Introduction to the standard model

Seongchan Park

Open KIAS winter school on collider physics, Jan 19, 2015

Overview

- Lecture 1
 - SM in PDG
 - Why QFT?
 - Spacetime symmetry
 - Lagrangian
- 2 Lecture 2
 - Gauge symmetry(Abelian): QED
 - Gauge symmetry(non-Abelian, Yang-Mills:Weak, QCD)
 - Higgs mechanism
 - The standard model

Lecture #1

SM in PDG Why QFT? Spacetime symmetry Lagrangian

PDG: where you can find data

SM in PDG Why QFT? Spacetime symmetry Lagrangian

QUARKS

The ν -, d-, and s-quark masses are estimates of so-called "current-quark masses," in a mass-independent subtraction scheme such as MS at a scale μ - ≈ 2 GeV. The c- and b- quark masses are the "running" masses in the MS scheme. For the b-quark we also quote the 1S mass. These can be different from the heavy quark masses obtained in potential models.

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 $m_u = 2.3^{+0.7}_{-0.5} \, {
m MeV}$ Charge $= \frac{2}{3} \, {
m e}$ $I_z = +\frac{1}{2}$ $m_u/m_d = 0.38{\text{-}}0.58$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 $m_d = 4.8^{+0.5}_{-0.3} \text{ MeV}$ Charge $= -\frac{1}{3} e$ $I_z = -\frac{1}{2}$ $m_s/m_d = 17$ –22 $\overline{m} = (m_u + m_d)/2 = 3.5^{+0.7}_{-0.7} \text{ MeV}$

$$I(J^P) = O(\frac{1}{2}^+)$$

 $m_s = 95 \pm 5 \text{ MeV}$ Charge $= -\frac{1}{3} \text{ e Strangeness} = -1$ $m_s / ((m_u + m_d)/2) = 27.5 \pm 1.0$

$$I(J^P) = 0(\frac{1}{2}^+)$$

$$m_c = 1.275 \pm 0.025 \; \text{GeV} \qquad \text{Charge} = \frac{2}{7} \; e \quad \text{Charm} = +1$$

$$I(J^P) = O(\frac{1}{2}^+)$$

Charge
$$=-\frac{1}{3}$$
 e Bottom $=-1$

 $m_b(\overline{MS}) = 4.18 \pm 0.03 \text{ GeV}$ $m_b(1S) = 4.66 \pm 0.03 \text{ GeV}$

$$I(J^P) = 0(\frac{1}{2}^+)$$

$$\mathsf{Charge} = \frac{2}{3} \, e \qquad \mathsf{Top} = +1$$

Mass (direct measurements) $m=173.21\pm0.51\pm0.71$ GeV [a.b] Mass (MS from cross-section measurements) $m=160^{+\frac{5}{4}}$ GeV [a.b] Mass (Pole from cross-section measurements) $m=176.7^{+\frac{5}{4}}$ GeV m_{τ} — $m_{\overline{\tau}}=-0.2\pm0.5$ GeV (S=1.1) Full width $\Gamma=2.0\pm0.5$ GeV

 $\Gamma(Wb)/\Gamma(Wq(q = b, s, d)) = 0.91 \pm 0.04$

t-quark EW Couplings

 $F_0 = 0.690 \pm 0.030$ $F_- = 0.314 \pm 0.025$ $F_+ = 0.008 \pm 0.016$

 $F_{V+A} < 0.29$, CL = 95%

t DECAY MODES	Fraction (Γ_j/Γ)	Confidence level	p (MeV/c)
Wq(q = b, s, d)			
W b			-
$\ell \nu_{\ell}$ anything	[c,d] (9.4±2.4) %		-
$\gamma q(q=u,c)$	[e] < 5.9 × 10 ⁻³	95%	-

 $\Delta T = 1$ weak neutral current (T1) modes $Za(a=y,c) \qquad T1 \quad [f] < 2.1 \quad \times 10^{-3} \quad 95\%$

b' (4th Generation) Quark, Searches for

Mass m>190 GeV, CL = 95% $(p\overline{p},$ quasi-stable b') Mass m>400 GeV, CL = 95% (pp, neutral-current decays) Mass m>675 GeV, CL = 95% (pp, charged-current decays) Mass m>675 GeV, CL = 95% $(e^+e^-,$ all decays)

t' (4th Generation) Quark, Searches for

Mass m > 782 GeV, CL = 95% (p.p., neutral-current decays) Mass m > 700 GeV, CL = 95% (p.p., charged-current decays)

Free Quark Searches

All searches since 1977 have had negative results

LEPTONS

$J = \frac{1}{5}$

Mass $m = (548.57990946 \pm 0.00000022) \times 10^{-6} \text{ u}$ Mass $m = 0.510998928 \pm 0.000000011$ MeV $|m_{a^+} - m_{a^-}|/m < 8 \times 10^{-9}$, CL = 90% $|q_{e^+} + q_{e^-}|/e < 4 \times 10^{-8}$ Magnetic moment anomaly

 $(g-2)/2 = (1159.65218076 \pm 0.00000027) \times 10^{-6}$ $(g_{e^+} - g_{e^-}) / g_{average} = (-0.5 \pm 2.1) \times 10^{-12}$ Electric dipole moment $d < 10.5 \times 10^{-28}$ ecm, CL = 90%

Mean life $\tau > 4.6 \times 10^{26} \text{ yr. CL} = 90\% [a]$

 μ

$J = \frac{1}{2}$

Mass $m = 0.1134289267 + 0.00000000029 \mu$ Mass $m=105.6583715\pm0.0000035~\text{MeV}$ Mean life $\tau = (2.1969811 \pm 0.0000022) \times 10^{-6}$ s $\tau_{u+}/\tau_{u-} = 1.00002 \pm 0.00008$ $c\tau = 658.6384 \text{ m}$ Magnetic moment anomaly $(g-2)/2 = (11659209 \pm 6) \times 10^{-10}$ $(g_{u+} - g_{u-}) / g_{average} = (-0.11 \pm 0.12) \times 10^{-8}$ Electric dipole moment $d = (-0.1 \pm 0.9) \times 10^{-19}$ ecm

Decay parameters [b]

 $\rho = 0.74979 \pm 0.00026$ $n = 0.057 \pm 0.034$ $\delta = 0.75047 \pm 0.00034$ $\xi P_{\mu} = 1.0009^{+0.0016}_{-0.0007} [c]$ $\xi P_{\mu} \delta / \rho = 1.0018^{+0.0016}_{-0.0007} [c]$ $E' = 1.00 \pm 0.04$ $\xi'' = 0.7 \pm 0.4$ $\alpha/A = (0 \pm 4) \times 10^{-3}$ $\alpha'/A = (-10 \pm 20) \times 10^{-3}$ $\beta/A = (4 \pm 6) \times 10^{-3}$ $\beta'/A = (2 \pm 7) \times 10^{-3}$ $\bar{n} = 0.02 \pm 0.08$

Lepton Family number (LF) violating modes						
$e^- \nu_e \overline{\nu}_\mu$	LF	[f] < 1.2	%	90%	53	
$e^-\gamma$	LF	< 5.7	$\times 10^{-13}$	90%	53	
$e^{-}e^{+}e^{-}$	LF	< 1.0	$\times 10^{-12}$	90%	53	
$e^- 2\gamma$	LF	< 7.2	$\times 10^{-11}$	90%	53	

$J = \frac{1}{2}$

Mass $m = 1776.82 \pm 0.16 \text{ MeV}$ $(m_{\tau^+} - m_{\tau^-})/m_{\text{average}} < 2.8 \times 10^{-4}, \text{ CL} = 90\%$ Mean life $\tau = (290.3 \pm 0.5) \times 10^{-15}$ s $c\tau = 87.03 \ \mu m$ Magnetic moment anomaly > -0.052 and < 0.013, CL = 95% $Re(d_{\tau}) = -0.220 \text{ to } 0.45 \times 10^{-16} \text{ ecm}, CL = 95\%$

 $Im(d_{\tau}) = -0.250 \text{ to } 0.0080 \times 10^{-16} \text{ ecm. CL} = 95\%$

Weak dipole moment

 $Re(d_{-}^{w}) < 0.50 \times 10^{-17} \text{ ecm, CL} = 95\%$ $Im(d_{-}^{W}) < 1.1 \times 10^{-17} \text{ ecm, CL} = 95\%$

Weak anomalous magnetic dipole moment

 $Re(\alpha_{-}^{w}) < 1.1 \times 10^{-3}, CL = 95\%$ $Im(\alpha_w^w) < 2.7 \times 10^{-3}$, CL = 95% $\tau^{\pm} \rightarrow \pi^{\pm} K_S^0 \nu_{\tau}$ (RATE DIFFERENCE) / (RATE SUM) = $(-0.36 \pm 0.25)\%$

GAUGE AND HIGGS BOSONS

 $I(J^{PC}) = 0.1(1^{-})$

Mass $m < 1 \times 10^{-18}$ eV Charge $q < 1 \times 10^{-35}$ e Mean life $\tau =$ Stable

 $I(J^{p}) = 0(1^{-})$

Mass m = 0 [a] SU(3) color octet

graviton

J = 2

Mass $m < 6 \times 10^{-32}$ eV

J = 1

Charge = ± 1 e Mass $m = 80.385 \pm 0.015$ GeV $m_Z - m_W = 10.4 \pm 1.6$ GeV $m_{W^+} - m_{W^-} = -0.2 \pm 0.6$ GeV Full width $\Gamma = 2.085 \pm 0.042$ GeV $\langle M_{\chi \pm} \rangle = 15.70 \pm 0.35$ $\langle M_{\chi \pm} \rangle = 2.20 \pm 0.19$ $\langle M_{\chi \pm} \rangle = 2.20 \pm 0.19$

 $\langle N_{\rm charged} \rangle = 19.39 \pm 0.08$ W^- modes are charge conjugates of the modes below.

W+ DECAY MODES	Fraction (F _i /I) Confidence level (MeV/c
ℓ ⁺ ν	[b] (10.86± 0	.09) %
$e^+ \nu$	(10.71± 0	16) % 4019:
$\mu^+ \nu$	(10.63± 0	15) % 4019:
$\tau^+ \nu$	(11.38± 0	.21) % 4017:
hadrons	(67.41± 0.	27) %

J = 1

 $\begin{array}{ll} {\rm Charge} &= 0 \\ {\rm Mass} \; m = 91.1876 \pm 0.0021 \; {\rm GeV} \; {}^{[d]} \\ {\rm Full} \; \; {\rm width} \; \Gamma = 2.4952 \pm 0.0023 \; {\rm GeV} \\ \Gamma(\ell^+\ell^-) &= 83.984 \pm 0.086 \; {\rm MeV} \; {}^{[b]} \\ \Gamma({\rm invisible}) &= 499.0 \pm 1.5 \; {\rm MeV} \; {}^{[a]} \\ \Gamma({\rm hadrons}) &= 1744.4 \pm 2.0 \; {\rm MeV} \\ \Gamma(\mu^+\mu^-)/\Gamma(\ell^+\ell^-) &= 1.0009 \pm 0.0028 \\ \Gamma(\tau^+\tau^-)/\Gamma(\ell^+\ell^-) &= 1.0019 \pm 0.0032 \\ \end{array}$

J = 0

Mass $m = 125.7 \pm 0.4 \text{ GeV}$

H⁰ Signal Strengths in Different Channels

Signal Strengths in Different Channels Combined Final States = 1.17 ± 0.17 (S = 1.2) $WW^* = 0.87 ^{+0.24}_{-0.22}$ $ZZ^* = 1.11 ^{+0.34}_{-0.23}$ (S = 1.3) $\gamma \gamma = 1.58 ^{+0.27}_{-0.23}$ $b\bar{b} = 1.1 \pm 0.37$ $\tau^* = 0.4 \pm 0.6$ $Z^* = 0.4 \pm 0.6$

Elementary particles are well organized in the SM.

How organized?

Patterns found:

- s = 1/2 fermions: quarks and leptons
- s = 1 bosons: interaction mediators (force carriers)
- s = 0 boson: SSB and masses
- 3 generations

Units and conventions

• $c = \hbar = 1$ then $[L] = [T] = [M^{-1}]$. Schrödinger equation looks like

$$i\frac{\partial\psi}{\partial t} = -\frac{1}{2m}\nabla^2\psi + V\psi$$

where "quantization" rules are

$$H \to i \frac{\partial}{\partial t} \equiv i \partial_t, p_i \to i \frac{\partial}{\partial x^i} \equiv i \partial_i$$

• $x^{\mu} = (x^0, x^1, x^2, x^3) = (x^0, x^i) = (t, x^i)$ in 4D spacetime. The Minkowski metric is mostly minus sign (=West coast, particle physics, energy-like convention)

$$\eta^{\mu\nu} = \eta_{\mu\nu} = \begin{pmatrix} 1 & & & \\ & -1 & & \\ & & -1 & \\ & & & -1 \end{pmatrix}$$

so that $ds^2=\eta_{\mu\nu}\,dx^\mu\,dx^\nu=dt^2-d\vec{x}\cdot d\vec{x}.$

[NOTE:::
$$\partial_{\mu} = \frac{\partial}{\partial x^{\mu}} = (\partial_{t}, \nabla), \ \partial^{\mu} = (\partial_{t}, -\nabla).$$
]

[NOTE::: Energy has the correct sign in four momentum: $P^{\mu}=(E,\vec{p}), P_{\mu}=\eta_{\mu\nu}P^{\nu}=(E,-\vec{p}),$

$$P^2 = \eta_{\mu\nu}P^{\mu}P^{\nu} = P^{\mu}P_{\mu} = E^2 - \vec{p}^2 = m^2$$

[NOTE::: Quantization rule:
$$p_{\mu} \rightarrow i\partial_{\mu}$$
]

Some questions?

- Who decided $s=0,\frac{1}{2},1$? Anything else? [Q. e.g., s=1/3?] [Q. What's the unit of spin, s?]
- How to describe interactions among particles? [Q. Any rule?]
- Particle or wave? [Q. Is there fundamental differences between electron and photon other than spin and mass?]

Short answers

- Who decided $s = 0, \frac{1}{2}, 1$? Ans: Spacetime symmetry= Lorentz (Poincaré) in SR
- How to describe interactions among particles? Ans: Gauge symmetry. [NOTE::: SU(3) × SU(2) × U(1) in the SM]
 [Q. Symmetries (i.e. the spacetime and gauge symmetries) in Maxwell's EM ?]
- Particle or wave? Ans:They are all excitations of quantum fields.

SM is written in QFT. (more precisely relativistic, gauge, quantum field theory.

(reminder) EM

 Relativity is required due to the fact that speed of light is constant

The wave equation with c=1 is $(\partial_t^2-\nabla^2)\phi(x^\mu)=0$

gauge symmetry

$$\nabla \cdot \vec{E} = \rho, \nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}, \nabla \cdot \vec{B} = 0, \nabla \times \vec{B} = \frac{\partial \vec{E}}{\partial t} + \vec{j}$$

is solved by $\vec{B} = \nabla \times \vec{A}$ and $\vec{E} = -\nabla \phi - \frac{\partial \vec{A}}{\partial t}$. but

$$\vec{A} \rightarrow \vec{A}_g = \vec{A} + \nabla \xi, \phi \rightarrow \phi_g = \phi - \partial_t \xi$$

do not change $\vec{E}, \vec{B}.[{\sf NOTE}::: A^\mu = (\phi, \vec{A}) \text{ with } A^\mu \to A^\mu_g = A^\mu - \partial^\mu \xi.]$

• Relativistic formulation of Maxwell's eqs Field strength $F_{\mu\nu}=\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu}$ [Q. Show $F_{0i}=\emph{E}_{i},F_{ij}=\emph{e}_{ijk}\emph{B}_{k}$] forms the action

$$\mathcal{L}_{em} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - j_{\mu} A^{\mu} \left(= \frac{1}{2} (\vec{E}^2 - \vec{B}^2) - \rho \phi + \vec{j} \cdot \vec{A} \right)$$

, which provides

$$\partial_{\mu} F^{\mu\nu} = J^{\nu} \sim \nabla \cdot \vec{E} = \rho, \nabla \times \vec{B} - \partial_{t} \vec{E} = \vec{j}$$

The Bianchi identity, $\partial_{\lambda}F_{\mu\nu} + \partial_{\mu}F_{\nu\lambda} + \partial_{\nu}F_{\lambda\mu} = 0 \sim \nabla \cdot \vec{B} = 0, \nabla \times \vec{B} + \partial_{t}\vec{E} = 0$ completes the

QFT references

[NOTE::: QFT is the standard language of modern particle physics]

Refs

- Open KIAS school http://workshop.kias.re.kr/KWS2013/?Program
- PDG

http://pdg.lbl.gov/

Recommendations for beginners:

- My recommendation for beginning students is this =>
- Tong, Lecture for Part-III (only QED but very clear exposition) http://www.damtp.cam.ac.uk/user/tong/oft.html
- A. Zee "Quantum field theory in a nutshell" (2nd, princeton 2010): intuitive. fun!
- L.Álvarez-Gaumé, M. Á. Vázquez-Mozo, "An invitation to quantum field theory" (springer 2012): clear exposition! recommended!

Standard texts:

- Peskin and Schroeder (1995), Schwartz (2014): standard of standard
- Weinberg I,II, III, Srednicki, Ramond, Ryder, many many others
- Müller-Kirsten, Wiedemann "Introduction to supersymmetry" (world scientific 2010): representation of Lorentz group +susy formalism

Particle physics references

Some readable texts: [NOTE::: QFT books typically have sections on the SM. More later.]

- Anchordoqui, Halzen "Lessons in Particle physics" (v4 2011 Dec.) 260 pages http://arxiv.org/abs/0906.1271v4
- M. Robinson "Symmetry and the Standard Model" (springer 2011): +math
- C.G.Tully "Elementary particle physics in a Nutshell" (princeton 2011)
- Barger, Phillips "Collider Physics": useful appendix!
- Dobado et.al. "Effective Lagrangians for the standard model" (springer 1997)

LHC!:

- CMS physics results https://twiki.cern.ch/twiki/bin/view/CMSPublic/ PhysicsResults
- ATLAS physics results https://twiki.cern.ch/twiki/bin/view/CMSPublic/ PhysicsResults

"Along with 'Antimatter,' and 'Dark Matter,'
we've recently discovered the existence of
'Doesn't Matter,' which appears to have no
effect on the universe whatsoever."

QFT = QM + Relativity.

- (1) $\Delta t \Delta E \gtrsim \hbar$: the energy can fluctuate wildly over a small interval of time
- (2) $E = \sqrt{\vec{p}^2c^2 + m^2c^4}$: energy can be converted into mass and vice versa
- (1)+(2): mass (or particle) can be created/annihilated out of/into fluctuating energy! This is described by QFT!
- e.g. $e^+e^- \to \gamma\gamma$, $pp \to t\bar{t}$, $gg \to H \to b\bar{b}$ [NOTE::: # non-conserving phenomena could not be described by Schrödinger equation. [Q. are you sure?]]

QFT is a proper combination of Rel. and QM.

- particles and waves = excited states of quantum fields
- "all electrons look exactly same" because they are all excitations of the same field $\psi_e(x)$!

•
$$\psi_e(x) = \sum_p \sum_{s=\pm 1/2} \left(a_s(p) u_s(p) e^{-ipx} + b_s^{\dagger}(p) v_s(p) e^{ipx} \right)$$

• This structure is generic:

$$Field = \sum_{p,\lambda} a_{\lambda} \times \mathsf{polarization}_{\lambda} \times e^{-ipx} + (p^0 < 0)$$

[Q. how about a scalar $\phi(x)$ and vector $A^{\mu}(x)$?.]

[NOTE:::
$$\sum_{p} = \int \frac{d^{3}p}{(2\pi)^{3}2p^{0}} (= \int \frac{d^{4}p}{(2\pi)^{4}} (2\pi)\delta^{4}(p^{2} - m^{2})\theta(p^{0})]$$

In QFT, # of particles is not conserved.

$$1=\ket{0}ra{0}+\sum_{p}\ket{p}ra{p}+\cdots$$
 (Fock space)

- vacuum: $a(p)|0\rangle = 0$
- ullet one particle state: $a(p)^\dagger \ket{0} \propto \ket{p}$
- two particle state: $a(p)^{\dagger} a(k)^{\dagger} |0\rangle \propto |p,k\rangle$
- . . .

Organizing principles of making a 'QFT model' (or Lagrangian)

- symmetry (spacetime, internal, super-, conformal, etc)...
 "group"
- matter contents and their transformation rules (i.e. quantum numbers)... "representation"

The SM is organized by

- Poincaré symmetry (Lorentz+translaion)
- Gauge symmetry: $G_{\rm SM} = SU(3)_c \times SU(2)_L \times U(1)_y$ associated with gauge bosons $A_\mu = (g_\mu^a, W_\mu^\pm, W_\mu^3, B_\mu)$
- Matter fields: $\psi = (\ell_L, e_R, Q_L, u_R, d_R)_i$, i = 1, 2, 3 and H
- $\psi \sim (1/2,0)$ or (0,1/2), $H \sim (0,0)$ and $A_{\mu} \sim (1/2,1/2)$ representations of Lorentz group (or spinor, scalar and vectors).
- $\ell_L = \binom{\nu_L}{e_L} \sim (1, 2, -\frac{1}{2}), e_R \sim (1, 1, -1), Q_L = \binom{u_L}{d_L} \sim (3, 2, \frac{1}{6}), u_R \sim (3, 1, \frac{2}{3}), d_R \sim (3, 1, -\frac{1}{3}) \text{ representations of } G_{\rm SM}.$
- If you understand these, you can sleep now. :-)

Lecture 1

Let's first understand $\Psi \sim (j,j')$ i.e. irreducible representations of Lorentz group.

- The constancy of speed of light demands $0=dt^2-d\vec{x}\cdot d\vec{x}$ with c=1. [NOTE::: You can regard $ds^2=\eta_{\mu\nu}dx^\mu dx^\nu=dt^2-d\vec{x}\cdot d\vec{x}$ as an infinitesimal length in spacetime. $x^\mu=(x^0,x^1,x^2,x^3)=(t,x^i)$ and $\eta=diag(1,-1,-1,-1)$]
- A linear transformation $x^{\mu} \to x'^{\mu} = \Lambda^{\mu}_{\nu} x^{\nu}$ does not change ds^2 is called Lorentz transformation.
- Λ 's form a group $L = \{\Lambda | \Lambda^T \eta \Lambda = \eta\}$, called Lorentz group.

```
[NOTE::: Group: a closed system of operations with an identity]

[NOTE::: Proper, time-direction-conserving transformation L = SO(1, 3; R)]
```

• There are 6 Lorentz transformations= (3 boosts(η_x , η_y , η_z)), 3 rotations (θ_x , θ_y , θ_z)), which keep ds^2 unchanged.

```
[NOTE::: \eta_i are rapidities and \theta_i are angles about i-axis]
```

Explicit form of Lorentz transformations:

• 3 rotations which keeps $d\vec{x} \cdot d\vec{x} = dx^2 + dy^2 + dz^2$ unchanged: R_x, R_y, R_z , respectively.

$$\begin{pmatrix} 1 & & & & \\ & 1 & & & \\ & & \cos\theta_x & \sin\theta_x \\ & & -\sin\theta_x & \cos\theta_x \end{pmatrix}, \begin{pmatrix} 1 & & & & \\ & \cos\theta_y & & -\sin\theta_y \\ & & 1 & \\ & \sin\theta_y & & \cos\theta_y \end{pmatrix}, \begin{pmatrix} 1 & & & \\ & \cos\theta_z & \sin\theta_z \\ & -\sin\theta_z & \cos\theta_z \\ & & 1 \end{pmatrix}$$

- [Q. Show: $\sin^{\theta} + \cos^{2} \theta = 1$ guarantees that ds^{2} is actually preserved.]
- 3 boosts which keeps $(dt^2 dx^2)$, $(dt^2 dy^2)$, $(dt^2 dz^2)$ unchanged: B_x , B_y , B_z , respectively.

$$\begin{pmatrix} \gamma_x & -v_x\gamma_x & & \\ -v_x\gamma_x & \gamma_x & & \\ & & 1 & \\ & & & 1 \end{pmatrix}, \begin{pmatrix} \gamma_y & & -v_y\gamma & \\ & 1 & & \\ -v_y\gamma_y & & \gamma_y & \\ & & & 1 \end{pmatrix}, \begin{pmatrix} \gamma_z & & -v_z\gamma_z \\ & 1 & \\ & & 1 & \\ -v_z\gamma_z & & & \gamma_z \end{pmatrix}$$

where $\gamma_i=1/\sqrt{1-v_i^2}=\cosh\eta_i$ and $v_i\gamma_i=\sinh\eta_i$. [Q. Show: $\cosh^2\eta-\sinh^2\eta=1$ guarantees that ds^2 is actually preserved.]

• $L = \{R_i, B_i\}$

To see the structure of the rotations, it is enough to analyze the infinitesimal changes ($\theta \ll 1$) from the origin (doing nothing=origin):

$$R_{\mathrm{X}} = egin{pmatrix} 1 & & & & & & & \\ & 1 & & & & & & & \\ & & \cos heta_{\mathrm{X}} & & \sin heta_{\mathrm{X}} & & & \\ & & -\sin heta_{\mathrm{X}} & & \cos heta_{\mathrm{X}} \end{pmatrix} pprox 1 + egin{pmatrix} 0 & & & & & & \\ & & 0 & & & & & \\ & & - heta_{\mathrm{X}} & & & & \\ & & - heta_{\mathrm{X}} & & & & \end{pmatrix} = 1 + i heta_{\mathrm{X}}J_{\mathrm{X}}$$

Similarly,

$$R_{y} = \begin{pmatrix} 1 & & & & \\ & \cos\theta_{y} & & -\sin\theta_{y} \\ & & 1 & \\ & \sin\theta_{y} & & \cos\theta_{y} \end{pmatrix} \approx 1_{4} + i\theta_{y}J_{y}, \ R_{z} = \begin{pmatrix} 1 & & \\ & \cos\theta_{z} & \sin\theta_{z} \\ & -\sin\theta_{z} & \cos\theta_{z} \end{pmatrix} \approx 1_{4} + i\theta_{z}J_{z}$$

[Q. Find the explicit form of J_x , J_y , J_z .] [NOTE::: Note that they are nothing but the angular momentum operators generating rotations satisfying $[J_i,J_j]=i\epsilon_{ijk}J_k$. This means rotations form a group $SO(3)\simeq SU(2)$ as we know.]

Similarly, let's consider infinitesimal boosts ($\eta \ll 1$), by which $\cosh \eta \approx 1$ and $\sinh \eta \approx \eta$ and

$$B_{\mathrm{X}} = \begin{pmatrix} \cosh \eta_{\mathrm{X}} & -\sinh \eta_{\mathrm{X}} & \\ -\sinh \eta_{\mathrm{X}} & \cosh \eta_{\mathrm{X}} & \\ & & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & -\eta_{\mathrm{X}} & \\ -\eta_{\mathrm{X}} & 1 & \\ & & 1 \end{pmatrix} = \mathbf{1}_{4} + i\eta_{\mathrm{X}} \mathcal{K}_{\mathrm{X}}$$

Similarly,

$$B_{\rm v} \approx 1_4 + i\eta_{\rm v} K_{\rm v}, \ B_{\rm z} \approx 1_4 + i\eta_{\rm z} K_{\rm z}$$

[Q. Find the explicit form of K_X , K_Y , K_Z .][Q. Show that $[K_i, K_j] = -i\epsilon_{ijk}J_k$, $[J_i, K_j] = i\epsilon_{ijk}K_k$. This means boosts do not form a group.]

- 6 generators of Lorentz group are found to satisfy Lie algebra: $[J_i, J_i] = i\epsilon_{iik}J_k, [K_i, K_i] = -i\epsilon_{iik}J_k, [J_i, K_i] = i\epsilon_{iik}K_k$
- J_i form SO(3) group but K_i do not. However, a clever combination of J_i and K_i are separate and form groups.
- $\bullet \ \ N_i^{\pm} = \tfrac{1}{2} \big(J_i \pm i K_i \big) \ \text{then} \ \ [N_i^+, N_j^+] = i \epsilon_{ijk} N_k^+, [N_i^-, N_j^-] = i \epsilon_{ijk} N_k^-, [N_i^+, N_j^-] = 0$
- This means that Lorentz group is equivalent to product of two rotation groups:

$$L = SU(2) \times SU(2)^{1}$$

- A representation of L is labeled by an ordered numbers (j,j') where j and j' are eigenvalues of N^+ and N^- thus $j,j'=0,1/2,1,3/2,\cdots$.
- As $J_i = N_i^+ + N_i^-$, the total spin of (j, j') state is j + j' by the rule of angular momentum addition.
- (0,0): s=0, (1/2,0), (0,1/2): s=1/2 [NOTE::: left-handed and right-handed spinor representations] (1/2,1/2): s=1.

- A scalar $\phi(x) \sim (0,0)$ is trivially transformed by Λ
- $\phi(x) \rightarrow \phi'(x') = \phi(\Lambda^{-1}x') = \phi(x)$

- ullet A right-handed Weyl spinor $\psi_R \sim (1/2,0)$
- $N^+=1/2, N^-=0$ or $N_i^+=\frac{\sigma_i}{2}$ and $N_i^-=0$.
- $J_i = N_i^+ + N_i^- = \frac{\sigma_i}{2}$ and $K_i = -i\frac{\sigma_i}{2}$
- $\psi_R \to \psi_R' \approx (1 + i\theta_i J_i + i\eta_i K_i)\psi_R = (1 + (i\theta_i + \eta_i)\frac{\sigma_i}{2})\psi_R$
- $\psi_R \to \psi_R' = e^{(i\theta_i + \eta_i)\frac{\sigma_i}{2}}\psi_R$ for finite transformation.
- [Q. Show $\psi_L \to \psi_L' = \mathrm{e}^{(i\theta_i \eta_i)\frac{\sigma_i}{2}}\psi_L$ i.e. the same in rotation but opposite in boost.]
- [Q. Show $(\psi_L^\dagger \psi_R + \psi_R^\dagger \psi_L)$ is a real scalar.]
- [Q. Show $(\psi_R^\dagger \sigma^\mu \psi_R)$ and $(\psi_L^\dagger \overline{\sigma}^\mu \psi_L)$ are vectors i.e. transforms like x^μ , where $\sigma^\mu = (1_2, \vec{\sigma})$ and

$$\overline{\sigma}^{\mu} = (1_2, -\vec{\sigma}).$$

Lagrangian-1

- For a point particle, physics is conveniently described by Lagrangian. (a scalar function) $S[q] = \int dt L(q, \dot{q})$
- The classical behavior is obtained by the least action principle: $\delta S=0$ or equivalenetly

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}} = \frac{\partial L}{\partial q}$$

• Quantum amplitude is obtained by path integral:

$$\mathcal{M}_{i o f} = \int_{i}^{f} \mathcal{D}q e^{iS[q]}$$

Lagrangian-2

• For fields, physics is conveniently described by Lagrangian, too. But now Lagrangian density (a scalar distribution).

$$L = \int d^3x \mathcal{L}(\psi, \partial_{\mu}\psi), \ S = \int d^4x \mathcal{L}$$

[NOTE::: $\partial_{\mu} = \frac{\partial}{\partial x^{\mu}} = (\frac{\partial}{\partial t}, \vec{\nabla}), \ \partial^{\mu} = (\partial_t, -\vec{\nabla})]$

• The classical behavior is obtained by the least action principle: $\delta S=0$ or equivalenetly

$$\partial_{\mu} \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \psi} = \frac{\partial \mathcal{L}}{\partial \psi}$$

• Quantum amplitude is obtained by path integral:

$$\mathcal{M}_{i o f} = \int_{i}^{f} \mathcal{D} \psi e^{iS[\psi]}$$

Lagrangian-3

- For a scalar field, Lagrangian density is almost trivially obtained
- $\mathcal{L} = \phi^*(x)(-\partial_\mu^2 m^2)\phi$ and the equation of motion by $\delta\phi^*$ gives $(-\partial_\mu^2 m^2)\phi(x) = 0$.

[NOTE::: $H \to i\partial_t$, $\vec{p} \to -i\vec{\nabla}$ is collectively described by $p_\mu = (H, -\vec{p}) \to i\partial_\mu$. Thus the mass-shell condition $0 = p^2 - m^2$ is translated into $(-\partial^2 - m^2)\phi(x) = 0$, which is nothing but Klein-Gordon equation.]

[NOTE:::
$$S = \int d^4x \phi^*(x)(-\partial_\mu^2 - m^2)\phi = \int d^4x \left(\partial_\mu \phi^* \partial^\mu \phi - m^2 \phi^* \phi\right) - \partial_\mu J^\mu$$
 where $J^\mu = \phi^* \partial^\mu \phi$. Since the last term is total divergence term, it does not affect local physics.]
[NOTE::: $[\mathcal{L}] = 4$, $[\phi] = [\phi^*] = 1$ and $[m] = 1$ or mass.]

Lagrangian-4 (Weyl spinors)

For Weyl spinors, we use scalar combinations of ψ_L and ψ_R . There are three possible terms.

$$\bullet \ \mathcal{L}_{L} = i\psi_{L}^{\dagger}\sigma^{\mu}\partial_{\mu}\psi_{L}$$

•
$$\mathcal{L}_R = i\psi_R^{\dagger} \overline{\sigma}^{\mu} \partial_{\mu} \psi_R$$

•
$$\mathcal{L}_{\mathrm{mass}} = -m(\psi_L^\dagger \psi_R + \psi_R^\dagger \psi_L)$$

[NOTE::: $[\psi_L] = [\psi_R] = \frac{3}{2}$ and $[m] = 1$ or mass]
[NOTE::: When $m = 0$, two fields ψ_L and ψ_R are independent: $i\sigma^\mu \partial_\mu \psi_L = 0$ and $i\overline{\sigma}^\mu \partial_\mu \psi_R = 0$.]
[NOTE::: One can regard m provides a physical 'mixing' between ψ_L and ψ_R . $i\sigma^\mu \partial_\mu \psi_L = m\psi_R$]

Lagrangian-5 (Dirac spinors)

• One can conveniently combine ψ_L and ψ_R into a 4 component Dirac spinor, $\psi_D = \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix}$ with gamma matrices γ^μ satisfying $\{\gamma^\mu, \gamma^\nu\} = 2\eta^{\mu\nu} \mathbf{1}_4 \text{(Cliffor algebra)}.$ [NOTE::: $\gamma^\mu = \begin{pmatrix} 0 & \sigma^\mu \\ 0 & 0 \end{pmatrix}$ in Weyl representation. [Q. Show Clifford algebra.]]

•
$$\mathcal{L} = \overline{\psi}_D \left(i \gamma^\mu \partial_\mu - m \right) \psi_D$$
,

[NOTE::: The Dirac equation is derived by $\delta \overline{\psi}_D$: $(i \gamma^\mu \partial_\mu - m) \psi_D = 0$.]

[NOTE::: A slash notation is useful: $\not p = \gamma^\mu p_\mu$.]

[Q. $(i \not \! 0 + m) \times \text{Dirac eq.} = \text{KG eq.}$]

Lagrangian-6 (Gamma matrices)

$$\bullet \quad \gamma^{\mu} = \begin{pmatrix} 0 & \sigma^{\mu} \\ \overline{\sigma}^{\mu} & 0 \end{pmatrix}$$

•
$$\gamma_5 = i \gamma^0 \gamma^1 \gamma^2 \gamma^3 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \{ \gamma^{\mu}, \gamma_5 \} = 0.$$

$$\bullet \quad \text{Projection operators are } P_L = \frac{1-\gamma_5}{2} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ P_R = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

[Q. Show
$$\mathrm{Tr}(\gamma_5)=\mathrm{Tr}(\mathsf{odd}\ \mathsf{number}\ \mathsf{of}\ \gamma\mathsf{-matrices})=0]$$

summary so far

QFT=SR+QM

 $E=mc^2$ and $\Delta t \Delta E \gtrsim 1$: particles are created/ annihilated.

Organizing principles of QFT model

Spacetime symmetry (=Lorentz) and gauge symmetry

Representations of Lorentz group

$$\phi \sim (0,0), \psi_R \sim (1/2,0), \psi_L \sim (0,1/2), A_\mu \sim (1/2,1/2)$$

No other states are available in nature!

Lagrangians

$$\mathcal{L} = \partial_{\mu}\phi^{*}\partial^{\mu}\phi - m^{2}\phi^{*}\phi + \overline{\psi}_{D}(i\partial\!\!\!/ - m_{\psi})\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$

Quiz

- Q1 Why there's no s = 1/3 state in nature?
- Q2 What's the dimension of (1/2,0), the left-handed spinor representation?
- Q3 Graviton has s = 2. What's the representation (j, j')?

Gauge symmetry(Abelian): QED Gauge symmetry(non-Abelian, Yang-Mills:Weak, QCD) Higgs mechanism The standard model

Lecture #2

QED: U(1) gauge theory(1)

Let's consider a free Dirac particle(=field, spinor, fermion ...) with m:

$$\mathcal{L}(\psi) \equiv \bar{\psi} (i \partial \!\!\!/ - m) \psi$$

- You may regard ψ as the field for electron in low energy ($E \ll \langle h \rangle \simeq 246 {\rm GeV}$)
- ullet $U(1)_{
 m global}:\psi o e^{i heta}\psi$ is a good symmetry. (${\cal L}$ is invariant)
- $U(1)_{local}: \psi \to e^{i\theta(\mathbf{x})}\psi$ is not a good symmetry. ($\mathcal L$ is not invariant)

$$\partial_{\mu}\psi \rightarrow \partial_{\mu}(e^{i\theta(x)}\psi(x)) = e^{i\theta(x)}(\partial_{\mu}\psi + i(\partial_{\mu}\theta)\psi),$$

 $\therefore \mathcal{L} \rightarrow \mathcal{L}' = \mathcal{L} + \delta\mathcal{L} = \mathcal{L} - \bar{\psi}(\gamma^{\mu}\partial_{\mu}\theta)\psi \neq \mathcal{L}$

QED: U(1) gauge theory (2)

If you want local phase transition a good symmetry, you need to introduce gauge covariant derivative $(\partial_{\mu} \to D_{\mu} = \partial_{\mu} - igA_{\mu})$ to cancel out $\delta \mathcal{L}$, [Q. why do you want?]

$$\mathcal{L}(\psi) \to \mathcal{L}_{U(1)}(\psi, A_{\mu}) \equiv \bar{\psi} \left(i(\partial - ig A) - m \right) \psi$$
$$= \mathcal{L} + g \bar{\psi} \gamma^{\mu} \psi A_{\mu} = \mathcal{L} + g J^{\mu} A_{\mu}$$

- $D_{\mu}\psi \rightarrow e^{i\theta(x)}D_{\mu}\psi$ [NOTE::: $D_{\mu}\psi \rightarrow (\partial_{\mu} - igA'_{\mu})(e^{i\theta(x)}\psi(x)) = e^{i\theta(x)}\left(\partial_{\mu}\psi + i(\partial_{\mu}\theta - gA'_{\mu})\psi\right) \text{ thus } gA_{\mu} = gA'_{\mu} - \partial_{\mu}\theta \text{ or } A'_{\mu} + i(\partial_{\mu}\theta - gA'_{\mu})\psi$ $A'_{\mu}=A_{\mu}+rac{1}{arepsilon}\partial_{\mu}\theta$ guarantees the relationship. Note this is the same gauge transformation in Maxwell's equations.]
- The new gauge invariant Lagrangian $\mathcal{L}_{U(1)}$ contains $(current) \times (gauge \ field)$ type interaction. g describes the strength of the interaction.[NOTE::: In QED, g=eQ where $e=\sqrt{4\pi\alpha}$ is the magnitude of the electron charge and Q = -1 for electron, Q = +1 for proton[Q. why the same magnitudes?])]
- The kinetic term for A_{μ} is given as $\mathcal{L}_{A}=-rac{1}{4}F_{\mu\nu}F^{\mu\nu}$. [NOTE::: The gauge invariant field strength tensor for A_{μ} is $F_{\mu\nu}\equiv\frac{i}{g}[D_{\mu},D_{\nu}]=\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu}$. This is 'curvature' in

QED: U(1) gauge theory (3) practice!

Let's practice with a complex scalar particle(=field, boson ...) with m = 0:

$$\mathcal{L}(\phi) \equiv \eta^{\mu\nu} \partial_{\mu} \phi^* \partial_{\nu} \phi$$

- $U(1)_{
 m global}:\phi o e^{i heta}\phi,\phi^* o e^{-i heta}\phi^*$ is a good symmetry. (${\cal L}$ is invariant)
- $U(1)_{\rm local}: \phi \to e^{i\theta(x)}\phi, \phi^* \to e^{-i\theta(x)}\phi^*$ is not a good symmetry. ($\mathcal L$ is not invariant)
- Recipe: $\partial_{\mu} \to D_{\mu} = \partial_{\mu} igA_{\mu}$ with $A_{\mu} \to A'_{\mu} = A_{\mu} + \frac{\partial_{\mu}\theta}{g}$:

$$\mathcal{L}_{U(1)}(\phi,A_{\mu})\equiv\eta^{\mu
u}(\partial_{\mu}+i\mathsf{g}A_{\mu})\phi^{*}(\partial_{
u}-i\mathsf{g}A_{\mu})\phi-rac{1}{4}\mathsf{F}_{\mu
u}\mathsf{F}^{\mu
u}$$

[Q. Show gauge invariance of the Lagrangian]

[NOTE::: $\mathcal{L}_{U(1)}(\phi, A_{\mu}) = \mathcal{L}(\phi) + gJ_{\mu}A^{\mu} + g^2A_{\mu}A^{\mu}\phi^*\phi$. [Q. What is $J_{\mu}(\phi, \phi^*)$?]]

Non-Abelian: SU(2) gauge theory(1)

- Historically proton and neuntron were known to form an isospin doublet $\binom{p}{n}$ i.e. they are regarded as up- and down-components of an isospin doublet state which transforms cordially. [NOTE::: indeed, we regard the doublet as a fundamental representation of SU(2)]
- In the SM, this doublet has more fundamental origin as p = (uud) and n = (udd) then fundamental doublet is $\binom{u}{d}$ rather than proton and neutron.
- Isospin symmetry is SU(2) under which the doublet transforms as $\binom{u}{d} \to e^{i\theta^i T^i} \binom{u}{d}$ where generators for SU(2) are Pauli matrices $T^i = (\frac{\sigma_i}{2})_{i=1,2,3}$ and θ^i are real valued parameters (angle of rotation in gauge space). [NOTE::: $U = e^{i\theta^i T^i}$ is unitary matrix with Hermitian generators T^i . $U^\dagger = U^{-1} = e^{-i\theta^i T^i}$]
- $\left[\frac{\sigma_i}{2}, \frac{\sigma_j}{2}\right] = i\epsilon_{ijk} \frac{\sigma_k}{2}$ for su(2) algebra.[NOTE::: can be generalized $[T^a, T^b] = if_{abc}T^c$ for a complact Lie algebra of non-Abelian group G where f_{abc} (structure constant) determines the algebraic structure.]

Non-Abelian: SU(2) gauge theory(2)

Now let's think of an G = SU(2) doublet, free Dirac field $\psi = \binom{u}{d}$ with m:

$$\mathcal{L}(\psi) \equiv \bar{\psi}(i\partial \!\!\!/ - m)\psi$$

- This Lagrangian is invariant under global SU(2): $\psi \to \psi' = U\psi$, $\bar{\psi} \to \bar{\psi}' = \bar{\psi}U^{\dagger}$ where $U = \mathrm{e}^{\mathrm{i}\vec{\theta}\cdot\vec{\sigma}/2}$. [NOTE::: $\bar{\psi}\psi = \bar{u}u + \bar{d}d$ is a singlet of SU(2) (i.e. unchanged under transformation)]
- But, not invariant under local SU(2) transformation with $\theta^i = \theta^i(x)$.
- Recipe: introduce covariant derivative $D_{\mu}=\partial_{\mu}-igT^{i}A_{\mu}^{i}$ with a proper rule for gauge transformation of $A_{\mu}\equiv T^{i}A_{\mu}^{i}$. [NOTE::: $A_{\mu}'=UA_{\mu}U^{\dagger}-\frac{i}{g}(\partial_{\mu}U)U^{\dagger}$] [Q. Check with U(1) with T=1] [Q. Check with infinitesimal transformation $U\simeq 1+i\theta\cdot T$ that $A_{\mu}'^{i}=A_{\mu}^{i}+\frac{1}{g}\partial_{\mu}\theta^{i}-\epsilon^{ijk}\theta^{j}A_{\mu}^{k}$]

$$\mathcal{L}_{SU(2)}(\psi,\textbf{A}_{\mu}^{i})\equiv\bar{\psi}\left(i(\partial\!\!\!/-i\textbf{g}\textbf{T}^{i}\mathbf{A}^{i})-\textbf{m}\right)\psi$$

Non-Abelian: SU(2) gauge theory (3) practice!

Let's practice with a complex doublet scalar $\phi = \begin{pmatrix} \phi_u \\ \phi_d \end{pmatrix}$ with m=0:

$$\mathcal{L}(\phi) \equiv \eta^{\mu\nu} \partial_{\mu} \phi^{\dagger} \partial_{\nu} \phi = \partial_{\mu} \phi_{\mathbf{u}}^{\dagger} \partial^{\mu} \phi_{\mathbf{u}} + \partial_{\mu} \phi_{\mathbf{d}}^{\dagger} \partial^{\mu} \phi_{\mathbf{d}}$$

- $SU(2)_{\mathrm{global}}: \phi \to e^{i\vec{ heta}\cdot\vec{ heta}/2}\phi, \phi^\dagger \to \phi^\dagger e^{-i\vec{ heta}\cdot\vec{ heta}/2}$ is a good symmetry.
- $SU(2)_{local}$: $\vec{\theta} = \vec{\theta}(x)$
- Recipe: $\partial_{\mu} \rightarrow D_{\mu} = \partial_{\mu} ig\frac{\vec{\sigma}}{2} \cdot \vec{A}_{\mu}$ with $A'_{\mu} = UA_{\mu}U^{\dagger} \frac{i}{g}(\partial_{\mu}U)U^{\dagger}$:

$$\mathcal{L}_{\mathit{U}(2)}(\phi,A_{\mu}) \equiv \eta^{\mu\nu}(\partial_{\mu}\phi - \mathrm{i} g\,\frac{\vec{\sigma}}{2}\cdot\vec{A}_{\mu}\phi)^{\dagger}(\partial_{\mu}\phi - \mathrm{i} g\,\frac{\vec{\sigma}}{2}\cdot\vec{A}_{\mu}\phi) - \frac{1}{4}F^{i}_{\mu\nu}F^{i\mu\nu}$$

[Q. Show gauge invariance of the Lagrangian]

[NOTE::: $\mathcal{L}_{SU(2)}(\phi, A_{\mu}^{i}) = \mathcal{L}(\phi) + gJ_{\mu}A^{\mu} + g^{2}A_{\mu}A^{\mu}\phi^{*}\phi$. [Q. What is $J_{\mu}(\phi, \phi^{*})$? Show, $D_{\mu}J^{\mu} = 0$]

[NOTE::: $F_{\mu\nu} = F^i_{\mu\nu} T^i = \frac{i}{g} [D_{\mu}, D_{\nu}]$. This is 'curvature' in non-Abelian internal space.]

[Q. Show $F^i_{\mu\nu}=\partial_\mu A^i_
u-\partial_
u A^i_
\mu+g\epsilon_{ijk}A^j_
\mu A^k_
u$. There's no ϵ term in Abelian case. Due to this, there are self-interactions of non-Abelian gauge bosons!]

Non-Abelian (4): SU(3) gauge theory

• Quarks are colored particles. That means a quark forms a triplet (i.e. fundamental representation) of $SU(3)_c$. Here c stands for 'color' gauge symmetry.

$$q = (q^{\mathfrak{d}}) = \begin{pmatrix} q^{y} \\ q^{g} \\ q^{r} \end{pmatrix} \tag{1}$$

[NOTE::: It is custom to call y, g, r as yellow, green, red but it does not mean anything to do with visible color.]

• There are 8 generators for SU(3), $T^a=\lambda^a/2$ where λ^a 's are Gell-Mann matrices with λ^3 and λ^8 diagonal. [NOTE::: For SU(N), N^2-1 .]

$$\lambda^{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \lambda^{2} = \begin{pmatrix} 0 & -i \\ i & 0 & 0 \end{pmatrix}, \lambda^{3} = \begin{pmatrix} 1 & -1 \\ & 0 \end{pmatrix}, \lambda^{4} = \begin{pmatrix} & & 1 \\ 1 & & \end{pmatrix}$$

$$\lambda^{5} = \begin{pmatrix} & & -i \\ i & & & \end{pmatrix}, \lambda^{6} = \begin{pmatrix} 0 & & 1 \\ & 1 & & 0 \end{pmatrix}, \lambda^{7} = \begin{pmatrix} 0 & & -i \\ & i & & 0 \end{pmatrix}, \lambda^{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & & & \\ & & & -2 \end{pmatrix}$$
 (2)

[NOTE::: Normalization is conventionally chosen to be ${
m Tr}(T^aT^b)=\frac{\delta^{ab}}{2}]$

Non-Abelian (5): SU(3) gauge theory

A gauge invariant Lagrangian is fairly easily constructed by prescription $\partial_{\mu} \to D_{\mu} = \partial_{\mu} - i g G_{\mu}$ where 'gluon' is denoted as $G_{\mu} \equiv G_{\mu}^{a} \frac{\lambda^{a}}{2}$.

$$\mathcal{L}_{QCD} = \bar{q}(i\not D - m_q)q - \frac{1}{4}G^a_{\mu\nu}G^{a\mu\nu} \tag{3}$$

[NOTE::: The Lagrangian includes interaction $\sim g \bar{q}_i \mathcal{G}^a \frac{(\lambda^a)_{ij}}{2} q_j = g J_\mu^a G_\mu^a$ and $D_\mu J^{a\mu} = 0.$]

[Q. Can you write down the action for a scalar-quark(squark) which is colored as usual quark?]

Non-Abelian (6): practice with SU(N)

A gauge invariant Lagrangian for an arbitrary gauge group SU(N) is fairly easily constructed by prescription $\partial_{\mu} \rightarrow D_{\mu} = \partial_{\mu} - igW_{\mu}$ where 'gauge boson' is denoted as $W_{\mu} \equiv W_{\mu}^{a} T^{a}$ with $[T^{a}, T^{b}] = if^{abc} T^{c}$ and $\mathrm{Tr}(T^{a}T^{b}) = \frac{\delta_{ab}}{2}$:

$$\mathcal{L}_{SU(N)} = \bar{\psi}(i\not \!\!D - m_q)\psi - \frac{1}{4}W_{\mu\nu}^aW^{a\mu\nu}$$
 (4)

[NOTE::: The Lagrangian includes interaction $\sim g \bar{\psi}_i \dot{W}^a T^a_{ij} q_j = g J^a_\mu W^a_\mu$ and $D_\mu J^{a\mu} = 0.$]

[NOTE::: $\psi = (\psi_i)_{i=1,2,\cdots,N}$ in fundamental representation of SU(N).]

Non-Abelian (7): practice with $SU(N) \times SU(M)$

• Prescription $\partial_{\mu} \rightarrow D_{\mu} = \partial_{\mu} - ig_{A}A_{\mu} - ig_{B}B_{\mu}$ where 'gauge bosons' are denoted as $A_{\mu} \equiv A^{a}_{\mu}T^{a}_{A}$ with $\begin{bmatrix} T_{A}^{a}, T_{A}^{b} \end{bmatrix} = if_{A}^{abc}T_{A}^{c}$ and $\mathrm{Tr}(T_{A}^{a}T_{A}^{b}) = \frac{\delta_{ab}}{2}$ and $B_{\mu} \equiv B^{a}_{\mu}T^{a}_{B}$ with $\begin{bmatrix} T_{B}^{a}, T_{B}^{b} \end{bmatrix} = if_{B}^{abc}T_{B}^{c}$ and $\mathrm{Tr}(T_{B}^{a}T_{B}^{b}) = \frac{\delta_{ab}}{2}$, respectively.

$$\mathcal{L}_{SU(N)} = \bar{\psi}(i\not D - m_q)\psi - \frac{1}{4}A^{a}_{\mu\nu}A^{a\mu\nu} - \frac{1}{4}B^{a}_{\mu\nu}B^{a\mu\nu}$$
 (5)

[NOTE::: The Lagrangian includes interaction $\sim g_A \bar{\psi}_i A^{\!\!\!/} T_{A^{\!\!\!/}i}^{\!\!\!/} \psi_j = g J_\mu^a A_\mu^a$ and similarly for B_μ .] [NOTE::: $\psi = (\psi_{(i,j)})_{i=1,2,\cdots,N;j=1,2,\cdots,M}$ in fundamental representation of SU(N) and SU(M).]

Non-Abelian (8): finally $G_{\rm SM} = SU(3) \times SU(2) \times U(1)$

- Let's consider a left-handed quark $Q_L = P_L Q$ which is triplet of SU(3), doublet of SU(2) with a hypercharge y_Q . For now, let's assume it massless.
- Prescription

$$\partial_{\mu} \rightarrow D_{\mu} = \partial_{\mu} - ig_{s}g_{\mu}^{a}\frac{\lambda^{a}}{2} - igW_{\mu}^{i}\frac{\sigma^{i}}{2} - ig'y_{Q}B_{\mu}$$

```
[NOTE::: Gauge bosons are 8 gluons (g_\mu^a), 3 weak gauge bosons (W_\mu^i) and hypercharge gauge boson (B_\mu).] [NOTE::: 3 gauge couplings are g_s, g and g', respectively.] [NOTE::: Leptons are SU(3) singlets and does not interact with gluons.] [NOTE::: The SM fermions are: \ell_L = \binom{\nu_L}{e_L} \sim (1,2,-\frac{1}{2}), e_R \sim (1,1,-1), Q_L = \binom{u_L}{d_l} \sim (3,2,\frac{1}{6}), u_R \sim (3,1,\frac{2}{3}), d_R \sim (3,1,-\frac{1}{3}) representations of G_{\rm SM}. [Q. How to write the gauge invariant Lagrangian for all particles?]
```

Higgs mechanism(1): U(1)

• Write the Lagrangian for a scalar with a U(1) charge q and a potential $V(\phi) = \lambda(\phi^*\phi - v^2)^2$. [NOTE::: The potential is U(1) invariant.]

Lecture 2

$$\mathcal{L} = [(\partial_{\mu} + iqA_{\mu})\phi^*(\partial^{\mu} - iqA^{\mu})\phi] - V(\phi^*\phi) - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$

- At the bottom of the potential, $|\phi| = v \neq 0$ Let's call v vacuum expectation value(VEV) because it is the value at the vacuum.
- Now an interesting thing happens! Let's see the physical fluctuation from the vacuum:

$$\phi(x) = \frac{1}{\sqrt{2}}(v + h(x))e^{i\xi(x)/v} = \frac{1}{\sqrt{2}}(v + h + i\xi + \text{quadratic and higher order terms}). \text{ [NOTE::: One can use } U(1) \text{ symmetry to remove } \xi \text{ then only physical degrees of freedom survives by a proper gauge choice.]}$$

The Lagrangian becomes

$$\mathcal{L} = -\frac{1}{4}FF + \frac{1}{2}[(\partial_{\mu}h)^2 - 4\lambda v^2h^2] + \frac{1}{2}q^2v^2(A_{\mu} + \frac{\partial_{\mu}\xi}{qv})^2 + \text{higher order}$$
 [NOTE::: $A'_{\mu} = A_{\mu} + \frac{\partial_{\mu}\xi}{qv}$ (ξ is eaten!) or $\phi \rightarrow e^{-i\xi/v}\phi = (v+h)/\sqrt{2}$ makes ξ dissapear!] [NOTE::: $m'_{A} = qv$, $m^2_{b} = 4\lambda v^2$]

Higgs mechanism(2): U(1)

What we have done? Starting from a gauge invariant action, we found a physical action near the non-zero vacuum with a massive gauge field! (by eating a Goldstone mode (here ξ along U(1) direction)!

[NOTE::: Before eating ξ , A_μ was massless. Mass term ($\sim A_\mu A^\mu$) is forbidden by the gauge symmetry $(A_\mu \to A_\mu + \frac{1}{\varepsilon} \partial_\mu \theta, \text{ right?})$.]

Higgs mechanism(3): SU(2)

Consider a SU(2) doublet scalar $\phi = \begin{pmatrix} \phi_u \\ \phi_d \end{pmatrix}$. The Lagrangian density is

$$\mathcal{L} = |(\partial_{\mu} - i \mathsf{g} rac{\sigma^{i}}{2} W_{\mu}^{i}) \phi|^{2} - V(\phi^{\dagger} \phi)$$

with

$$V = \lambda(|\phi|^2 - v^2/2)^2$$

- Take vev $\langle \phi \rangle = \frac{1}{\sqrt{2}} \binom{0}{v}$ and $\phi = \frac{1}{\sqrt{2}} \binom{0}{v+h} e^{i\theta_i T_i/v} \to \frac{1}{\sqrt{2}} \binom{0}{v+h}$.[NOTE::: Here we already choose a gauge where θ are hidden.]
- Find the Lagrangian at vacuum.(i.e. $\phi = \langle \phi \rangle$) What do you expect to happen?

Higgs mechanism(4): SU(2)

The Lagrangian at vacuum is

$$\langle \mathcal{L} \rangle = \left| -i \frac{g}{2} \begin{pmatrix} W_{\mu}^{3} & \sqrt{2} W_{\mu}^{-} \\ \sqrt{2} W_{\mu}^{+} & -W_{\mu}^{3} \end{pmatrix} \begin{pmatrix} 0 \\ v/\sqrt{2} \end{pmatrix} \right|^{2}$$

$$= \frac{g^{2} v^{2}}{4} \left(W_{\mu}^{+} W^{-\mu} + \frac{1}{2} (W_{\mu}^{3})^{2} \right)$$

$$= m_{W^{\pm}}^{2} |W_{\mu}^{-}|^{2} + \frac{1}{2} m_{W^{3}}^{2} (W_{\mu}^{3})^{2}$$
(6)

[NOTE:::
$$W_{\mu}^{\pm} = \frac{W_{\mu}^{1} \pm iW_{\mu}^{2}}{\sqrt{2}}$$
]
[NOTE::: $m_{W^{\pm}} = m_{W^{3}} = \frac{g_{V}}{2}$]

Higgs mechanism(5): the SM! $SU(2) \times U(1)$

The Lagrangian at vacuum for $H \sim (1, 2, \frac{1}{2})$ is

$$\langle \mathcal{L} \rangle = \left| -i \frac{1}{2} \begin{pmatrix} g W_{\mu}^{3} + g' B_{\mu} & \sqrt{2} g W_{\mu}^{-} \\ \sqrt{2} g W_{\mu}^{+} & -g W_{\mu}^{3} + g' B_{\mu} \end{pmatrix} \begin{pmatrix} 0 \\ v/\sqrt{2} \end{pmatrix} \right|^{2}$$

$$= \frac{v^{2}}{4} \left(2g^{2} W_{\mu}^{+} W^{-\mu} + \frac{1}{2} (g W_{\mu}^{3} - g' B_{\mu})^{2} \right)$$

$$= m_{W^{\pm}}^{2} |W_{\mu}^{-}|^{2} + \frac{1}{2} m_{Z^{0}}^{2} (Z_{\mu}^{0})^{2}$$
(7)

$$\begin{split} & [\text{NOTE:::} \ W_{\mu}^{\pm} = \frac{W_{\mu}^{1} \pm i W_{\mu}^{2}}{\sqrt{2}}, \ Z_{\mu}^{0} = \frac{gW_{\mu}^{3} - g'B_{\mu}}{\sqrt{g^{2} + g'^{2}}}, \ A_{\mu} = \frac{g'A_{\mu} + gB_{\mu}}{\sqrt{g^{2} + g'^{2}}}] \\ & [\text{NOTE:::} \ \text{With } \sin\theta_{w} = \frac{g'}{gZ}, \cos\theta_{w} = \frac{g}{gZ} \ \text{with } g_{Z} = \sqrt{g^{2} + g'^{2}}, \ (Z_{\mu}) = \begin{pmatrix} \cos\theta_{w} & -\sin\theta_{w} \\ \sin\theta_{w} & \cos\theta_{w} \end{pmatrix} \begin{pmatrix} W_{\mu}^{3} \\ B_{\mu} \end{pmatrix}] \\ & [\text{NOTE:::} \ m_{W^{\pm}} = \frac{gV}{2}, m_{Z} = \frac{gZV}{2}, m_{A} = 0] \\ & [\text{NOTE:::} \ \rho = \frac{m_{W}^{2}}{m_{Z}^{2} \cos^{2}\theta_{W}} = \frac{g^{2}Z/m_{W}^{2}}{g^{2}/m_{W}^{2}} = \frac{\text{NC fermion coupling}}{\text{CC Fermion coupling}} = 1 \ \text{with the Higgs doublet!} \end{split}$$

[Q. Show $\rho=\frac{l(l+1)-l_3^2}{2l_3^2}$ with H weak isospin I and VEV direction I_3 . $\rho=1$ is consistent with $(I,I_3)=(\frac{1}{2},\pm\frac{1}{2})_{\mathrm{SM}},(3,\pm2),(\frac{25}{2},\pm\frac{15}{2}).$

SM(1) Leptons

•

$$\begin{split} \ell_e &= \binom{\nu_{eL}}{e_L} \sim (1, 2, y_\ell), e_R \sim (1, 1, y_{e_R}) \\ \ell_\mu &= \binom{\nu_{\mu L}}{\mu_L} \sim (1, 2, y_\ell), \mu_R \sim (1, 1, y_{e_R}) \\ \ell_\tau &= \binom{\nu_{\tau L}}{\tau_I} \sim (1, 2, y_\ell), \tau_R \sim (1, 1, y_{e_R}) \end{split}$$

[NOTE::: $y_\ell = -1/2$, $y_{eR} = -1$: They have exactly same quantum numbers! The difference is in interaction with Higgs (thus mass).]

- $D_{\mu}\ell = (\partial_{\mu} ig\frac{\sigma_{i}}{2} \cdot W_{\mu}^{i} ig'y_{\ell}B_{\mu})\ell_{I}$ [NOTE::: no strong interaction]
- $D_{\mu}e_{R}=(\partial_{\mu}-ig'y_{e_{R}}B_{\mu})e_{R}$ [NOTE::: no strong, no SU(2) interaction]
- $gT^iW^i_{\mu} + g'YB_{\mu} = \frac{g}{\sqrt{2}}(T^+W^+_{\mu} + T^-W^-_{\mu}) + gT^3W^3_{\mu} + g'yB_{\mu}$ where $T^{\pm} = T_1 \pm iT^2$. [NOTE::: Diagonal part with $Q = T_3 + y$: $d = gT^3W^3 + g'(Q T^3)B = T^3(gW^3 g'B) + g'QB$. $gW^3 g'B = g_ZZ$ and $B = -s_wZ + c_wA$ provides $d = g_Z(T^3 Q\sin^2\theta_w)Z_{\mu} + eQA_{\mu}$ where $e = g'\cos\theta_w$.]

$$D_{\mu} = \partial_{\mu} - i \frac{g}{\sqrt{2}} (T^{+}W_{\mu}^{+} + T^{-}W_{\mu}^{-}) - ig_{Z}(T_{3} - Q\sin^{2}\theta_{w})Z_{\mu} - ieQA_{\mu}$$

SM(2) Quarks

•

$$Q_{1} = \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} \sim (3, 2, y_{Q}), u_{R} \sim (3, 1, y_{u}), d_{R} \sim (3, 1, y_{d})$$

$$Q_{2} = \begin{pmatrix} c_{L} \\ s_{L} \end{pmatrix} \sim (3, 2, y_{Q}), c_{R} \sim (3, 1, y_{u}), s_{R} \sim (3, 1, y_{d})$$

$$Q_{3} = \begin{pmatrix} t_{L} \\ b_{L} \end{pmatrix} \sim (3, 2, y_{Q}), t_{R} \sim (3, 1, y_{u}), b_{R} \sim (3, 1, y_{d})$$

[NOTE::: $y_Q = \frac{1}{6}$, $y_u = \frac{2}{3}$, $y_d = -\frac{1}{3}$: They have exactly same quantum numbers! The difference is in interaction with Higgs (thus mass).]

- $Q_u = 2/3, Q_d = -1/3 \text{ by } Q = T_3 + y.$

$$D_{\mu} = \partial_{\mu} - i g_s \frac{\lambda_a}{2} g_{\mu}^a - i \frac{g}{\sqrt{2}} (T^+ W_{\mu}^+ + T^- W_{\mu}^-) - i g_Z (T_3 - Q \sin^2 \theta_w) Z_{\mu} - i e Q A_{\mu}$$

SM(3) Yukawa couplings

- $\mathcal{L}_{mass} \sim m \bar{\psi}_L \psi_R + h.c.$
- but! $\bar{e}_L e_R$ is not allowed [Q. why?]
- $\bar{\ell}_L He_R$, $\bar{Q}_L \tilde{H} u_R$ and $\bar{Q}_L Hd_R$ are allowed. $\tilde{H}=i\sigma_2 H^*$.
- General Yukawa interaction allows all the inter-generation mixings:

$$\mathcal{L}_{\text{yuk}} = -y_{ij}^{e} \overline{\ell}_{iL} H e_{jR} - y_{ij}^{u} \overline{Q}_{iL} \tilde{H} u_{jR} - y_{ij}^{d} \overline{Q}_{iL} H d_{jR}$$
 (8)

• y^e, y^u, y^d are all complex valued matrices.

SM(4) Quark masses and mixings

Let's think of *n* generations of quarks $\{Q_{iL}, u_{iR}, d_{iR}\}_{i=1,2,\cdots,n}$

• Kinetic+gauge term for quarks is symmetric under $U(n) \times U(n) \times U(n)$ (global):

$$Q_L \rightarrow U_Q Q_L, u_R \rightarrow U_u u_R, d_R \rightarrow U_d d_R$$

[NOTE::: gauge bosons are blind of generations (universality)]

Yukawa interactions break the symmetry

$$\mathcal{L}_{yuk} = -y_{ij}^{u} \overline{Q_{i}}_{L} \tilde{H} u_{jR} - y_{ij}^{d} \overline{Q_{i}}_{L} H d_{jR} + h.c.$$
(9)

[NOTE::: Yukawa's are the only source of symmetry breaking: Minimal flavor violation]

 y^u, y^d have 4n² real parameters in total. But not all of them are physically observable. The symmetry of the kinetic term implies a kind of reparametrization invariance:

$$y^d \rightarrow U_Q^{\dagger} y_d U_d, y^u \rightarrow U_Q^{\dagger} y_u U_u$$

leaves the physics unchanged.

SM(5) Quark masses and mixings

• The U(1) subgroup of $U(n)^3$:

$$U_Q = U_u = U_d = e^{i\theta}$$

does not change y_u and y_d . The effective reparametrization group is thus $U(n)^3/U(1)$ thus the space of physical parameters is

$$\mathbb{R}^4/\{\left.U(n)^3/U(1)\right\}$$

with its dimension = $4n^2 - (3n^2 - 1) = n^2 + 1$.

$n^2 + 1$	2n	$\frac{n(n-1)}{2}$	$\frac{(n-1)(n-2)}{2}$
dim	masses	mixing angles	phases(CPV)
n=2	4	1	0
n=3	6	3	1
n=4	8	6	3

SM(6) Quark masses and mixings

• Quark mass matrix

$$M_d = y_d \frac{v}{\sqrt{2}}, M_u = y_u \frac{v}{\sqrt{2}}$$

$$\mathcal{L}_m = -\bar{d}_L M_d d_R - \bar{u}_L M_u u_R$$

[NOTE::: Theorem: A complex $n \times n$ matrix M can be diagonalized by bi-similar transformation: $M = UDU'^{\dagger}$ where U and U' are unitary, D is diagonal, all elements ≥ 0 .]

Diagonalization

$$M_u = U_L M_u^{\mathrm{diag}} U_R^{\dagger}, M_d = V_L M_d^{\mathrm{diag}} V_R^{\dagger}$$

With mass eignstates $\hat{u}_{R/L}=U_{R/L}^{\dagger}u_{R/L}$ and $\hat{d}_{R/L}=V_{R/L}^{\dagger}d_{R/L}$,

$$\mathcal{L}_m = -\overline{\hat{u}}_L M_u^{\mathrm{diag}} \hat{u}_R - -\overline{\hat{d}}_L M_d^{\mathrm{diag}} \hat{d}_R + h.c.$$

SM(6) Quark masses and mixings

Charged current interactions:

$$\begin{split} \mathcal{L}_{CC} &= \frac{g}{\sqrt{2}} \overline{(u,d)_L} (T^+ W^+ + T^- W^-) \binom{u_L}{d_L} \\ &= \frac{g}{\sqrt{2}} \left(\overline{u}_L W^+ d_L + \overline{d}_L W^- u_L \right) \\ &= \frac{g}{\sqrt{2}} \left(\overline{\hat{u}}_L U_L^\dagger V_L W^+ \hat{d}_L + \overline{\hat{d}}_L V_L^\dagger U_L W^- \hat{u}_L \right) \\ &= \frac{g}{\sqrt{2}} \left(\overline{\hat{u}}_L V_{CKM} W^+ \hat{d}_L + h.c. \right) \end{split}$$

[NOTE::: CC interactions are flavor violating! $\overline{\hat{u}_L}\gamma_{\mu}\hat{d}_I'=\overline{\hat{u}_L}\gamma_{\mu}V_{\rm CKM}\hat{d}_L]$

Neutral current interactions:

$$\mathcal{L}_{NC} \quad \propto \quad \overline{u_L} \gamma_\mu u_L, \overline{d_L} \gamma_\mu d_L \propto \overline{\widehat{u}_L} \gamma_\mu \widehat{u}_L, \overline{\widehat{d}_L} \gamma_\mu \widehat{d}_L \tag{10}$$

[NOTE::: NC interactions are flavor diagonal! FCNC, GIM mechanism]

SM(7) Lepton masses

- Without having neutrino masses (or very small masses), only charged leptons got masses though Yukawa interactions and no CKM like mixings are allowed. (Lepton number conservation)
- Neutrinos however have masses possibly by a different mechanism other than conventional Higgs mechanism.

$$\sum_{
u} m_{
u} \lesssim 0.1 \mathrm{eV} \ll m_{e} \ll m_{t}!$$
 (Flavor hierarchy problem)

SM(7) Free parameters in the SM

- 3 gauge couplings: g_s, g, g
- 13: 9 fermion masses and 4 CKM mixings with a phase: $m_e, m_\mu, m_\tau, m_u, m_d, m_s, m_c, m_b, m_t$, 3 angles and 1 CPV phase.
- 1 Higgs vev produces 2 gauge boson masses : $(m_W = gv/2, m_Z = g_Z v/2) \sim v$ (or Higgs mass)
- 1 Higgs quartic coupling λ
- $\bullet \ \theta_{QCD} \ \text{in} \ \theta \, G^{\, a}_{\mu\nu} \, \tilde{G}^{\, \mu\nu}_{a}$

# of parameters	sector	parameters
3	gauge couplings	gs, g, g'
9	fermion masses	$m_e, m_\mu, m_\tau, m_u, m_d, m_s, m_c, m_b, m_t$
4	CKM	3 angles + 1 phase
2	Higgs vev and quartic coupling	v, λ
(1)	QCD theta term in $ heta G_{\mu u}^a ilde{G}_a^{\mu u}$	$\theta_{ m QCD} \ll 1$
total 18(+1)	·	all measured!!

The End