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PDG: where you can find data
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Elementary particles are well organized in the SM.
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How organized?

Patterns found:

s = 1/2 fermions: quarks and leptons

s = 1 bosons: interaction mediators
(force carriers)

s = 0 boson: SSB and masses

3 generations
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Units and conventions

c = ~ = 1 then [L] = [T ] = [M−1]. Schrödinger equation looks like

i
∂ψ

∂t
= −

1

2m
∇2
ψ + Vψ

where ”quantization” rules are

H → i
∂

∂t
≡ i∂t , pi → i

∂

∂x i
≡ i∂i

.

xµ = (x0, x1, x2, x3) = (x0, x i ) = (t, x i ) in 4D spacetime. The Minkowski metric is mostly minus sign
(=West coast, particle physics, energy-like convention)

η
µν = ηµν =


1
−1

−1
−1



so that ds2 = ηµνdx
µdxν = dt2 − d~x · d~x .

[NOTE::: ∂µ = ∂
∂xµ

= (∂t ,∇), ∂µ = (∂t ,−∇).]

[NOTE::: Energy has the correct sign in four momentum: Pµ = (E , ~p), Pµ = ηµνP
ν = (E ,−~p),

P2 = ηµνP
µPν = PµPµ = E2 − ~p2 = m2]

[NOTE::: Quantization rule: pµ → i∂µ]
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Some questions?

Who decided s = 0, 1
2 , 1? Anything else? [Q. e.g., s=1/3?]

[Q. What’s the unit of spin, s?]

How to describe interactions among particles? [Q. Any rule?]

Particle or wave? [Q. Is there fundamental differences between electron and photon other

than spin and mass?]
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Short answers

Who decided s = 0, 1
2 , 1? Ans: Spacetime symmetry= Lorentz

(Poincaré) in SR

How to describe interactions among particles? Ans: Gauge
symmetry. [NOTE::: SU(3)× SU(2)× U(1) in the SM]

[Q. Symmetries (i.e. the spacetime and gauge symmetries) in Maxwell’s EM ?]

Particle or wave? Ans:They are all excitations of quantum
fields.

SM is written in QFT.
(more precisely relativistic, gauge, quantum field theory.
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(reminder) EM

Relativity is required due to the fact that speed of light is
constant
The wave equation with c = 1 is (∂2

t −∇
2)φ(xµ) = 0

gauge symmetry

∇ · ~E = ρ,∇× ~E = −
∂~B

∂t
,∇ · ~B = 0,∇× ~B =

∂~E

∂t
+~j

is solved by ~B = ∇× ~A and ~E = −∇φ− ∂~A
∂t

. but

~A→ ~Ag = ~A +∇ξ, φ→ φg = φ− ∂tξ

do not change ~E , ~B.[NOTE::: Aµ = (φ, ~A) with Aµ → Aµg = Aµ − ∂µξ.]

Relativistic formulation of Maxwell’s eqs
Field strength Fµν = ∂µAν − ∂νAµ [Q. Show F0i = Ei , Fij = εijkBk ]forms the action

Lem = −
1

4
FµνF

µν − jµA
µ
(

=
1

2
(~E2 − ~B2)− ρφ +~j · ~A

)
, which provides

∂µF
µν = Jν∼ ∇ · ~E = ρ,∇× ~B − ∂t ~E = ~j

The Bianchi identity, ∂λFµν + ∂µFνλ + ∂νFλµ = 0∼ ∇ · ~B = 0,∇× ~B + ∂t ~E = 0 completes the

Maxwell’s equations.
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QFT references

[NOTE::: QFT is the standard language of modern particle physics]

Refs
Open KIAS school http://workshop.kias.re.kr/KWS2013/?Program

PDG
http://pdg.lbl.gov/

Recommendations for beginners:
My recommendation for beginning students is this⇒
Tong, Lecture for Part-III (only QED but very clear exposition)
http://www.damtp.cam.ac.uk/user/tong/qft.html

A. Zee “Quantum field theory in a nutshell” (2nd, princeton 2010):
intuitive, fun!

L.Álvarez-Gaumé, M. Á. Vázquez-Mozo, “An invitation to quantum field
theory” (springer 2012): clear exposition! recommended!

Standard texts:
Peskin and Schroeder (1995), Schwartz (2014): standard of standard

Weinberg I,II, III, Srednicki, Ramond, Ryder, many many others

Müller-Kirsten, Wiedemann “Introduction to supersymmetry” (world
scientific 2010): representation of Lorentz group +susy formalism

http://workshop.kias.re.kr/KWS2013/?Program
http://pdg.lbl.gov/
http://www.damtp.cam.ac.uk/user/tong/qft.html
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Particle physics references

Some readable texts: [NOTE::: QFT books typically
have sections on the SM. More later.]

Anchordoqui, Halzen “Lessons in Particle physics” (v4 2011
Dec.) 260 pages
http://arxiv.org/abs/0906.1271v4

M. Robinson “Symmetry and the Standard Model” (springer
2011): +math

C.G.Tully “Elementary particle physics in a Nutshell”
(princeton 2011)

Barger, Phillips “Collider Physics”: useful appendix!

Dobado et.al. “Effective Lagrangians for the standard
model” (springer 1997)

LHC!:
CMS physics results
https://twiki.cern.ch/twiki/bin/view/CMSPublic/

PhysicsResults

ATLAS physics results
https://twiki.cern.ch/twiki/bin/view/CMSPublic/

PhysicsResults

http://arxiv.org/abs/0906.1271v4
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults
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QFT-1

QFT = QM + Relativity.

(1) ∆t∆E ∼> ~: the energy can fluctuate wildly over a small
interval of time

(2) E =
√
~p2c2 + m2c4: energy can be converted into mass

and vice versa

(1)+(2) : mass (or particle) can be created/annihilated out
of/into fluctuating energy! This is described by QFT!

e.g. e+e− → γγ, pp → tt̄, gg → H → bb̄ [NOTE::: # non-conserving

phenomena could not be described by Schrödinger equation. [Q. are you sure?]]
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QFT-2

QFT is a proper combination of Rel. and QM.

particles and waves = excited states of quantum fields

“all electrons look exactly same” because they are all
excitations of the same field ψe(x)!

ψe(x) =
∑

p

∑
s=±1/2

(
as(p)us(p)e−ipx + b†s (p)vs(p)e ipx

)
This structure is generic:
Field =

∑
p,λ aλ × polarizationλ × e−ipx + (p0 < 0)

[Q. how about a scalar φ(x) and vector Aµ(x)?.]

[NOTE:::
∑

p =
∫ d3p

(2π)32p0 (=
∫ d4p

(2π)4 (2π)δ4(p2 − m2)θ(p0)]
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QFT-3

In QFT, # of particles is not conserved.

1 = |0〉 〈0|+
∑
p

|p〉 〈p|+ · · · (Fock space)

vacuum: a(p) |0〉 = 0

one particle state: a(p)† |0〉 ∝ |p〉
two particle state: a(p)†a(k)† |0〉 ∝ |p, k〉
· · ·
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QFT-4

Organizing principles of making a ‘QFT model’ (or Lagrangian)

symmetry (spacetime, internal, super-, conformal, etc)...
“group”

matter contents and their transformation rules (i.e. quantum
numbers)...“representation”
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QFT-5

The SM is organized by

Poincaré symmetry (Lorentz+translaion)

Gauge symmetry: GSM = SU(3)c × SU(2)L × U(1)y associated with
gauge bosons Aµ = (g a

µ,W
±
µ ,W

3
µ,Bµ)

Matter fields: ψ = (`L, eR ,QL, uR , dR)i , i = 1, 2, 3 and H

ψ ∼ (1/2, 0) or (0, 1/2), H ∼ (0, 0) and Aµ ∼ (1/2, 1/2) representations
of Lorentz group (or spinor, scalar and vectors).

`L =
(
νL
eL

)
∼ (1, 2,− 1

2
), eR ∼ (1, 1,−1),QL =

(
uL
dL

)
∼ (3, 2, 1

6
),

uR ∼ (3, 1, 2
3
), dR ∼ (3, 1,− 1

3
) representations of GSM.

If you understand these, you can sleep now. :-)
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Lorentz-1

Let’s first understand Ψ ∼ (j , j ′) i.e. irreducible representations of
Lorentz group.

The constancy of speed of light demands 0 = dt2 − d~x · d~x with
c = 1. [NOTE::: You can regard ds2 = ηµνdx

µdxν = dt2 − d~x · d~x as an infinitesimal length in

spacetime. xµ = (x0, x1, x2, x3) = (t, x i ) and η = diag(1,−1,−1,−1)]

A linear transformation xµ → x ′µ = Λµνxν does not change ds2 is
called Lorentz transformation.

Λ’s form a group L = {Λ|ΛTηΛ = η}, called Lorentz group.
[NOTE::: Group: a closed system of operations with an identity]

[NOTE::: Proper, time-direction-conserving transformation L = SO(1, 3; R)]

There are 6 Lorentz transformations= (3 boosts(ηx , ηy , ηz)), 3
rotations (θx , θy , θz)), which keep ds2 unchanged.
[NOTE::: ηi are rapidities and θi are angles about i-axis]
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Lorentz-2

Explicit form of Lorentz transformations:

3 rotations which keeps d~x · d~x = dx2 + dy 2 + dz2 unchanged:
Rx ,Ry ,Rz , respectively.


1
1

cos θx sin θx
− sin θx cos θx

 ,


1
cos θy − sin θy

1
sin θy cos θy

 ,


1
cos θz sin θz
− sin θz cos θz

1


[Q. Show:sinθ + cos2 θ = 1 guarantees that ds2 is actually preserved.]

3 boosts which keeps (dt2 − dx2), (dt2 − dy 2),(dt2 − dz2)
unchanged: Bx ,By ,Bz , respectively.


γx −vxγx
−vxγx γx

1
1

 ,


γy −vyγ
1

−vyγy γy
1

 ,


γz −vzγz
1

1
−vzγz γz


where γi = 1/

√
1− v2

i = cosh ηi and viγi = sinh ηi . [Q. Show: cosh2 η − sinh2 η = 1 guarantees that

ds2 is actually preserved.]

L = {Ri ,Bi}



Lecture 1
Lecture 2

SM in PDG
Why QFT?
Spacetime symmetry
Lagrangian

Lorentz-3

To see the structure of the rotations, it is enough to analyze the
infinitesimal changes (θ � 1) from the origin (doing
nothing=origin):

Rx =


1

1
cos θx sin θx
− sin θx cos θx

 ≈ 1 +


0

0
0 θx
−θx 0

 = 1 + iθx Jx

Similarly,

Ry =


1

cos θy − sin θy
1

sin θy cos θy

 ≈ 14 + iθy Jy , Rz =


1

cos θz sin θz
− sin θz cos θz

1

 ≈ 14 + iθz Jz

[Q. Find the explicit form of Jx , Jy , Jz .] [NOTE::: Note that they are nothing but the angular momentum

operators generating rotations satisfying [Ji , Jj ] = iεijk Jk . This means rotations form a group SO(3) ' SU(2) as

we know.]
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Lorentz-4

Similarly, let’s consider infinitesimal boosts (η � 1), by which
cosh η ≈ 1 and sinh η ≈ η and

Bx =


cosh ηx − sinh ηx
− sinh ηx cosh ηx

1
1

 ≈


1 −ηx
−ηx 1

1
1

 = 14 + iηxKx

Similarly,

By ≈ 14 + iηyKy , Bz ≈ 14 + iηzKz

[Q. Find the explicit form of Kx ,Ky ,Kz .][Q. Show that [Ki ,Kj ] = −iεijk Jk , [Ji ,Kj ] = iεijkKk . This means

boosts do not form a group.]
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Lorentz-5

6 generators of Lorentz group are found to satisfy Lie algebra:
[Ji , Jj ] = iεijk Jk , [Ki ,Kj ] = −iεijk Jk , [Ji ,Kj ] = iεijkKk

Ji form SO(3) group but Ki do not. However, a clever combination
of Ji and Ki are separate and form groups.

N±i = 1
2 (Ji ± iKi ) then [N+

i ,N
+
j ] = iεijkN

+
k
, [N−i ,N

−
j ] = iεijkN

−
k
, [N+

i ,N
−
j ] = 0

This means that Lorentz group is equivalent to product of two
rotation groups:

L = SU(2)× SU(2)1

1More rigorously, so(1, 3;R)C ' su(2,C)× su(2,C)
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Lorentz-6

A representation of L is labeled by an ordered numbers (j , j ′) where
j and j ′ are eigenvalues of N+ and N− thus j , j ′ = 0, 1/2, 1, 3/2, · · · .

As Ji = N+
i + N−i , the total spin of (j , j ′) state is j + j ′ by the rule

of angular momentum addition.

(0, 0) : s = 0,
(1/2, 0), (0, 1/2) : s = 1/2 [NOTE::: left-handed and right-handed spinor representations]

(1/2, 1/2) : s = 1.
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Lorentz-7

A scalar φ(x) ∼ (0, 0) is trivially transformed by Λ

φ(x)→ φ′(x ′) = φ(Λ−1x ′) = φ(x)
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Lorentz-8

A right-handed Weyl spinor ψR ∼ (1/2, 0)

N+ = 1/2,N− = 0 or N+
i = σi

2 and N−i = 0.

Ji = N+
i + N−i = σi

2 and Ki = −i σi2
ψR → ψ′R ≈ (1 + iθiJi + iηiKi )ψR = (1 + (iθi + ηi )

σi
2 )ψR

ψR → ψ′R = e(iθi+ηi )
σi
2 ψR for finite transformation.

[Q. Show ψL → ψ′L = e
(iθi−ηi )

σi
2 ψL i.e. the same in rotation but opposite in boost.]

[Q. Show (ψ
†
L
ψR + ψ

†
R
ψL) is a real scalar.]

[Q. Show (ψ
†
R
σµψR ) and (ψ

†
L
σµψL) are vectors i.e. transforms like xµ, where σµ = (12, ~σ) and

σµ = (12,−~σ).]
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Lagrangian-1

For a point particle, physics is conveniently described by
Lagrangian. (a scalar function) S [q] =

∫
dtL(q, q̇)

The classical behavior is obtained by the least action principle:
δS = 0 or equivalenetly

d

dt

∂L

∂q̇
=
∂L

∂q

Quantum amplitude is obtained by path integral:

Mi→f =

∫ f

i

Dqe iS[q]
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Lagrangian-2

For fields, physics is conveniently described by Lagrangian, too. But
now Lagrangian density (a scalar distribution).
L =

∫
d3xL(ψ, ∂µψ), S =

∫
d4xL

[NOTE::: ∂µ = ∂
∂xµ

= ( ∂
∂t
, ~∇), ∂µ = (∂t ,−~∇)]

The classical behavior is obtained by the least action principle:
δS = 0 or equivalenetly

∂µ
∂L
∂∂µψ

=
∂L
∂ψ

Quantum amplitude is obtained by path integral:

Mi→f =

∫ f

i

Dψe iS[ψ]
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Lagrangian-3

For a scalar field, Lagrangian density is almost trivially obtained

L = φ∗(x)(−∂2
µ −m2)φ and the equation of motion by δφ∗ gives

(−∂2
µ −m2)φ(x) = 0.

[NOTE::: H → i∂t , ~p → −i ~∇ is collectively described by pµ = (H,−~p)→ i∂µ. Thus the mass-shell

condition 0 = p2 − m2 is translated into (−∂2 − m2)φ(x) = 0, which is nothing but Klein-Gordon

equation.]

[NOTE::: S =
∫
d4xφ∗(x)(−∂2

µ − m2)φ =
∫
d4x

(
∂µφ
∗∂µφ− m2φ∗φ

)
− ∂µJµ where

Jµ = φ∗∂µφ. Since the last term is total divergence term, it does not affect local physics. ]

[NOTE::: [L] = 4, [φ] = [φ∗] = 1 and [m] = 1 or mass.]



Lecture 1
Lecture 2

SM in PDG
Why QFT?
Spacetime symmetry
Lagrangian

Lagrangian-4 (Weyl spinors)

For Weyl spinors, we use scalar combinations of ψL and ψR . There
are three possible terms.

LL = iψ†Lσ
µ∂µψL

LR = iψ†Rσ
µ∂µψR

Lmass = −m(ψ†LψR + ψ†RψL)
[NOTE::: [ψL] = [ψR ] = 3

2
and [m] = 1 or mass]

[NOTE::: When m = 0, two fields ψL and ψR are independent: iσµ∂µψL = 0 and iσµ∂µψR = 0.]

[NOTE::: One can regard m provides a physical ‘mixing’ between ψL and ψR . iσµ∂µψL = mψR ]
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Lagrangian-5 (Dirac spinors)

One can conveniently combine ψL and ψR into a 4 component Dirac
spinor, ψD =

(
ψL

ψR

)
with gamma matrices γµ satisfying

{γµ, γν} = 2ηµν14(Cliffor algebra).

[NOTE::: γµ =

(
0 σµ

σµ 0

)
in Weyl representation. [Q. Show Clifford algebra.]]

ψD = ψ†Dγ
0 = (ψ†R , ψ

†
L)

[NOTE::: ψDψD = ψ
†
L
ψR + ψ

†
R
ψL: scalar]

[NOTE::: ψDγ
µψD = ψ

†
R
σµψR + ψ

†
L
σµψL: a vector]

L = ψD (iγµ∂µ −m)ψD ,
[NOTE::: The Dirac equation is derived by δψD :

(
iγµ∂µ − m

)
ψD = 0.]

[NOTE::: A slash notation is useful: /p = γµpµ.]

[Q. (i /∂ + m)× Dirac eq. = KG eq.]
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Lagrangian-6 (Gamma matrices)

γµ =

(
0 σµ

σµ 0

)

γ5 = iγ0γ1γ2γ3 =

(
−1 0
0 1

)
, {γµ, γ5} = 0.

Projection operators are PL =
1−γ5

2
=

(
1 0
0 0

)
, PR =

(
0 0
0 1

)
.

By projection PLψD =
(
ψL

0

)
≡ ΨL and PRψD =

(
0
ψR

)
≡ ΨR

[NOTE::: ψD = ΨL + ΨR ]
[NOTE::: γ5ΨL = −ΨL and γ5ΨR = ΨR thus ΨL/R are eigenstates of γ5.]

[Q. Show Tr(γ5) = Tr(odd number of γ-matrices) = 0]
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summary so far

QFT=SR+QM

E = mc2 and ∆t∆E ∼> 1: particles are created/ annihilated.

Organizing principles of QFT model

Spacetime symmetry (=Lorentz) and gauge symmetry

Representations of Lorentz group

φ ∼ (0, 0), ψR ∼ (1/2, 0), ψL ∼ (0, 1/2), Aµ ∼ (1/2, 1/2)
No other states are available in nature!

Lagrangians

L = ∂µφ
∗∂µφ−m2φ∗φ+ ψD(i /∂ −mψ)ψ−1

4 FµνFµν
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Quiz

Q1 Why there’s no s = 1/3 state in nature?

Q2 What’s the dimension of (1/2, 0), the left-handed spinor
representation?

Q3 Graviton has s = 2. What’s the representation (j , j ′)?
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Lecture #2
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QED: U(1) gauge theory(1)

Let’s consider a free Dirac particle(=field, spinor, fermion ...) with
m:

L(ψ) ≡ ψ̄(i /∂ −m)ψ

You may regard ψ as the field for electron in low energy
(E � 〈h〉 ' 246GeV)

U(1)global : ψ → e iθψ is a good symmetry. (L is invariant)

U(1)local : ψ → e iθ(x)ψ is not a good symmetry. (L is not
invariant)

∂µψ → ∂µ(e iθ(x)ψ(x)) = e iθ(x) (∂µψ + i(∂µθ)ψ) ,

∴ L → L′ = L+ δL = L − ψ̄(γµ∂µθ)ψ 6= L
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QED: U(1) gauge theory (2)

If you want local phase transition a good symmetry, you need to
introduce gauge covariant derivative (∂µ → Dµ = ∂µ − igAµ) to cancel
out δL, [Q. why do you want?]

L(ψ)→ LU(1)(ψ,Aµ) ≡ ψ̄
(
i(/∂ − ig /A)−m

)
ψ

= L+ g ψ̄γµψAµ = L+gJµAµ

Dµψ → e iθ(x)Dµψ [NOTE:::

Dµψ → (∂µ − igA′µ)(e iθ(x)ψ(x)) = e iθ(x)
(
∂µψ + i(∂µθ − gA′µ)ψ

)
thus gAµ = gA′µ − ∂µθ or

A′µ = Aµ + 1
g
∂µθ guarantees the relationship. Note this is the same gauge transformation in Maxwell’s

equations.]

The new gauge invariant Lagrangian LU(1) contains
(current)× (gauge field) type interaction. g describes the strength
of the interaction.[NOTE::: In QED, g = eQ where e =

√
4πα is the magnitude of the electron

charge and Q = −1 for electron, Q = +1 for proton[Q. why the same magnitudes?])]

The kinetic term for Aµ is given as LA = − 1
4 FµνFµν . [NOTE::: The gauge

invariant field strength tensor for Aµ is Fµν ≡ i
g

[Dµ,Dν ] = ∂µAν − ∂νAµ. This is ‘curvature’ in

gauge space.]
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QED: U(1) gauge theory (3) practice!

Let’s practice with a complex scalar particle(=field, boson ...) with
m = 0:

L(φ) ≡ ηµν∂µφ∗∂νφ

U(1)global : φ→ e iθφ, φ∗ → e−iθφ∗ is a good symmetry. (L is
invariant)

U(1)local : φ→ e iθ(x)φ, φ∗ → e−iθ(x)φ∗ is not a good symmetry. (L
is not invariant)

Recipe: ∂µ → Dµ = ∂µ − igAµ with Aµ → A′µ = Aµ +
∂µθ
g :

LU(1)(φ,Aµ) ≡ ηµν(∂µ + igAµ)φ∗(∂ν − igAµ)φ−1

4
FµνFµν

[Q. Show gauge invariance of the Lagrangian]

[NOTE::: LU(1)(φ, Aµ) = L(φ) + gJµA
µ + g2AµA

µφ∗φ. [Q. What is Jµ(φ, φ∗)?]]
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Non-Abelian: SU(2) gauge theory(1)

Historically proton and neuntron were known to form an isospin
doublet

(
p
n

)
i.e. they are regarded as up- and down-components of

an isospin doublet state which transforms cordially. [NOTE::: indeed, we

regard the doublet as a fundamental representation of SU(2)]

In the SM, this doublet has more fundamental origin as p = (uud)
and n = (udd) then fundamental doublet is

(
u
d

)
rather than proton

and neutron.

Isospin symmetry is SU(2) under which the doublet transforms as(
u
d

)
→ e iθiT i (u

d

)
where generators for SU(2) are Pauli matrices

T i = (σi

2 )i=1,2,3 and θi are real valued parameters (angle of rotation
in gauge space). [NOTE::: U = e iθ

i T i
is unitary matrix with Hermitian generators T i .

U† = U−1 = e−iθi T i
]

[σi

2 ,
σj

2 ] = iεijk
σk

2 for su(2) algebra.[NOTE::: can be generalized [T a,Tb ] = ifabcT
c

for a complact Lie algebra of non-Abelian group G where fabc (structure constant) determines the

algebraic structure.]
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Non-Abelian: SU(2) gauge theory(2)

Now let’s think of an G = SU(2) doublet, free Dirac field ψ =
(u
d

)
with m:

L(ψ) ≡ ψ̄(i /∂ −m)ψ

This Lagrangian is invariant under global SU(2): ψ → ψ′ = Uψ, ψ̄ → ψ̄′ = ψ̄U† where U = e i
~θ·~σ/2.

[NOTE::: ψ̄ψ = ūu + d̄d is a singlet of SU(2) (i.e. unchanged under transformation)]

But, not invariant under local SU(2) transformation with θi = θi (x).

Recipe: introduce covariant derivative Dµ = ∂µ − igT iAi
µ with a proper rule for gauge transformation of

Aµ ≡ T iAi
µ. [NOTE::: A′µ = UAµU

† − i
g

(∂µU)U†]

[Q. Check with U(1) with T = 1] [Q. Check with infinitesimal transformation U ' 1 + iθ · T that

A′ iµ = Ai
µ + 1

g
∂µθ

i − εijkθjAk
µ]

LSU(2)(ψ, Ai
µ) ≡ ψ̄

(
i(/∂ − igT i /Ai )− m

)
ψ
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Non-Abelian: SU(2) gauge theory (3) practice!

Let’s practice with a complex doublet scalar φ =
(
φu
φd

)
with m = 0:

L(φ) ≡ ηµν∂µφ†∂νφ = ∂µφ
†
u∂

µφu + ∂µφ
†
d∂

µφd

SU(2)global : φ→ e i
~θ·~σ/2φ, φ† → φ†e−i~θ·~σ/2 is a good symmetry.

SU(2)local: ~θ = ~θ(x)

Recipe: ∂µ → Dµ = ∂µ − ig ~σ
2
· ~Aµ with A′µ = UAµU

† − i
g

(∂µU)U†:

LU(2)(φ, Aµ) ≡ ηµν (∂µφ− ig
~σ

2
· ~Aµφ)†(∂µφ− ig

~σ

2
· ~Aµφ)−

1

4
F i
µνF

iµν

[Q. Show gauge invariance of the Lagrangian]

[NOTE::: LSU(2)(φ, Ai
µ) = L(φ) + gJµA

µ + g2AµA
µφ∗φ. [Q. What is Jµ(φ, φ∗)? Show,

DµJ
µ = 0]]

[NOTE::: Fµν = F i
µνT

i = i
g

[Dµ,Dν ]. This is ‘curvature’ in non-Abelian internal space.]

[Q. Show F i
µν = ∂µA

i
ν − ∂νA

i
µ + gεijkA

j
µA

k
ν . There’s no ε term in Abelian case. Due to this, there

are self-interactions of non-Abelian gauge bosons!]



Lecture 1
Lecture 2

Gauge symmetry(Abelian): QED
Gauge symmetry(non-Abelian, Yang-Mills:Weak, QCD)
Higgs mechanism
The standard model

Non-Abelian (4): SU(3) gauge theory

Quarks are colored particles. That means a quark forms a triplet
(i.e. fundamental representation) of SU(3)c . Here c stands for
‘color’ gauge symmetry.

q = (qa) =

qy

qg

qr

 (1)

[NOTE::: It is custom to call y , g , r as yellow, green, red but it does not mean anything to do with

visible color.]

There are 8 generators for SU(3), T a = λa/2 where λa’s are
Gell-Mann matrices with λ3 and λ8 diagonal. [NOTE::: For SU(N), N2 − 1.]

λ
1 =

0 1
1 0

0

 , λ2 =

0 −i
i 0

0

 , λ3 =

1
−1

0

 , λ4 =

 1
0

1


λ

5 =

 −i
0

i

 , λ6 =

0
0 1
1 0

 , λ7 =

0
0 −i
i 0

 , λ8 =
1
√

3

1
1
−2

 (2)

[NOTE::: Normalization is conventionally chosen to be Tr(T aTb) = δab

2
]
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Non-Abelian (5): SU(3) gauge theory

A gauge invariant Lagrangian is fairly easily constructed by
prescription ∂µ → Dµ = ∂µ − igGµ where ‘gluon’ is denoted as
Gµ ≡ G a

µ
λa

2 .

LQCD = q̄(i /D −mq)q − 1

4
G a
µνG aµν (3)

[NOTE::: The Lagrangian includes interaction ∼ gq̄i /G
a (λa)ij

2
qj = gJaµG

a
µ and DµJ

aµ = 0.]

[Q. Can you write down the action for a scalar-quark(squark) which is colored as usual quark?]
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Non-Abelian (6): practice with SU(N)

A gauge invariant Lagrangian for an arbitrary gauge group SU(N)
is fairly easily constructed by prescription ∂µ → Dµ = ∂µ − igWµ

where ‘gauge boson’ is denoted as Wµ ≡W a
µT a with

[T a,T b] = if abcT c and Tr(T aT b) = δab
2 :

LSU(N) = ψ̄(i /D −mq)ψ − 1

4
W a
µνW aµν (4)

[NOTE::: The Lagrangian includes interaction ∼ gψ̄i /W
aT a

ij qj = gJaµW
a
µ and DµJ

aµ = 0.]

[NOTE::: ψ = (ψi )i=1,2,··· ,N in fundamental representation of SU(N).]
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Non-Abelian (7): practice with SU(N)× SU(M)

Prescription ∂µ → Dµ = ∂µ − igAAµ − igBBµ where ‘gauge bosons’
are denoted as Aµ ≡ Aa

µT a
A with [T a

A,T
b
A ] = if abc

A T c
A and

Tr(T a
AT b

A) = δab
2 and Bµ ≡ Ba

µT a
B with [T a

B ,T
b
B ] = if abc

B T c
B and

Tr(T a
BT b

B) = δab
2 , respectively.

LSU(N) = ψ̄(i /D −mq)ψ − 1

4
Aa
µνAaµν − 1

4
Ba
µνBaµν (5)

[NOTE::: The Lagrangian includes interaction ∼ gAψ̄i /A
aTA

a
ijψj = gJaµA

a
µ and similarly for Bµ.]

[NOTE::: ψ = (ψ(i,j))i=1,2,··· ,N;j=1,2,··· ,M in fundamental representation of SU(N) and SU(M).]
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Non-Abelian (8): finally GSM = SU(3)× SU(2)× U(1)

Let’s consider a left-handed quark QL = PLQ which is triplet of
SU(3), doublet of SU(2) with a hypercharge yQ . For now, let’s
assume it massless.

Prescription

∂µ → Dµ = ∂µ − igsg a
µ

λa

2
− igW i

µ

σi

2
− ig ′yQBµ

[NOTE::: Gauge bosons are 8 gluons (gaµ), 3 weak gauge bosons (W i
µ) and hypercharge gauge boson

(Bµ).] [NOTE::: 3 gauge couplings are gs , g and g′, respectively.]

[NOTE::: Leptons are SU(3) singlets and does not interact with gluons.]

[NOTE::: The SM fermions are: `L =
(
νL
eL

)
∼ (1, 2,− 1

2
), eR ∼ (1, 1,−1),QL =

(
uL
dL

)
∼ (3, 2, 1

6
),

uR ∼ (3, 1, 2
3

), dR ∼ (3, 1,− 1
3

) representations of GSM. [Q. How to write the gauge invariant

Lagrangian for all particles?] ]
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Higgs mechanism(1): U(1)

Write the Lagrangian for a scalar with a U(1) charge q and a
potential V (φ) = λ(φ∗φ− v 2)2. [NOTE::: The potential is U(1) invariant.]

L = [(∂µ + iqAµ)φ∗(∂µ − iqAµ)φ]− V (φ∗φ)−
1

4
FµνF

µν

At the bottom of the potential, |φ| = v 6= 0 Let’s call v vacuum
expectation value(VEV) because it is the value at the vacuum.

Now an interesting thing happens! Let’s see the physical fluctuation
from the vacuum:
φ(x) = 1√

2
(v + h(x))e iξ(x)/v = 1√

2
(v + h + iξ+ quadratic and higher order terms). [NOTE::: One can

use U(1) symmetry to remove ξ then only physical degrees of freedom survives by a proper gauge choice.]

The Lagrangian becomes
L = − 1

4
FF + 1

2
[(∂µh)2 − 4λv2h2] + 1

2
q2v2(Aµ +

∂µξ

qv
)2 + higher order

[NOTE::: A′µ = Aµ +
∂µξ

qv
(ξ is eaten!) or φ→ e−iξ/vφ = (v + h)/

√
2 makes ξ dissapear!]

[NOTE::: m′A = qv , m2
h = 4λv2]
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Higgs mechanism(2): U(1)

What we have done? Starting from a gauge invariant action, we
found a physical action near the non-zero vacuum with a massive
gauge field! (by eating a Goldstone mode (here ξ along U(1)
direction)!
[NOTE::: Before eating ξ, Aµ was massless. Mass term (∼ AµA

µ) is forbidden by the gauge symmetry

(Aµ → Aµ + 1
g
∂µθ, right?).]
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Higgs mechanism(3): SU(2)

Consider a SU(2) doublet scalar φ =

(
φu
φd

)
. The Lagrangian density is

L = |(∂µ − ig
σi

2
W i
µ)φ|2 − V (φ†φ)

with
V = λ(|φ|2 − v 2/2)2

.

Take vev 〈φ〉 = 1√
2

(
0
v

)
and φ = 1√

2

(
0

v+h

)
e iθiTi/v → 1√

2

(
0

v+h

)
.[NOTE:::

Here we already choose a gauge where θ are hidden.]

Find the Lagrangian at vacuum.(i.e. φ = 〈φ〉) What do you expect
to happen?
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Higgs mechanism(4): SU(2)

The Lagrangian at vacuum is

〈L〉 =

∣∣∣∣−i
g

2

(
W 3
µ

√
2W−

µ√
2W +

µ −W 3
µ

)(
0

v/
√

2

)∣∣∣∣2
=

g 2v 2

4

(
W +
µ W−µ +

1

2
(W 3

µ)2

)
= m2

W± |W
−
µ |2 +

1

2
m2

W 3 (W 3
µ)2 (6)

[NOTE::: W±µ =
W 1
µ±iW 2

µ√
2

]

[NOTE::: m
W± = m

W 3 = gv
2

]
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Higgs mechanism(5): the SM! SU(2)× U(1)

The Lagrangian at vacuum for H ∼ (1, 2, 1
2 ) is

〈L〉 =

∣∣∣∣−i
1

2

(
gW 3

µ+g ′Bµ
√

2gW−
µ√

2gW +
µ −gW 3

µ+g ′Bµ

)(
0

v/
√

2

)∣∣∣∣2
=

v 2

4

(
2g 2W +

µ W−µ +
1

2
(gW 3

µ−g ′Bµ)2

)
= m2

W± |W
−
µ |2 +

1

2
m2

Z 0 (Z 0
µ)2 (7)

[NOTE::: W±µ =
W 1
µ±iW 2

µ√
2

, Z0
µ =

gW 3
µ−g′Bµ√
g2+g′2

, Aµ =
g′Aµ+gBµ√

g2+g′2
]

[NOTE::: With sin θw = g′
gZ
, cos θw = g

gZ
with gZ =

√
g2 + g′2,

(
Zµ
Aµ

)
=

(
cos θw − sin θw
sin θw cos θw

)(
W 3
µ

Bµ

)
]

[NOTE::: m
W± = gv

2
,mZ =

gZ v
2
,mA = 0]

[NOTE::: ρ =
m2
W

m2
Z

cos2 θW
=

g2
Z/m

2
Z

g2/m2
W

= NC fermion coupling
CC Fermion coupling

= 1 with the Higgs doublet!]

[Q. Show ρ =
I (I+1)−I23

2I2
3

with H weak isospin I and VEV direction I3.

ρ = 1 is consistent with (I , I3) = ( 1
2
,± 1

2
)SM, (3,±2), ( 25

2
,± 15

2
).]
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SM(1) Leptons

`e =

(
νe L

eL

)
∼ (1, 2, y`), eR ∼ (1, 1, yeR )

`µ =

(
νµL

µL

)
∼ (1, 2, y`), µR ∼ (1, 1, yeR )

`τ =

(
ντ L

τL

)
∼ (1, 2, y`), τR ∼ (1, 1, yeR )

[NOTE::: y` = −1/2, yeR = −1: They have exactly same quantum numbers! The difference is in

interaction with Higgs (thus mass).]

Dµ` = (∂µ − ig
σi
2
·W i

µ − ig′y`Bµ)`L [NOTE::: no strong interaction]

DµeR = (∂µ − ig′yeR Bµ)eR [NOTE::: no strong, no SU(2) interaction]

gT iW i
µ + g′YBµ = g√

2
(T+W+

µ + T−W−µ ) + gT 3W 3
µ + g′yBµ where T± = T1 ± iT2. [NOTE:::

Diagonal part with Q = T3 + y : d = gT3W 3 + g′(Q − T 3)B = T 3(gW 3 − g′B) + g′QB.

gW 3 − g′B = gZZ and B = −swZ + cwA provides d = gZ (T 3 − Q sin2 θw )Zµ + eQAµ where

e = g′ cos θw .]

Dµ = ∂µ − i
g
√

2
(T+W+

µ + T−W−µ )− igZ (T3 − Q sin2
θw )Zµ − ieQAµ
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SM(2) Quarks

Q1 =

(
uL

dL

)
∼ (3, 2, yQ ), uR ∼ (3, 1, yu), dR ∼ (3, 1, yd )

Q2 =

(
cL

sL

)
∼ (3, 2, yQ ), cR ∼ (3, 1, yu), sR ∼ (3, 1, yd )

Q3 =

(
tL

bL

)
∼ (3, 2, yQ ), tR ∼ (3, 1, yu), bR ∼ (3, 1, yd )

[NOTE::: yQ = 1
6
, yu = 2

3
, yd = − 1

3
: They have exactly same quantum numbers! The difference is in

interaction with Higgs (thus mass).]

Qu = 2/3,Qd = −1/3 by Q = T3 + y .

Dµ = ∂µ − igs
λa
2

gaµ − ig
σi
2
·W i

µ − ig′y`Bµ

Dµ = ∂µ − igs
λa

2
gaµ − i

g
√

2
(T+W+

µ + T−W−µ )− igZ (T3 − Q sin2
θw )Zµ − ieQAµ
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SM(3) Yukawa couplings

Lmass ∼ mψ̄LψR + h.c .

but! ēLeR is not allowed [Q. why?]

¯̀
LHeR , Q̄LH̃uR and Q̄LHdR are allowed. H̃ = iσ2H∗.

General Yukawa interaction allows all the inter-generation
mixings:

Lyuk = −y e
ij `i LHej R − yu

ij Qi LH̃uj R − yd
ij Qi LHdj R (8)

y e , yu, yd are all complex valued matrices.
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SM(4) Quark masses and mixings

Let’s think of n generations of quarks {Qi L, ui R , di R}i=1,2,··· ,n

Kinetic+gauge term for quarks is symmetric under U(n)× U(n)× U(n) (global):

QL → UQQL, uR → UuuR , dR → UddR

[NOTE::: gauge bosons are blind of generations (universality)]

Yukawa interactions break the symmetry

Lyuk = −yuij Qi LH̃uj R − ydij Qi LHdj R + h.c. (9)

[NOTE::: Yukawa’s are the only source of symmetry breaking: Minimal flavor violation]

yu , yd have 4n2 real parameters in total. But not all of them are physically observable. The symmetry of
the kinetic term implies a kind of reparametrization invariance:

yd → U
†
Q
ydUd , y

u → U
†
Q
yuUu

leaves the physics unchanged.
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SM(5) Quark masses and mixings

The U(1) subgroup of U(n)3 :

UQ = Uu = Ud = e iθ

does not change yu and yd . The effective reparametrization group is thus U(n)3/U(1) thus the space of
physical parameters is

R4
/{U(n)3

/U(1)}

with its dimension = 4n2 − (3n2 − 1) = n2 + 1.

n2 + 1 2n
n(n−1)

2
(n−1)(n−2)

2
dim masses mixing angles phases(CPV)
n = 2 4 1 0
n = 3 6 3 1
n = 4 8 6 3



Lecture 1
Lecture 2

Gauge symmetry(Abelian): QED
Gauge symmetry(non-Abelian, Yang-Mills:Weak, QCD)
Higgs mechanism
The standard model

SM(6) Quark masses and mixings

Quark mass matrix

Md = yd
v√
2
,Mu = yu

v√
2

Lm = −d̄LMddR − ūLMuuR

[NOTE::: Theorem: A complex n × n matrix M can be diagonalized by bi-similar transformation:

M = UDU′† where U and U′ are unitary, D is diagonal, all elements ≥ 0.]

Diagonalization

Mu = ULMdiag
u U†R ,Md = VLMdiag

d V †R

With mass eignstates ûR/L = U†R/LuR/L and d̂R/L = V †R/LdR/L,

Lm = −ûLMdiag
u ûR −−d̂LMdiag

d d̂R + h.c .
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SM(6) Quark masses and mixings

Charged current interactions:

LCC =
g
√

2
(u, d)L(T+ /W+ + T− /W−)

(
uL

dL

)
=

g
√

2

(
uL /W

+dL + dL /W
−uL

)
=

g
√

2

(
ûLU
†
L
VL /W

+ d̂L + d̂LV
†
L
UL /W

− ûL

)
=

g
√

2

(
ûLVCKM /W+ d̂L + h.c.

)

[NOTE::: CC interactions are flavor violating! ûLγµ d̂
′
L = ûLγµVCKM d̂L]

Neutral current interactions:

LNC ∝ uLγµuL, dLγµdL ∝ ûLγµ ûL, d̂Lγµ d̂L (10)

[NOTE::: NC interactions are flavor diagonal! FCNC, GIM mechanism]
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SM(7) Lepton masses

Without having neutrino masses (or very small masses), only
charged leptons got masses though Yukawa interactions and no
CKM like mixings are allowed. (Lepton number conservation)

Neutrinos however have masses possibly by a different mechanism
other than conventional Higgs mechanism.∑
ν mν ∼< 0.1eV� me � mt ! (Flavor hierarchy problem)
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SM(7) Free parameters in the SM

3 gauge couplings: gs , g , g

13: 9 fermion masses and 4 CKM mixings with a phase:
me ,mµ,mτ ,mu,md ,ms ,mc ,mb,mt , 3 angles and 1 CPV phase.

1 Higgs vev produces 2 gauge boson masses :
(mW = gv/2,mZ = gZv/2) ∼ v (or Higgs mass)

1 Higgs quartic coupling λ

θQCD in θG a
µνG̃µν

a

# of parameters sector parameters

3 gauge couplings gs , g, g
′

9 fermion masses me ,mµ,mτ ,mu ,md ,ms ,mc ,mb,mt
4 CKM 3 angles + 1 phase
2 Higgs vev and quartic coupling v, λ

(1 ) QCD theta term in θGa
µν G̃

µν
a θQCD � 1

total 18(+1) all measured!!
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The End
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