Supersymmetry explanation of the Fermi Galactic Center Excess and its test at LHC Run-II

Peiwen Wu (ITP)

collaborated with J. Cao, L. Shang, Y. Zhang, J. M. Yang

Institute of Theoretical Physics (ITP)

Chinese Academy of Sciences (CAS)

Exploring the Dark Sector March 16-20, 2015, KIAS

based on PRD 91 (2015) 5, 055005 (arXiv: 1410.3239)

Highly motivated DM studies

evidence of DM

composition of the Universe

thermal freeze-out (early Univ.) indirect detection (now)

SM

SM

LEP, Tevatron, LHC...

DM indirect detections

- products of DM annihilation/decay
 - anti-proton (\bar{p}), positron (e^+)
 - photon (γ), neutrino (ν)...
- DM halo: spherically symmetric
 - line of sight (l.o.s)
 - half-cone angle: θ
- Galactic Disk: (b, l) coordinate system

Fermi Gamma-ray Space Telescope

- launched in 2008
- two main instruments
 - Large Area Telescope (LAT)
 - Gamma-ray Burst Monitor (GBM)

Fermi 5 years, from Fermi website

Galactic Center gamma-ray Excess (GCE)

- background subtraction:
 - point sources
 - diffuse emission
 - •
- systematic uncertainties
 - background/foreground light
 - interstellar environment

• .

Galactic Center gamma-ray Excess (GCE)

- analysis from Fermi Group (preliminary)
 - fifth Fermi Symposium
 Nagoya, 20-24 October 2014
 - ...an enhancement approximately centered the Galactic Center...
 - ...depending on the modeling of the interstellar emission...

S. Murgia, Fermi Collaboration

Categories of Interpretation

- astrophysical
 - unresolved point sources (millisecond pulsars...)
 - (transient injected) cosmic-ray collision with interstellar gases
 - ...
- DM annihilation
 - many DM candidates in extensions of SM
 - a variety of channels/final states

DM annihilation (Simplified model)

- systematic uncertainties included more channels available
- $DM + DM \rightarrow$
 - $b\overline{b}, c\overline{c}, s\overline{s}, \tau^+\tau^-$, light quarks
 - W^+W^- , ZZ, hh, tt
 - *ha,aa*

DM annihilation (Simplified model)

• an example: fit to $b\overline{b}$ final states

	$m_{_{\rm DM}}~[{\rm GeV}]$	$\langle \sigma_{b\bar{b}} v \rangle_0 \ [10^{-26} \frac{\mathrm{cm}^3}{\mathrm{s}}]$	γ	$ ho_{\odot} \left[\frac{\mathrm{GeV}}{\mathrm{cm}^3} \right]$	$R_s \; [\mathrm{kpc}]$
Hooper+[5]	$\sim 40-50$	~ 0.8	1.2	0.4	20
Huang+[6]	$61.8^{+6.9}_{-4.9}$	$3.30\substack{+0.69\\-0.49}$	1.2	0.4	20
Gordon+[7]	$34.1_{-3.5}^{+4.0}$	$2.47\substack{+0.28 \\ -0.25}$	1.2	0.36	23.1
Abazajian $+[8]$	$39.4^{+3.7}_{-2.9} \pm 7.9 \text{ (sys)}$	5.1 ± 2.4	1.1	0.3	23.1
$Daylan + [9]^2$	31 - 40	0.7 - 3.9	1.26	0.3	20
Calore+[10]	$49\substack{+6.4 \\ -5.4}$	$1.76\substack{+0.28 \\ -0.27}$	1.2	0.4	20

T. Gherghetta, 1502.07173

• obtained with *different* (background subtraction, DM halo profiles...)

An "coincidence"

- $\langle \sigma v \rangle_{FO} \sim 3 \times 10^{-26} \,\mathrm{cm}^3/\mathrm{s}$
 - required by $\Omega_{
 m DM} h^2 {\sim} 0.11$
- $\langle \sigma v \rangle_{GCE} \sim O(1) \times 10^{-26} \text{ cm}^3/\text{s}$
- $\langle \sigma v \rangle_{GCE} \sim \langle \sigma v \rangle_{FO}$
 - hint of DM existence

Channel	$\frac{\langle \sigma v \rangle}{(10^{-26} \mathrm{cm}^3 \mathrm{s}^{-1})}$	m_{χ} (GeV)	$\chi^2_{ m min}$	<i>p</i> -value
ar q q	$0.83\substack{+0.15 \\ -0.13}$	$23.8^{+3.2}_{-2.6}$	26.7	0.22
$\bar{c}c$	$1.24_{-0.15}^{+0.15}$	$38.2^{+4.7}_{-3.9}$	23.6	0.37
$\overline{b}b$	$1.75_{-0.26}^{+0.28}$	$48.7_{-5.2}^{+6.4}$	23.9	0.35
$ar{t}t$	$5.8^{+0.8}_{-0.8}$	$173.3^{+2.8}_{-0}$	43.9	0.003
gg	$2.16\substack{+0.35 \\ -0.32}$	$57.5_{-6.3}^{+7.5}$	24.5	0.32
W^+W^-	$3.52_{-0.48}^{+0.48}$	$80.4^{+1.3}_{-0}$	36.7	0.026
ZZ	$4.12_{-0.55}^{+0.55}$	$91.2^{+1.53}_{-0}$	35.3	0.036
hh	$5.33_{-0.68}^{+0.68}$	$125.7^{+3.1}_{-0}$	29.5	0.13
$\tau^+ \tau^-$	$0.337\substack{+0.047\\-0.048}$	$9.96\substack{+1.05 \\ -0.91}$	33.5	0.055
$\left[\mu^+\mu^-$	$1.57\substack{+0.23\\-0.23}$	$5.23\substack{+0.22 \\ -0.27}$	43.9	$0.0036]_{\text{Les}}$

F. Calore, 1411.4647

Tension with DM interpretations

constraints from other cosmic ray observations

 $1. \times 10^{-25}$

 $5. \times 10^{-26}$

1.×10⁻²⁶ 5.×10⁻²⁷ 5.×10⁻²⁷ 1.×10⁻²⁷

5. × 10⁻²⁸

1. × 10⁻²⁸

10

- dwarf spheroidal galaxies (γ)
- anti-proton flux (\bar{p})
- positron flux (e^+)
- radio signals
- relaxed by systematic uncertainties

15

20

 $m_{\chi}[\text{GeV}]$

30

10

Γ=1.04

Γ=1.26

100

50

 m_{χ} [GeV]

Supersymmetry framework

- solution to hierarchy problem
- unification of gauge couplings
- a suitable DM candidate

Minimal Supersymmetric SM (MSSM)

•
$$W_{\text{MSSM}} = W_F + \mu \widehat{H}_u \cdot \widehat{H}_d$$

- Higgs sector
 - CP-even: *h*, *H*
 - CP-odd: *A*
 - charged: H^{\pm}

$$H_{u} = \begin{pmatrix} H_{u}^{+} \\ v_{u} + \frac{1}{\sqrt{2}} (H_{u,R}^{0} + iH_{u,I}^{0}) \end{pmatrix}$$
$$H_{d} = \begin{pmatrix} v_{d} + \frac{1}{\sqrt{2}} (H_{d,R}^{0} + iH_{d,I}^{0}) \\ H_{d}^{-} \end{pmatrix}$$

$$tan\beta = \frac{v_u}{v_d}, v = \sqrt{v_u^2 + v_d^2} \simeq 174 \text{ GeV}$$

$$\begin{pmatrix} h \\ H \end{pmatrix} = \begin{pmatrix} C_{\alpha} & -S_{\alpha} \\ S_{\alpha} & C_{\alpha} \end{pmatrix} \begin{pmatrix} H_{u,R}^{0} \\ H_{d,R}^{0} \end{pmatrix}$$
$$\begin{pmatrix} A \\ G \end{pmatrix} = \begin{pmatrix} C_{\beta} & S_{\beta} \\ -S_{\beta} & C_{\beta} \end{pmatrix} \begin{pmatrix} H_{u,I}^{0} \\ H_{d,I}^{0} \end{pmatrix}$$
$$\begin{pmatrix} H^{\pm} \\ G^{\pm} \end{pmatrix} = \begin{pmatrix} C_{\beta} & S_{\beta} \\ -S_{\beta} & C_{\beta} \end{pmatrix} \begin{pmatrix} H_{u}^{\pm} \\ H_{d}^{\pm} \end{pmatrix}$$

Minimal Supersymmetric SM (MSSM)

- neutralino sector
 - mixture among (bino, wino, higgsinos)
 - mass eigenstates: $\tilde{\chi}_i^0$, $i = 1 \sim 4$
 - $\tilde{\chi}_1^0$: DM candidate (χ)

$$\psi_N^T = (\tilde{B}, \tilde{W}, \tilde{H}_d^0, \tilde{H}_u^0)$$
$$L_N \ni -\frac{1}{2} \psi_N^T M_N \psi_N + h. c.$$

$$\begin{pmatrix} \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{2}^{0} \\ \tilde{\chi}_{3}^{0} \\ \tilde{\chi}_{4}^{0} \end{pmatrix} = N_{4 \times 4} \begin{pmatrix} \tilde{B} \\ \tilde{W} \\ \tilde{H}_{d}^{0} \\ \tilde{H}_{d}^{0} \\ \tilde{H}_{u}^{0} \end{pmatrix} \qquad \qquad M_{N} = \begin{pmatrix} M_{1} & 0 & -g_{1}v_{d}/\sqrt{2} & g_{1}v_{u}/\sqrt{2} \\ & M_{2} & g_{2}v_{d}/\sqrt{2} & -g_{2}v_{u}/\sqrt{2} \\ & 0 & -\mu \\ & & 0 \end{pmatrix}$$

$$\chi\chi \to b\overline{b}$$
 in MSSM

- small- $v_{\rm DM,rel}$ expansion: $\langle \sigma v \rangle \simeq a + bv^2$
 - *a*: s-wave
 - bv^2 : p-wave ($\rightarrow 0$ when $v_{\text{DM,rel}} \rightarrow 0$)
- s-channel
 - s-wave: A
 - p-wave: $h/H/Z (\rightarrow 0 \text{ when } v_{\text{DM,rel}} \rightarrow 0)$
- t/u-channel
 - negligible with LHC constraints on light sbottom

Minimal Supersymmetric SM (MSSM)

- mass correlation
 - $M_A \simeq M_H \simeq M_{H^{\pm}}$ for $M_A > \sim 150 \text{ GeV}$
 - $M_A \sim 2m_\chi \sim 140 \text{ GeV}$ constrained by $H/A \rightarrow \mu^+\mu^-$
 - $M_H \sim 140 \text{ GeV}$ constrained by h/H mixing
 - $M_{H^{\pm}} \sim 140 \text{ GeV}$ constrained by $B_s \rightarrow \mu^+ \mu^-$

Next-to-MSSM (NMSSM)

•
$$W_{\text{NMSSM}} = W_F + \lambda \,\widehat{H}_u \cdot \widehat{H}_d \hat{S} + \frac{\kappa}{3} \,\hat{S}^3$$

- Higgs sector
 - CP-even: h_1, h_2, h_3
 - CP-odd: *a*₁, *a*₂
 - charged: H^{\pm}

$$H_{u} = \begin{pmatrix} H_{u}^{+} \\ v_{u} + \frac{1}{\sqrt{2}} (H_{u,R}^{0} + iH_{u,I}^{0}) \end{pmatrix} \begin{pmatrix} h_{1} \\ h_{2} \\ h_{3} \end{pmatrix}$$

 $H_{d} = \begin{pmatrix} v_{d} + \frac{1}{\sqrt{2}} (H_{d,R}^{0} + iH_{d,I}^{0}) \\ H_{d}^{-} \end{pmatrix}$

$$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = S_{3\times 3} \begin{pmatrix} H_{u,R}^0 \\ H_{d,R}^0 \\ S_R \end{pmatrix}$$

$$\binom{a_1}{a_2} = P_{2 \times 2} \binom{A_{\text{MSSM}}}{S_I}$$

• μ dynamically generated

•
$$\mu_{eff} = \lambda v_s$$
 $S = v_s + \frac{1}{\sqrt{2}}(S_R + iS_I)$

$$\begin{pmatrix} H^{\pm} \\ G^{\pm} \end{pmatrix} = \begin{pmatrix} C_{\beta} & S_{\beta} \\ -S_{\beta} & C_{\beta} \end{pmatrix} \begin{pmatrix} H_{u}^{\pm} \\ H_{d}^{\pm} \end{pmatrix}$$

Next-to-MSSM (NMSSM)

- neutralino sector
 - mixture among (bino, wino, higgsinos, singlino)
 - mass eigenstates: $\tilde{\chi}_i^0$, $i = 1 \sim 5$
 - $\tilde{\chi}_1^0$: DM candidate (χ)

 $\begin{pmatrix} \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{2}^{0} \\ \tilde{\chi}_{3}^{0} \\ \tilde{\chi}_{4}^{0} \\ \tilde{\chi}_{5}^{0} \end{pmatrix} = N_{5 \times 5} \begin{pmatrix} \tilde{B} \\ \tilde{W} \\ \tilde{H}_{d}^{0} \\ \tilde{H}_{u}^{0} \\ \tilde{S} \end{pmatrix}$

$$\begin{split} \psi_N^T &= (\tilde{B}, \tilde{W}, \tilde{H}_d^0, \tilde{H}_u^0, \tilde{S}) \\ L_N \ni -\frac{1}{2} \psi_N^T M_N \psi_N + h. c. \\ &= \begin{pmatrix} M_1 & 0 & -\frac{g_1 v_d}{\sqrt{2}} & \frac{g_1 v_u}{\sqrt{2}} & 0 \\ M_2 & \frac{g_2 v_d}{\sqrt{2}} & -\frac{g_2 v_u}{\sqrt{2}} & 0 \\ & 0 & -\mu & -\lambda v_u \\ & & 0 & -\lambda v_d \\ & & & \frac{2\kappa}{\lambda} \mu \end{pmatrix} \end{split}$$

 M_N

$$\chi\chi \rightarrow bb$$
 in NMSSM

- with singlet component, $a_1 \simeq 2m_{\chi}$ can exist to explain GCE
- s-channel
 - s-wave: *a_i*-mediated
 - p-wave: h_i/Z -mediated (\rightarrow when $v_{\rm DM,rel} \rightarrow 0$)
- t/u-channel
 - negligible with LHC constraints on light squark

Simplified picture

Simplified picture

to reach $\langle \sigma v \rangle_{\text{GCE}} \simeq (0.4 \sim 1.3) \times 10^{-26} \text{ cm}^3/\text{s}$

Breit-Wigner resonance needed: $2m_{\chi} \simeq m_{a_1}$

 V_{DM}

v=0, -> integration

v=0, -> integration

• early:

• today:

- $2m_{\chi} > m_{a_1}, \langle \sigma v \rangle_{a_1, FO} < \langle \sigma v \rangle_{a_1, GCE}$ • *Z*-contribution can help
- $2m_{\chi} < m_{a_1}, \langle \sigma v \rangle_{a_1, FO} \gg \langle \sigma v \rangle_{a_1, GCE}$ • too small $\Omega_{\rm DM} h^2$

• early:

• today:

 $2m_{\chi} > m_{a_1}, \langle \sigma v \rangle_{a_1, FO} < \langle \sigma v \rangle_{a_1, GCE}$ • *Z*-contribution can help

• $2m_{\chi} < m_{a_1}, \langle \sigma v \rangle_{a_1, FO} \gg \langle \sigma v \rangle_{a_1, GCE}$ • too small $\Omega_{\rm DM} h^2$

Z-contribution needed

- $m_{\chi} \sim 40$ GeV, not far from $m_Z/2$
- $c_{Z\chi\chi} \propto (N_{13}^2 N_{14}^2)$
 - higgsino component in DM should be sizable
 - μ should be moderate/small
- higgsino-like neutralinos/chargino are light
 - $\sigma(pp \rightarrow \chi_i^{\pm} \chi_i^0)$ can be large
 - 3-lepton signal: $\chi_i^{\pm}\chi_j^0 \to W^{\pm}\chi_1^0 Z \chi_1^0 \to E_{miss}^T + 3l$ $\begin{pmatrix} \tilde{\chi}_2^0 \\ \tilde{\chi}_3^0 \\ \tilde{\chi}_4^0 \end{pmatrix} = N_{5\times 5} \begin{pmatrix} B \\ \tilde{W} \\ \tilde{H}_d^0 \\ \tilde{H}_u^0 \end{pmatrix}$

Four scenarios

- which one is h_{SM} : h_1 or h_2 ?
- what component dominates DM: Bino (\tilde{B}) or singlino (\tilde{S})?

	h_1	h 2
$ ilde{B}$	I-B	II-B
$ ilde{S}$	I-S	II-S

SM-like Higgs: h_1 or h_2 ?

- see-saw mechanism
- $h_3 \sim H_{MSSM}$ is decoupled
- $h_{\text{MSSM}} \sim h_{\text{SM}}$
 - $m_{h_{
 m MSSM}} > m_{S_R}$, h_2 is $h_{
 m SM}$
 - $m_{h_{
 m MSSM}} < m_{S_R}$, h_1 is $h_{
 m SM}$
- $a_2 \sim A_{\text{MSSM}}$ is decoupled
 - a_1 can be singlet-like and light

$$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = S_{3\times3} \begin{pmatrix} H_{u,R}^0 \\ H_{d,R}^0 \\ S_R \end{pmatrix} \sim S'_{3\times3} \begin{pmatrix} h_{\text{MSSM}} \\ H_{\text{MSSM}} \\ S_R \end{pmatrix}$$
$$\begin{pmatrix} h_1 \\ h_2 \end{pmatrix} \sim S_{2\times2} \begin{pmatrix} h_{\text{MSSM}} \\ S_R \end{pmatrix}$$
$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = P_{2\times2} \begin{pmatrix} A_{\text{MSSM}} \\ S_I \end{pmatrix}$$

DM is bino (\tilde{B}) -like or singlino (\tilde{S}) -like?

- simplification: wino (\widetilde{W}) decoupled, large M_2
- moderate μ : necessary higgsino component
- \tilde{B} -like: small $|M_1|$, moderate/large κ/λ
- \tilde{S} -like: small κ/λ , moderate/large $|M_1|$

I-S is hard to realize

	h_1	h_2
$ ilde{B}$	I-B	II-B
$ ilde{S}$	I-S, hard to realize	II-S

- $(M_{\rm DM} \sim M_{\tilde{S}}) \sim 40 \text{ GeV}$
- $(M_{a_1} \sim M_{S_I}) \sim 2M_{\rm DM} \sim 80 {\rm GeV}$

then

• M_{S_R} is generally small (with $\kappa A_{\kappa} < 0$)

- $h_{\rm MSSM} \sim h_{\rm SM}$
 - $m_{h_{ ext{MSSM}}} > m_{S_R}$, h_2 is $h_{ ext{SM}}$
 - $m_{h_{\text{MSSM}}} < m_{S_R}$, h_1 is h_{SM}

$$\binom{h_1}{h_2} \sim S_{2 \times 2} \binom{h_{\text{MSSM}}}{S_R}$$

I/II-B need fine-tuning

	h_1	h_2
\widetilde{B}	I-B, fine-tuned	II-B, fine-tuned
Ŝ	I-S, hard to realize	II-S

- $y_{a_1\chi\chi}$ is small (a_1 is singlet-like)
- experimental constraints
 - $B_s \rightarrow \mu^+ \mu^-$, $e^+ e^- \rightarrow ha$
- limited A_{MSSM} component in a_1
 - y_{a_1bb} is suppressed

$$\langle \sigma v \rangle_{b\bar{b}}|_{v \to 0} \propto \frac{y_{a_1\chi\chi}^2 y_{a_1b\bar{b}}^2 m_{\chi}^2}{(4m_{\chi}^2 - m_{a_1}^2)^2 + m_{a_1}^2 \Gamma_{a_1}^2}$$

Consequently $\langle \sigma v \rangle_{a_1,GCE}$ is not large enough

II-S is promising

	h_1	h_2
$ ilde{B}$	I-B	II-B
$ ilde{S}$	I-S	II-S, promising

- more freedom to explain $\Omega_{
m DM}h^2$ and GCE simultaneously

Numerical Scan

- simplifications
 - \tilde{q} = 2 TeV
 - $A_t = A_b$ to tune $m_{h_{SM}}$
 - $\tilde{l} = 300 \text{ GeV}$
 - muon g-2
 - \tilde{g} = 2 TeV
 - $\widetilde{W} = 1 \text{ TeV}$

- parameter ranges ([mass] in TeV) :
 - $1 < tan\beta < 40, \ 0 < \lambda < 0.7, \ 0 < |\kappa| < 0.7,$
 - $0 < |A_{\kappa}| < 2, \ 0 < A_{\lambda} < 5, \ |A_t| < 5,$
 - $0 < |M_1| < 0.6, \ 0.1 < \mu < 0.6$
- spectrum calculator:
 - NMSSMTools-4.3.0

Numerical Scan

- Higgs sector:
 - *m*_{*h*_{SM}~125 GeV}
- implement Higgs constraints/data
 - HiggsBounds-4.2.0/HiggsSignals-1.2.0
- $B_s \rightarrow \mu^+ \mu^-$, $b \rightarrow s \gamma$

- neutralino sector:
 - $m_{\widetilde{\chi}_1^0} \in (30,40)$ GeV, singlino-like
- $\Omega_{
 m DM} h^2$ at 3σ level: (0.107,0.131)
- LUX exclusion at 90% C.L
- GCE with dwarf constraints
 - $\langle \sigma v \rangle |_{v \to 0} \in (0.4, 1.3) \times 10^{-26} \text{cm}^3/\text{s}$

Simulation of 3-lepton signal

- spectrum calculator: NMSSMTools
- event generator: MadGraph5
- parton shower: Pythia
- cut efficiencies: Delphes encoded in CheckMATE
 - six SRs in ATLAS-CONF-2013-035
 - SRZd added (more efficient for large μ)
- $\sigma(pp \rightarrow \tilde{\chi}_i^{\pm} \tilde{\chi}_j^0)$ at NLO: Prospino2

Resonance and cross section

• a_1 off-resonance, a_1 contribution decreases

- fixed $2m_{\chi}/m_{a_1}$
 - $\langle \sigma v \rangle |_{v \to 0}$ increases with larger $|y_{a_{1\chi\chi}}|$, $|y_{a_{1}b\bar{b}}|$

Z-contribution illustration

- larger $2m_{\chi}/m_{a_1}$ >1
 - $\langle \sigma v \rangle |_{v
 ightarrow 0}$, $\langle \sigma v \rangle_{a_1, {
 m FO}}$ decreases
 - $\Gamma_{Z,inv}$ generally increases

$$\Gamma_{Z,inv} = \frac{G_F m_Z^3}{12\sqrt{2}\pi} (N_{13}^2 - N_{14}^2)^2 \left(1 - \frac{4m_\chi^2}{m_Z^2}\right)^{3/2}$$

• kinematic β -factor also plays a role

Ζ

DM Spin-Dependent scattering

- $\sigma_p^{\rm SI}$ already satisfied (LUX)
- $\sigma_p^{
 m SD}$ bounds, weaker than $\sigma_p^{
 m SI}$
- larger $m_{\chi} \rightarrow \text{smaller } \Gamma_{Z,inv}, \ \sigma_p^{SD}$
 - $m_{\chi} \propto 2 \left(\frac{\lambda}{\mu}\right)^{-1} \kappa$, $g_{Z\chi\chi} \propto \left(\frac{\lambda}{\mu}\right)^2 v^2$
 - suppressed kinematic β -factor
- beyond current LUX capability
- testable at future XENON-1T/LZ

3-lepton signal at 14 TeV LHC

- most sensitive SR chosen for each sample
 - SRZc for $m_\chi < 230~{
 m GeV}$
 - SRZd for $m_\chi > 280~{
 m GeV}$
- 100 (200) fb⁻¹exclude most (all) II-S samples
- partially discoverable at 14-TeV LHC

Conclusions

- NMSSM can explain $\Omega_{\mathrm{DM}}h^2$ and GCE simultaneously
- a_1 resonance is usually needed, singlino-like DM is favored
- Z-contribution is needed when a_1 is off-resonant
 - Higgsino mass μ is upper bounded
- future SD experiment may cover the GCE-favored region
- 3-lepton signals at 14-TeV LHC can test this GCE scenario

Thank you