™ =

J=0
Charge = +1 e
Mass m 0.385 + 0.015 GeV' —
104 + 16 Gev Mass m = 125.7 + 0.4 GeV
My =02+ 0.6 GeV H® Signal Strengths in Different Channels

my.
Full width I = 2.085 2 0.042 GeV

Ny 570 5 0% Combined Final States = 117 + 0.17 (S = 1.2)
)= .

* 0.24
wWWw* =0.87+334

(Np) = 0924014 zzr=111793 (5=13)
(Nehargea) = 19.39 + 0.08 gy = 1.53‘:3;5}
W= modes are charge conjugates of the modes below. bb=11405
wh » THrT =04£06
DECAY MODES Fraction (I;/1) _ Confidence level_(MeV/)
ton (,/T) (V9 Zy < 95, CL=95%
. [6] (1086 0.09) % -
etr (10.714 0.16) % 40192
wr (10634 0.15) % 40192
Tty (11384 0.21) % 40173
hadrons. (67.414 027) % -



_ B

Why QFT?

Spacetime symmetry

Lagrangian

Elementary particles are well organized in _
1“ 2“‘1 3mgenem\vn :m':;ymmhnu outside of

‘everyday matter exotic matter force particies (mass giving)  standard model
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Patterns found:

@ s = 1/2 fermions: quarks and leptons

@ s = 1 bosons: interaction mediators
(force carriers)

@ s = 0 boson: SSB and masses
@ 3 generations

«O» «F»r «

it
-



@ c=h=1then[L] = [T] = [M~!]. Schrédinger equation looks like

8 1,
i— =——VY 4V
161’ 2m v v

where " quantization” rules are

17}
Pyl iot, pi — IE =i9;

@ x# = (x% x!, x%, x%) = (x%, x") = (t, x') in 4D spacetime. The Minkowski metric is mostly minus sign

(=West coast, particle physics, energy-like convention)

so that ds® = N dxHdx” = dt? — dx - dx.
[NOTE:: 9, = 527 = (0r, V), 8" = (8¢, — V)]

[NOTE::: Energy has the correct sign in four momentum: P* = (E, p), P, = 0, PY = (E, —p),

P? = 0, PHPPY = PEP, = E2 — 2 = m?]
[NOTE::: Quantization rule: p,, — 9]




@ Who decided s =0

1

9D
[Q. What's the unit of spin, s7]

1?7 Anything else? [a. g, s=1/37)

@ How to describe interactions among particles? [a. any rue?]

o Particle or wave? [Q. Is there fundamental differences between electron and photon other
than spin and mass?]

«O» «F»r « =
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Short answers

@ Who decided s =0, %, 1?7 Ans: Spacetime symmetry= Lorentz
(Poincaré) in SR

@ How to describe interactions among particles? Ans: Gauge
symmetry. [NOTE:: SU(3) x SU(2) x U(1) in the SM]
[Q. Symmetries (i.e. the spacetime and gauge symmetries) in Maxwell's EM ?]

@ Particle or wave? Ans:They are all excitations of quantum
fields.

SM is written in QFT.
(more precisely relativistic, gauge, quantum field theory.

u]
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(reminder) EM

@ Relativity is required due to the fact that speed of light is

constant
The wave equation with ¢ = 1 is (92 — V2)p(x*) = 0
@ gauge symmetry
~ 9B - . OE

V- E=pVxE=——V-B=0,VxB="+]
ot ot

is solved by B=V x Aand E = —V¢ — % but

A Ay =A+VE S — dg=¢ — Ok

do not change £, B.[NOTE:: Al = (¢, A) with A* — Al = A — 9k¢ ]
C . ,
@ Relativistic formulation of Maxwell's eqs
Field strength Fj,, = 9, Ay — 9u A, [Q. Show Fy; = E;, Fjj = € By Jforms the action

1 1 o
Lem = —;F‘“,F‘“’ —J';LAM<: E(EQ - EZ)—P¢+I~A)

, which provides
OuFM =~V - E=p, VX B-E=]

The Bianchi identity, Ox Fip + 0 Fux +0uFyy =0~ V- B =0,V x B+ 8:E = 0 completes the
= = = = E DA

Maviaall’e amitia+iAane
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QFT references

[NOTE::: QFT is the standard language of modern particle physics|
Refs
@ Open KIAS school http://workshop.kias.re.kr/KWS2013/?Program
@ PDG
http://pdg.1bl.gov/
Recommendations for beginners:

@ My recommendation for beginning students is this = Quantum

Field Theor
Tong, Lecture for Part-1l (only QED but very clear exposition) for the Gifted ,‘\Xw,_”

http://www.damtp.cam.ac.uk/user/tong/qft.html

o

@ A. Zee “Quantum field theory in a nutshell” (2nd, princeton 2010):
intuitive, fun!

o

L.Alvarez—Gaumé, M. A. Vazquez-Mozo, “An invitation to quantum field
theory” (springer 2012): clear exposition! recommended!

Standard texts:

@ Peskin and Schroeder (1995), Schwartz (2014): standard of standard
o Weinberg I, 111, Srednicki, Ramond, Ryder, many many others

@ Miiller-Kirsten, Wiedemann “Introduction to supersymmetry” (world
scientific 2010): representation of Lorentz group +susy formalism


http://workshop.kias.re.kr/KWS2013/?Program
http://pdg.lbl.gov/
http://www.damtp.cam.ac.uk/user/tong/qft.html

Lecture 1
Lecture 2

Particle physics references

SM in PDG
Why QFT?
Spacetime symmetry
Lagrangian

Some readable texts: [NOTE::: QFT books typically

have sections on the SM. More later.]

Anchordoqui, Halzen “Lessons in Particle physics” (v4 2011

Dec.) 260 pages
http://arxiv.org/abs/0906.1271v4

M. Robinson “Symmetry and the Standard Model” (spri
2011): +math

C.G.Tully “Elementary particle physics in a Nutshell”

(princeton 2011)
Barger, Phillips “Collider Physics": useful appendix!

Dobado et.al. “Effective Lagrangians for the standard
model” (springer 1997)

LHC!:

CMS physics results
https://twiki.cern.ch/twiki/bin/view/CMSPublic/
PhysicsResults

ATLAS physics results
https://twiki.cern.ch/twiki/bin/view/CMSPublic/
PhysicsResults

nger

3
<2 s
L TR
Along with ‘Antimatter,’ and ‘Dark Matter
we've recently discovered the existence of
“Doesn’t Mattey which appears to have no
effect on the universe whatsoever.”



http://arxiv.org/abs/0906.1271v4
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults
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QFT-1

QFT = QM + Relativity.

o (1) AtAE > h: the energy can fluctuate wildly over a small
interval of time

e (2) E = \/p?c?® + m?c*: energy can be converted into mass

and vice versa

@ (1)+(2) : mass (or particle) can be created/annihilated out
of /into fluctuating energy! This is described by QFT!

] eg e+ei — '7'7, pp — tf, gg — H — bE [NOTE::: # non-conserving

phenomena could not be described by Schrédinger equation. [Q. are you sure?]]
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QFT-2

QFT is a proper combination of Rel. and QM.

@ particles and waves = excited states of quantum fields

o “all electrons look exactly same” because they are all
excitations of the same field 1)¢(x)!

© Ye(X) =222 es1)2 (QS(P)“S(P)e_ipX + bz(P)VS(P)eipX)
@ This structure is generic:
Field =", \ ax x polarization, x ™" + (p° < 0)

[Q. how about a scalar ¢(x) and vector A*(x)?.]

NOTES: 5, = f 2 (= [ 22 (2m)s* (52 — m)0(6")]



In QFT, # of particles is not conserved.

1=10) (0] + > Ip) (p| + - -- (Fock space)

e vacuum: a(p)|0) =0
e one particle state: a(p)|0) o |p)

e two particle state: a(p)Ta(k)"|0)  |p, k)
@ -

«O» «Fr «=)>» <



ugrou pn

Organizing principles of making a ‘QFT model’ (or Lagrangian)
@ symmetry (spacetime, internal, super-, conformal, etc)...

@ matter contents and their transformation rules (i.e. quantum
numbers)... “representation”

«O» «F»r « =
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Lecture 2 Spacetime symmetry
Lagrangian

QFT-5

The SM is organized by

@ Poincaré symmetry (Lorentz+translaion)

@ Gauge symmetry: Gsm = SU(3)c x SU(2). x U(1), associated with
gauge bosons A, = (g, W, W3, B,)

@ Matter fields: 1/) = (KL, €R, QL, UR, dR),', i = 1,2,3 and H

@ ¢~ (1/2,0) or (0,1/2), H ~ (0,0) and A, ~ (1/2,1/2) representations
of Lorentz group (or spinor, scalar and vectors).

© (= (1)~ (1,2,-3)er~(L,1,-1),Qu=(}) ~ (3,2,5),
ur ~ (3,1, %), dr ~ (3,1, —%) representations of Gsy.

@ If you understand these, you can sleep now. :-)
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Lorentz-1

Let's first understand W ~ (j, /') i.e. irreducible representations of
Lorentz group.

@ The constancy of speed of light demands 0 = dt?> — dX - dX with
c=1. [NOTE::: You can regard ds® = NuvdxFdx? = dt? — dx - dX as an infinitesimal length in

spacetime. x* = (Xo,xl, x2,x3) = (t, x") and n = diag(1, —1, —1, —1)]

@ A linear transformation x* — x’* = A“x” does not change ds? is
called Lorentz transformation.

@ A's form a group L = {A|JATnA = n}, called Lorentz group.
[NOTE::: Group: a closed system of operations with an identity]

[NOTE::: Proper, time-direction-conserving transformation L = SO(1, 3; R)]

@ There are 6 Lorentz transformations= (3 boosts(7yx,7,,7.)), 3
rotations (6, 6,,0,)), which keep ds® unchanged.

[NOTE::: 7); are rapidities and 6; are angles about i-axis]
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Lorentz-2

Explicit form of Lorentz transformations:

@ 3 rotations which keeps dX - dX = dx? + dy? + dz? unchanged:
R«, Ry, Rz, respectively.

1 1

cos 0y, —sin 6y
1 >
sin 0 cos 0y,

cos Oy sinfy |’
— sin Ox cos Oy

cos 0, sin 0,
—sinf, cos 0,

Q. Show:sin? + cos? 6 = 1 guarantees that ds? is actually preserved.]

@ 3 boosts which keeps (dt? — dx?), (dt? — dy?),(dt? — dz?)
unchanged: B, By, B,, respectively.

Yx —VxVx

Yy el
—VxTx Ix

—Vz7z
1
Yy Yy ’ 1

1 1

—Vz7Vz Yz

where v; = 1/4/1 — Vi2 = cosh n; and v;~; = sinh n;. [Q. Show: cosh? 1 — sinh? 1) = 1 guarantees that
ds? is actually preserved.]

o L= {R,', B,}
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Lorentz-3

To see the structure of the rotations, it is enough to analyze the

infinitesimal changes (6 < 1) from the origin (doing
nothing=origin):

1

0

R ! 1+ 0 =140
x cos 0y sinfy, | © 0 0 | — 10x2x

— sin Ox cos Oy —0x 0
Similarly,
1 1
cos 6 — sin 6 cos 0 sin .
= y v | ~ i _ 2 z N .
Ry = 1 ~ 14 +ibyJy, R, = —sinf, cosO, ~ 14 +i0,J;

sin 6, cos 6y

[Q. Find the explicit form of Jy, J,, J;.] [NOTE::: Note that they are nothing but the angular momentum

operators generating rotations satisfying [J;, J;] = i€y Jx. This means rotations form a group SO(3) ~ SU(2) as
we know.]



coshn ~ 1 and sinhn =~ 7 and

cosh 7y — sinh mx
— sinh cosh 7y

B, =

Similarly, let's consider infinitesimal boosts (7 < 1), by which

1

—Tx

— 1 .
1 ~ Tx 1 = 14 + inxK,

1 1
Similarly,
By ~ 14 + inyKy, By & 14 + inK;

[Q. Find the explicit form of K, Ky, Kz.][Q. Show that [K;, K;] = —iejJk, [Jj, Kj] = i€jjx Ki. This means

boosts do not form a group.]

«O» «F»
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Lorentz-5

@ 6 generators of Lorentz group are found to satisfy Lie algebra:
Uiy 51 = iegedicr [Kiy Kjl = —iegidi, Uiy Kjl = iejicKie

@ J; form SO(3) group but K; do not. However, a clever combination
of J; and K; are separate and form groups.

+ 1 : i o i _ _
o N = 5(./,- =+ iK;) then (NG, N = NG TN N = e NS ING V] =0

@ This means that Lorentz group is equivalent to product of two
rotation groups:
L= SU(2) x SU(2)!

*More rigorously, so(1,3; R)® ~ su(2,C) x su(2,C)
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Lorentz-6

@ A representation of L is labeled by an ordered numbers (j, ') where

J and j are eigenvalues of N* and N~ thusj,j’ =0,1/2,1,3/2,---.

@ As J; = Ni" + N, the total spin of (j,j’) state is j + j/ by the rule
of angular momentum addition.

e (0,0):s=0,
(1/2, 0), (0, 1/2) .S = 1/2 [NOTE::: left-handed and right-handed spinor representations]
(1/2,1/2):s=1.

u]
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I
i

it



«O» «Fr « =>»

@ A scalar ¢(x) ~ (0,0) is trivially transformed by A
° d(x) = & (x') = ¢(A"1x) = d(x)

« =

DA



@ A right-handed Weyl spinor g ~ (1/2,0)

o Nt =1/2,N~=0o0r N =% and N; = 0.
o Ji=N"+ N~ =% and K; = —i%
o Yr — 1/}1? ~(1+i0iJ;i + iniK)yr = (1 + (i6; + ni)%)l[JR

. ledi
o Yr — Y = e(’9’+"")7¢R for finite transformation.

. o

[Q. Show ¢y — 1] = li0i=n) 5 1y i.e. the same in rotation but opposite in boost.]

[Q. Show (wz YR + 1/;;[\,1/JL) is a real scalar.]

[Q. Show (d}Lo’“d)R) and (wZ?”wL) are vectors i.e. transforms like x*, where o#* = (15, &) and

T = (15, —5)]

«O> «F>r «=)r» «=)»
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Lagrangian-1

@ For a point particle, physics is conveniently described by
Lagrangian. (a scalar function) S[q] = [ dtL(q, §)

@ The classical behavior is obtained by the least action principle:

0S = 0 or equivalenetly

doL_oL
dtog  0q

@ Quantum amplitude is obtained by path integral:

f
Mi—)f:/ quIS[q]
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Lagrangian-2

@ For fields, physics is conveniently described by Lagrangian, too. But
now Lagrangian density (a scalar distribution).
L= [d*)xL(Y,0,¢), S = [d*xL

[NOTE::: Oy = ﬁ = (% ﬁ) o = (8¢, —ﬁ)]

@ The classical behavior is obtained by the least action principle:
0S = 0 or equivalenetly

5 0L _oC
" o0 0

@ Quantum amplitude is obtained by path integral:

f
Mg = [ Dyt



@ For a scalar field, Lagrangian density is almost trivially obtained

® L = ¢*(x)(—0% — m*)¢ and the equation of motion by 6¢* gives
2 2 _

(—0; — m?)¢p(x) = 0.
[NOTE::: H — id:, f — —iV is collectively described by pu = (H, —p) — i9,,. Thus the mass-shell
condition 0 = p? — m? is translated into (—8% — m?)$(x) = 0, which is nothing but Klein-Gordon
equation.]
INOTE:: S = [ d*x¢™(x)(—02 — m?)$ = [ d*x (am*a% - m2¢*¢) — 8y J* where
JH = ¢$* 9" ¢. Since the last term is total divergence term, it does not affect local physics. |

[NOTE:: [£] = 4, [¢] = [¢*] =1 and [m] = 1 or mass.]

u]
o)
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For Weyl spinors, we use scalar combinations of ¢; and ¥g. There
are three possible terms.

o L, = iplord L
° Lg= LoD, PR
° £mass = —m(ﬁi/)R + ¢L¢L)

[NOTE:: [¢,] = [¢R] = % and [m] = 1 or mass]
[NOTE::: When m = 0, two fields ¢; and ¢ are independent: ichd,v¢; =0 and icHd, g = 0.]

[NOTE::: One can regard m provides a physical ‘mixing’ between 1, and ¥g. ich 8,9 = mig |

u]
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Lagrangian-5 (Dirac spinors)

@ One can conveniently combine 1; and g into a 4 component Dirac
spinor, ¥p = ($;) with gamma matrices +# satisfying
{~y*,vY} = 2nH¥ 14(Cliffor algebra).

“w
[NOTE: ~* = (Eou GO ) in Weyl representation. [Q. Show Clifford algebra.]]

© Up=vp° = (Vh.vl)
[NOTE::: ¥pyp = Lbsz + w;f?lh: scalar]
INOTE:: PpyHapp = Phot g + 1] T ey a vector]
© L =1p(in"0, —m)p,
[NOTE::: The Dirac equation is derived by 6ED:(i'y“8“ —m)p =0]
[NOTE::: A slash notation is useful: p = ~v"p,.]
[Q. (i@ + m) x Dirac eq. = KG eq.]
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0 ok
no_
.7_(6“ 0)

. -1 0
° 752!707172732(0 1).{7”,75}20-

o 145 (1 0 (o 0o
@ Projection operators are P, = 5 _(0 o) Pr=1o 1)

@ By projection P ¢p = (%L) =V, and Pgreyp = (“JJOR) = Vg
[NOTE::: vp = W, + Vg]

[NOTE:: v5W¥; = —WV, and v5Wg = Vg thus W, /g are eigenstates of ~¥s5.]

[Q. Show Tr(~s5) = Tr(odd number of y-matrices) = 0]
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SM in PDG

Lecture 1 Why QFT?

Lecture 2 Spacetime symmetry
Lagrangian

summary so far

E = mc? and AtAE > 1: particles are created/ annihilated.

Organizing principles of QFT model

Spacetime symmetry (=Lorentz) and gauge symmetry

Representations of Lorentz group
¢ ~ (070)71/}/‘? ~ (1/27 O),@b[_ ~ (O’ 1/2)' A/l ~ (1/2/ 1/2)
No other states are available in nature!

L= 0,¢* "¢ — m*¢* ¢ + Pp(id — my)p—3 Fu FH




Q1 Why there's no s = 1/3 state in nature?

Q2 What's the dimension of (1/2,0), the left-handed spinor
representation?

Q3 Graviton has s = 2. What's the representation (j,/')?

«O>» «Fr «=)r» « =)
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Gauge symmetry(Abelian): QED
Lecture 1 Gauge symmetry(non-Abelian, Yang-Mills:Weak, QCD)

Lecture 2 Higgs mechanism
The standard model

QED: U(1) gauge theory(1)

Let's consider a free Dirac particle(=field, spinor, fermion ...) with

m:

L(v) = P(id — m)ys

@ You may regard ) as the field for electron in low energy
(E < (h) ~ 246GeV)

o U(1)global : ¥ — e'%1) is a good symmetry. (L is invariant)

o U(1)iocal : ¥ — ey is not a good symmetry. (L is not
invariant)

Opb — 0, (e"p(x)) = €70V (9,1 + i(0,0)) ,
.'.E—>E’z£+5£-£—¢(fy“8ue)zp;AE



Gauge symmetry(Abelian): QED
Lecture 1 Gauge symmetry(non-Abelian, Yang-Mills:Weak, QCD)
Lecture 2 Higgs mechanism

QED: U(1) gauge theory (2)

If you want local phase transition a good symmetry, you need to
introduce gauge covariant derivative (9, — D,, = 9,, — igA,,) to cancel
out (SE, [Q. why do you want?]

L) = Loy, Au) = ©(i(d— igh) —m) ¥
L+ gPy'pA, = L+g)'A,

] Duw — elg(x) Duw [NOTE::
Dty — (8, — igA;")(eiG(X)ql;(x)) = /90 (a,ﬂp +i(0u0 — gAIL)’LLJ) thus gA;, = gAL’ — Ou b or
AIL =Au+ 58“9 guarantees the relationship. Note this is the same gauge transformation in Maxwell's

equations.]

@ The new gauge invariant Lagrangian L) contains
(current) x (gauge field) type interaction. g describes the strength
Of the intel’aCtiOﬂ.[NOTE::: In QED, g = eQ where e = V47« is the magnitude of the electron

charge and Q = —1 for electron, Q = +1 for proton[Q. why the same magnitudes?])]

@ The kinetic term for A, is given as L4 = f%FWF’“’. [NOTE::: The gauge

invariant field strength tensor for A, is F,,, = é[Dw Dy] = 9, A, — Oy Ay, Thisis ‘curvature’ in



Gauge symmetry(Abelian): QED
Lecture 1 Gauge symmetry(non-Abelian, Yang-Mills:Weak, QCD)
Lecture 2 Higgs mechanism

The standard model

QED: U(1) gauge theory (3) practice!

Let's practice with a complex scalar particle(=field, boson ...) with
m=0:

L(¢) =" 0,47 0u¢

@ U(1)global : ¢ — €90, ¢* — e 94" is a good symmetry. (L is
invariant)

@ U(D)ocal : ¢ — X, ¢* — e~ p* is not a good symmetry. (L
is not invariant)

® Recipe: ), — Dy, = 0y, — igAy with A, — A/, = A, + %2
: . ) 1 )
L:U(l)((rb? A/—L) = nmj(a# + IgA,u)¢ (al/ - IgA,u)QZ)*ZF/mFIJ

[Q. Show gauge invariance of the Lagrangian]

[NOTE::: £yq1)(¢, An) = L(6) + luAH + g2AuARG* 6. [Q. What is J,, (¢, ¢*)7]]



Gauge symmetry(Abelian): QED
Lecture 1 Gauge symmetry(non-Abelian, Yang-Mills:Weak, QCD)
Lecture 2 Higgs mechanism

The standard model

Non-Abelian: SU(2) gauge theory(1)

@ Historically proton and neuntron were known to form an isospin
doublet (’;) i.e. they are regarded as up- and down-components of
an isospin doublet state which transforms cordially. [NOTE:: indeed, we

regard the doublet as a fundamental representation of SU(2)]

@ In the SM, this doublet has more fundamental origin as p = (vud)
and n = (udd) then fundamental doublet is (Z) rather than proton
and neutron.

@ Isospin symmetry is SU(2) under which the doublet transforms as

(Z) — 0T (Z) where generators for SU(2) are Pauli matrices
"= (%)i=12,3 and 0" are real valued parameters (angle of rotation

in gauge Space). [NOTE:: U= e’.e(T/ is unitary matrix with Hermitian generators T

Ut — y=1 = —io' T ]

.o .
"] %, 7}] = IE,‘jk% for SU(2) algebra.[NOTE::: can be generalized [T?, T?] = if,,. T¢
for a complact Lie algebra of non-Abelian group G where f,p,. (structure constant) determines the

algebraic structure.]



Gauge symmetry(Abelian): QED

Gauge symmetry(non-Abelian, Yang-Mills:Weak, QCD)
Higgs mechanism

The standard model

Non-Abelian: SU(2) gauge theory(2)

Now let's think of an G = SU(2) doublet, free Dirac field ¢ = ()
with m:

L(y) = (i — m)

@ This Lagrangian is invariant under global SU(2): ¥ — ¥’ = U, 9 — ¥/ = $UT where U = ei0-5/2
[NOTE::: 47 = iiu + dd is a singlet of SU(2) (i.e. unchanged under transformation)]

@ But, not invariant under local SU(2) transformation with 6" = 6/(x).
@ Recipe: introduce covariant derivative Dy =0, — igT"AL with a proper rule for gauge transformation of
— ial ’ i
Ay = T'Al [NOTE:=: A, = UA,UT — Lo uyut)
[Q. Check with U(1) with T = 1] [Q. Check with infinitesimal transformation U ~ 1+ i6 - T that
1 al 1 i _ijkpj ak
AL = AL+ Lo,00 — Rolak)

Ly (1, Al) = D (f(a — igT' ATy - m) P
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Gauge symmetry(Abelian): QED

Gauge symmetry(non-Abelian, Yang-Mills:Weak, QCD)
Higgs mechanism

The standard model

Non-Abelian: SU(2) gauge theory (3) practice!

Let's practice with a complex doublet scalar ¢ = (gs) with m = 0:

L(}) = 0" 8,0 0,0 = 0,010 by + 0,010 da

° SU(2)global + ¢ — ei§‘3/2¢, ¢T — ¢fe_i§"c—’/2 is a good symmetry.
@ SUQ2)iocal 0= g(x)
@ Recipe: 9, — Dy, = 9, — ig% .

w with A7, = VAL UT — L(a,0)UT:

1 . .
ﬁu(z)(‘i’vAu)ETIHV(aud’—igE Aud) (00 — ,g, Aud)= L F"Y

[Q. Show gauge invariance of the Lagrangian]

INOTE:: Lgy(o)(, Al,) = L(4) + gl A + g2 AL AH ¢ 6. [Q. What is J, (6, &7)7 Show,
Dy J* = 0]]

[NOTE:: Fp = FIWT’- = é[D#, Dy, ]. This is ‘curvature’ in non-Abelian internal space.]

[Q. Show F{w = OMAL — B,,AL + ge,-jkAf"LAfr There's no e term in Abelian case. Due to this, there
are self-interactions of non-Abelian gauge bosons!]
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Gauge symmetry(Abelian): QED
Lecture 1 Gauge symmetry(non-Abelian, Yang-Mills:Weak, QCD)
Lecture 2 Higgs mechanism

The standard model

Non-Abelian (4): SU(3) gauge theory

@ Quarks are colored particles. That means a quark forms a triplet
(i.e. fundamental representation) of SU(3).. Here c stands for

‘color’ gauge symmetry.
q
9=1(q") = <q£'r'> (1)
q

[NOTE::: It is custom to call y, g, r as yellow, green, red but it does not mean anything to do with

visible color.]

@ There are 8 generators for SU(3), T2 = A?/2 where A?'s are
Gell-Mann matrices with A3 and A8 diagonal. NOTE: For su(n), A2 — 1)

i 1 1
>Y>\3:( B )YAA:( ’ )
0 0 1
A= 0 - A= ° 0o 1,2 = 0 0 —i ,Agzi ! 1 2)
i 10 i 0 V3 -2

>
-
Il
/N
= o
o
=)
N———
N
Il
/N
- o
ol



Gauge symmetry(Abelian): QED

Higgs mechanism
The standard model

Non-Abelian (5): SU(3) gauge theory

Gauge symmetry(non-Abelian, Yang-Mills:Weak, QCD)

A gauge invariant Lagrangian is fairly easily constructed by

prescription 9, — D, = 0, — igG, where ‘gluon’ is denoted as
G, = GaX
= R 2

. 1 y
Loco = G(i — mg)q — ZG;VGBM

A9)..
[NOTE::: The Lagrangian includes interaction ~ gﬁ;@a( 2)'/ q; = gJZ Gl‘i and D, J?* = 0]

[Q. Can you write down the action for a scalar-quark(squark) which is colored as usual quark?]



Gauge symmetry(Abelian): QED
Lecture 1 Gauge symmetry(non-Abelian, Yang-Mills:Weak, QCD)
Lecture 2 Higgs mechanism

The standard model

Non-Abelian (6): practice with SU(N)

A gauge invariant Lagrangian for an arbitrary gauge group SU(N)
is fairly easily constructed by prescription 9, — D,, = 0,, — igW,
where ‘gauge boson’ is denoted as W, = W7 T? with

[T2, T?] = if2b<T€ and Tr(T2T?) = %:

Lsyqny = D — mg)s — 3 W, W *)

[NOTE::: The Lagrangian includes interaction ~ g; W? Tija-qj = gJ;,W;, and D, J7" =0]

[NOTE:: ¢ = (%;)i=1,2,... ,n in fundamental representation of SU(N).]



Gauge symmetry(Abelian): QED
Lecture 1 Gauge symmetry(non-Abelian, Yang-Mills:Weak, QCD)
Lecture 2 Higgs mechanism

The standard model

Non-Abelian (7): practice with SU(N) x SU(M)

@ Prescription 0, = D, = 0,, — igaA, — igsB,, where 'gauge bosons'’
are denoted as A, = A% T3 with [T}, T2] = if*°T5 and
Te(T3T2) = % and B, = B3T3 with [T3, TE] = ifgb T§ and
Tr(TZTE) = %, respectively.

T 1 a apv 1 a apv
ESU(N) = w(llp — mq)¢ — ZAMVA me ZBNVB H (5)

[NOTE::: The Lagrangian includes interaction ~ gaiA? TA;VJJ- = gJZAZ and similarly for By, ]

[NOTE:: ¢ = (v(; j))i=1,2,--- ,N;j=1,2,--- ,M in fundamental representation of SU(N) and SU(M).]



Gauge symmetry(Abelian): QED
Lecture 1 Gauge symmetry(non-Abelian, Yang-Mills:Weak, QCD)
Lecture 2 Higgs mechanism

The standard model

Non-Abelian (8): finally Ggy = SU(3) x SU(2) x U(1)

@ Let's consider a left-handed quark Q; = P, Q which is triplet of
SU(3), doublet of SU(2) with a hypercharge yq. For now, let's
assume it massless.

@ Prescription

a i

. a/\ . i0 .
0, — D, =0, - 885 — lgWH? — ig'yqByu

[NOTE::: Gauge bosons are 8 gluons (gz), 3 weak gauge bosons (W%/L) and hypercharge gauge boson
(Bu).] [NOTE:: 3 gauge couplings are gs, g and g’, respectively.]

[NOTE::: Leptons are SU(3) singlets and does not interact with gluons.]

[NOTE::: The SM fermions are: £; = (ZLL) ~ (1,2, 7%), erg ~ (1,1,-1), Q. = (Zli) ~ (3,2, é),
ug ~ (3,1, %), dg ~ (3,1, —%) representations of Ggpg. [Q. How to write the gauge invariant

Lagrangian for all particles?] |



Higgs

Gauge symmetry(Abelian): QED
Lecture 1 Gauge symmetry(non-Abelian, Yang-Mills:Weak, QCD)
Lecture 2 Higgs mechanism

mechanism(1): U(1)

Write the Lagrangian for a scalar with a U(1) charge g and a
potential V(¢) = )\((]5*(]5 — V2)2. [NOTE::: The potential is U(1) invariant.]

1
L =[(0u + iqgAn)d™ (0" — igA*)¢] — V(6™ ¢) — ZF,“,F‘“’

At the bottom of the potential, |¢| = v # 0 Let's call v vacuum
expectation value(VEV) because it is the value at the vacuum.

Now an interesting thing happens! Let's see the physical fluctuation
from the vacuum:
P(x) = %(v#— h(x))e"g(x)/v = %(v + h+ i€ 4+ quadratic and higher order terms). [NOTE::: One can

use U(1) symmetry to remove £ then only physical degrees of freedom survives by a proper gauge choice.]

The Lagrangian becomes

15} .
£=—LFF + 1[(0uh) — 402R] + 3a®v2(A + 228)7 1 higher order
ou¢

o
[NOTE:: m)y = qv, mﬁ =4x?)

[NOTE:: Ai‘ =AL+ (& is eaten!) or ¢ — e '&/Y = (v + h)/+/2 makes & dissapear!]




What we have done? Starting from a gauge invariant action, we
found a physical action near the non-zero vacuum with a massive
gauge field! (by eating a Goldstone mode (here £ along U(1)
direction)!

NOTE::: Before eating &, A, was massless. Mass term (~ A, A") is forbidden by the gauge symmetry
(Ap — Au + 1 8,.0, right?).]

«O» «F»r «
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Gauge symmetry(Abelian): QED
Gauge symmetry(non-Abelian, Yang-Mills:Weak, QCD)
Higgs mechanism

The standard model

Higgs mechanism(3): SU(2)

Consider a SU(2) doublet scalar ¢ = (g”) The Lagrangian density is
d

£ =9, — ig 5 W) = V(s'e)

with
V= A(lg]> — v?/2)?

_ 1 (0 _ 1 0 i0; T; 1 0
@ Take vev (¢) = ﬁ(v) and ¢ = ﬁ(wh)e’ iTilv ﬁ(wrh)'[NOTE:“
Here we already choose a gauge where 6 are hidden.]

@ Find the Lagrangian at vacuum.(i.e. ¢ = (¢)) What do you expect
to happen?

it
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The Lagrangian at vacuum is

g wi vaw;
w \z(ﬁvw

r-w ) (V/(i/i)
_ g4 _

2

1
(W;W " E(Wj)z)

= my|W, P+
[NOTE:

2 3)\2
2 mW3(W )

e whEm?

m Wi = T]

[NOTE:: m, 4 =m

w3 = 51

«O» «F»r « =

« =
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Gauge symmetry(Abelian): QED

Gauge symmetry(non-Abelian, Yang-Mills:Weak, QCD)
Higgs mechanism

The standard model

Higgs mechanism(5): the SM! SU(2) x U(1)

The Lagrangian at vacuum for H ~ (1,2, %) is

) - L (eWite'B,  V2aW; 0
2 \/%ngf —gW3+g'B, v/V?2

2

v2 B 1
Ry <2g2WJW T+ g(gWi—g’Bﬂ)z)
1
= Wi (20 )
[NOTE: W — WiEWE o _ eWi—e'Bu gl AuteBy
5 W2 S

- Veve? e

’ i 3
e . v _ & . - 5 72 (Zu) _ (cos Oy —sin Oy, w
[NOTE::: With sin6,, = & ,cos 0, = & with gz = \/g* + g’%, (A}‘«) = <sin O cos 0., (B::)]

[NOTE:: my, 1 = &,mz = %, mp = 0]

2 2 2
e, — My _ 87/mZ7 _ NC fermion coupling _ . .
[NOTE::: p ’"22 v gz/m%\/ = CC Fermion coupling — 1 with the Higgs doublet!]
I(+1)—12 N N
[Q. Show p = ————3 with H weak isospin | and VEV direction I.
212

p = 1is consistent with (/, 3) = (%, i%)SMv (3, £2), (%, :t%)]
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Vel
Le = ( ) ~(1,2,y7),er ~ (1,1, yep)

er
Y

(u L) ~ (1,2, y0), nr ~ (1,1, yeg)
L

Ly =
vrL
Lr = ( ) ~(1,2,y0), TR ~ (1,1, yeg)
TL
[NOTE:: y, = —1/2, Yep = —L: They have exactly same quantum numbers! The difference is in

interaction with Higgs (thus mass).]

Dyt = (9, — ig% . W;L — ig’ye By )€, [NOTE:: no strong interaction]

Dyer = (9 — ig'yeRB“)eR [NOTE::: no strong, no SU(2) interaction)

gTiWL +g'YBy = %(ﬂ Wi+ Tw)) +gT3 Wg + g'yBy where T = Ty + iT2. [NOTE::
Diagonal part with @ = T3 +y: d = gT3W?3 +g(Q— T3)B = T3(gw3 —¢g’B)+¢'QB.

W3 — g'B = gzZ and B = —s,, Z + ¢, A provides d = gz(T3 — Qsin? Ow)Z,, + eQA,, where
e=g cosfy.]

. 8 — = . 2 .
Dy, =98, — lz(T'*'W: + T W, ) —igz(T3 — Qsin” 0w)Z, — ieQAL

[m] = =

DA



(s
dp

) ~ (3,2,y0), g ~ (3,1, v), dr ~ (3,1, va)

L

TN

2

S,

)
)

Q=
Q =
Q=

=

~(3,2,¥Q),cr ~ (3,1, yu)ysr ~ (3,1, yq)

N

~(3,2,¥Q), tr ~ (3,1, yu), br ~ (3,1, y4)
[NOTE::: ygp = %,yu

%, Yd = —%: They have exactly same quantum numbers! The difference is in
interaction with Higgs (thus mass).]
@ Q,=2/3,Q=-1/3byQ=T3+y.

@ D, =0, — igs%gz —ig%

- Wi, —ig'yeBy

. Aa
Dy =9, —lgs?

g o ) 2 )
g; — IE(TJrW;r + T W, ) —igz(T3 — Qsin” 0w)Z, — ieQA,

«F
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Gauge symmetry(Abelian): QED
Lecture 1 Gauge symmetry(non-Abelian, Yang-Mills:Weak, QCD)
Lecture 2 Higgs mechanism

SM(3) Yukawa couplings

Emass ~ mQZL@/)R + h.c.
but! & er is not allowed [a. why7
ZLHGR, QL/:IUR and QLHdR are allowed. /:/ = i0‘2H*.

General Yukawa interaction allows all the inter-generation
mixings:

ﬁyuk = —y,f-ELHejR - yi}laiL’:/UjR - y,-j-’@LdeR (8)

ye, y" y9 are all complex valued matrices.



Gauge symmetry(Abelian): QED

Gauge symmetry(non-Abelian, Yang-Mills:Weak, QCD)
Higgs mechanism

The standard model

SM(4) Quark masses and mixings

Let's think of n generations of quarks {Qi, uig, dig}i=12,...

@ Kinetic+gauge term for quarks is symmetric under U(n) x U(n) x U(n) (global):
QL — UQQp,ugp — Uyur,dgr — Ugdg

[NOTE::: gauge bosons are blind of generations (universality)]

@ Yukawa interactions break the symmetry
. d=
Lyuk = —vj Qi Aujp — yj Qi Hdjp + h.c. (9)
[NOTE::: Yukawa's are the only source of symmetry breaking: Minimal flavor violation]
@ yd have 4n? real parameters in total. But not all of them are physically observable. The symmetry of
the kinetic term implies a kind of reparametrization invariance:
¥ = Ubyala,y" = UbyuU,

leaves the physics unchanged.
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@ The U(1) subgroup of U(n)® :

Ug = Uy = Uy =€

does not change y, and y4. The effective reparametrization group is thus U(n)S/U(l) thus the space of

physical parameters is

4 3
RY/{U(n)"/U(M)}

with its dimension = 4n? — (3n? — 1) = n® + 1.

P41 on n(n—1) (n—1)(n—2)
dim masses  mixing angles  phases(CPV)

n=2 4 1 0
n=3 6 3 1
n==4 8 6 3




Gauge symmetry(Abelian): QED

Gauge symmetry(non-Abelian, Yang-Mills:Weak, QCD)
Higgs mechanism

The standard model

SM(6) Quark masses and mixings

@ Quark mass matrix

v 4

aMu: u
NA Y2

L= —JLMddR — g Myugr

My = yq

[NOTE::: Theorem: A complex n X n matrix M can be diagonalized by bi-similar transformation

M = UDU'T where U and U’ are unitary, D is diagonal, all elements > 0.]
@ Diagonalization
M, = U ME£ UL, My = ViMG™8 Vv
u — ULV, Ry Wld = VILIVI4 R

With mass eignstates {g/ = U;/LUR/L and c?R/L = V;/LdR/L,

L= —0 M3 5g — —d; M{*8dg + h.c.

[m] = =
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@ Charged current interactions:

tee = Stwaurtw rw(” )
- %(uLw o+ LW u)
= % (aufviwtd, +avfuwa)
= %(ﬁLVCKMW di +hee.)

[NOTE::: CC interactions are flavor violating! ﬁ'yu 3,'_ = '-TL’Y;L VCKMJL]

@ Neutral current interactions:

Lyc o upvpup, dpypdy o< Gpypdp, dpyudy

[NOTE::: NC interactions are flavor diagonal! FCNC, GIM mechanism]

(10)



Gauge symmetry(Abelian): QED
Lecture 1 Gauge symmetry(non-Abelian, Yang-Mills:Weak, QCD)
Lecture 2 Higgs mechanism

The standard model

SM(7) Lepton masses

@ Without having neutrino masses (or very small masses), only
charged leptons got masses though Yukawa interactions and no
CKM like mixings are allowed. (Lepton number conservation)

@ Neutrinos however have masses possibly by a different mechanism
other than conventional Higgs mechanism.
>, my, <0.1eV <« me < m¢! (Flavor hierarchy problem)



Gauge symmetry(Abelian): QED
Lecture 1 Gauge symmetry(non-Abelian, Yang-Mills:Weak, QCD)
Lecture 2 Higgs mechanism

The standard model

SM(7) Free parameters in the SM

3 gauge couplings: g5, 8,8

@ 13: 9 fermion masses and 4 CKM mixings with a phase:
Me, My, My, My, My, Ms, Mc, Mp, M, 3 angles and 1 CPV phase.

@ 1 Higgs vev produces 2 gauge boson masses :
(mw = gv/2,mz = gzv/2) ~ v (or Higgs mass)
@ 1 Higgs quartic coupling A
- a ad
o 6‘QCD n QGIWG;V
# of parameters sector parameters
3 gauge couplings g5, 8,8
9 fermion masses Me, My, M, My, My, Ms, Mc, Mp, Mt
4 CKM 3 angles + 1 phase
2 Higgs vev and quartic coupling vy A
(1) QCD theta term in 6G2, G4 fqcop < 1
total 18(+1) all measured!!




The End
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