Higher Multiplet Dark Matter

Takashi Toma

Laboratoire de Physique Théorique d'Orsay

Exploring the Dark Sector@KIAS

In collaboration with Avelino Vicente (Université de Liège) Mayumi Aoki (Kanazawa University)

Work in Progress

Dark Matter Candidates

- MACHO (Massive Astrophysical Compact Halo Object)
- Axion
- WIMP (Weakly Interacting Massive Particle)
- Asymmetric Dark Matter
- Q-ball etc

WIMP: Most promising DM candidate. Many experiments focus on exploring WIMP.

- Direct detection
- Indirect detection
- Collider search

DM Stability

Where does Dark Matter stability come from?

- Impose discrete symmetry by hand \mathbb{Z}_2 , \mathbb{Z}_3 etc.
- Remnant symmetry after spontaneous symmetry breaking ex. $U(1) \rightarrow \mathbb{Z}_2$, $SU(2) \rightarrow SO(3)$. Hambye: arXiv:0811.0172.
- Minimal DM scenario Cirelli et al: hep-ph/0512090
 Accidental Z₂ symmetry is obtained when we consider SU(2)_L higher multiplet.
 higher than 5-plet for fermion and 7-plet for scalar can be DM candidate.
- Anti-symmetric tensor $B_{\mu\nu}$ (gauge singlet in the SM)

Cata, Ibarra: arXiv:1404.0432

Minimal DM Scenario

- DM has only gauge interaction.
 (No scalar coupling |φ|²χ² for scalar DM is assumed)
- All the components are degenerate at tree level. But mass splitting is derived at one-loop level.

$$\Delta m pprox rac{lpha_W}{4\pi} m_\chi extsf{F}_{ extsf{loop}} \lesssim extsf{ a few GeV}$$

The neutral component can be lightest.

- Sommerfeld correction affetcs to DM relic density.
 - \rightarrow Too large annihilation cross section due to large $SU(2)_L$ gauge coupling.
 - \rightarrow DM mass must be more than 10 TeV.
- We want to consider lighter DM mass in such a scenario and also mind generation of neutrino masses.

Takashi Toma (LPT)

Exploring the Dark Sector@KIAS

The Model

New particles
 Real septet scalar χ (χ⁺⁺⁺, χ⁺⁺, χ⁺, χ⁰)
 Three right-handed neutrinos N_i.
 We do not impose any extra symmetry to the SM.

Interactions

$$\begin{aligned} \mathcal{L}_{Y} &= y_{i\alpha}^{\nu} \phi \overline{N_{i}} P_{L} L_{\alpha} + \text{h.c.} \\ \mathcal{V} &= \mu_{\phi}^{2} |\phi|^{2} + \frac{\mu_{\chi}^{2}}{2} \chi^{2} + \frac{\lambda_{\phi}}{4} |\phi|^{4} + \sum_{i=1}^{2} \frac{\lambda_{\chi i}}{4!} \chi^{4} + \frac{\lambda_{\phi \chi}}{2} |\phi|^{2} \chi^{2} \end{aligned}$$

where ϕ is the SM Higgs doublet.

• Mass of septet scalar at tree level: $m_{\chi}^2 = \mu_{\chi}^2 + \lambda_{\phi\chi} \langle \phi \rangle^2$ All components are degenerate at tree level.

Neutrino Masses

Induced by Type I Seesaw

$$\left(\begin{array}{cc} \overline{\nu_L^c} & \overline{N_R} \end{array}\right) \left(\begin{array}{cc} 0 & m_D^T \\ m_D & M \end{array}\right) \left(\begin{array}{cc} \nu_L \\ N_R^c \end{array}\right) \quad \rightarrow \quad m_\nu \approx -m_D^T M^{-1} m_D$$

• $m_
u \sim y^{
u^2} \langle \phi
angle^2 / M$ (experimental value $m_
u \sim 0.1$ eV)

- Heavy neutrino masses ~ M.
- Required Yukawa coupling is $y^{
 u} \sim 10^{-7}$ for $M \sim 1-10$ TeV
- We consider $M \gtrsim 2m_{\chi^0}$ to get decay channel into two DM: $N_1 \rightarrow \nu_L \chi^0 \chi^0$ etc.
 - \rightarrow DM is generated by decay of N after freeze-out.

Mass Difference of Septet χ

Mass differences are induced at one-loop level.

$$m_{Q} - m_{Q'} = (Q^{2} - Q'^{2}) \frac{m_{\chi}}{4\pi} \left[\alpha_{W} \left\{ f\left(\frac{m_{W}}{m_{\chi}}\right) - f\left(\frac{m_{Z}}{m_{\chi}}\right) \right\} + \alpha_{em} \left\{ f\left(\frac{m_{Z}}{m_{\chi}}\right) - f(0) \right\} \right]$$

where $f(z) = -\frac{1}{2} \int_{0}^{1} \left[6(1-x)z^{2} + 9x^{2} - 4x - 4 \right] \log \left((1-x)z^{2} + x^{2} \right) dx$

• For
$$m_{\chi} \gg m_W, m_Z$$

 $m_Q - m_{Q'} =$
 $(Q^2 - Q'^2) \alpha_W m_W \sin^2 \left(\frac{\theta_W}{2}\right)$
 $\approx (Q^2 - Q'^2) \times 0.166 \text{ GeV}$

Neutral component is the lightest.

Constraint of Oblique Parameters

T-parameter

$$lpha_{
m em} T = rac{1}{m_W^2} \Pi_{WW}(0) - rac{1}{m_Z^2} \Pi_{ZZ}(0)$$

where $\Pi_{WW}(0) = \frac{\alpha_W}{4\pi} \left[3F\left(m_{\chi^{+++}}^2, m_{\chi^{++}}^2 \right) + 5F\left(m_{\chi^{++}}^2, m_{\chi^{+}}^2 \right) + 6F\left(m_{\chi^{+}}^2, m_{\chi^{0}}^2 \right) \right]$

No correction to Z mass: $\Pi_{ZZ}(0) = 0$

- DM mass should be $m_{\chi^0}\gtrsim 1~{
 m GeV}$ from T-parameter.
- The constraints of S- and U-parameters are much weaker than T-parameter.

Non-thermal Production of DM

Boltzmann equations

$$\frac{dn_{N}}{dt} + 3Hn_{N} = \frac{g_{N}m_{N}^{2}\Gamma_{N}}{2\pi^{2}T}K_{1}\left(\frac{m_{N}}{T}\right) - \Gamma_{N}n_{N},$$

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma_{\text{eff}}v\rangle \left(n_{\chi}^{2} - n_{\chi}^{\text{eq}2}\right) + N_{\chi^{0}}\Gamma_{N}n_{N}$$

- *N*₁ is produced by freeze-in mechanism.
- DM χ⁰ is produced by the decay of N₁ after freeze-out.
- Branching ratio of decay into DM is subdominant $(N_{\chi^0} \ll 1)$.

Non-thermal Production of DM

• Co-annihilation among the septet is effective when $\Delta m/T \lesssim 1$. $\chi^0 \chi^+ \to W^+ \to W^+ \gamma$, $\chi^+ \chi^- \to Z \to f \overline{f}$ etc.

arXiv:1310.0828

- Dominant annihilation channel is $\chi^0 \chi^0 \to WW^*$ even if DM mass is slightly below the threshold.
- 60 GeV $\lesssim m_{\chi^0} \lesssim 1.5$ TeV is excluded.

Takashi Toma (LPT)

Constraint on DM cross section from dwarf spheroidal galaxies

- Dominant annihilation channel is χ⁰χ⁰ → WW* even if DM mass is slightly below the threshold.
- 60 GeV $\lesssim m_{\chi^0} \lesssim 1.5$ TeV is excluded.

Takashi Toma (LPT)

The Model

LEP Limit

LEP Limit

• $e^+e^- \rightarrow \gamma + \text{Missing.}$ Background $e^+e^- \rightarrow \gamma \nu \overline{\nu}$.

Our processes are $e^+e^- \rightarrow \gamma, Z \rightarrow \gamma \chi^{+++} \chi^{---}, \ \gamma \chi^{++} \chi^{--}, \ \gamma \chi^+ \chi^-.$ Assumed that π^{\pm} produced by W^{\pm} decay is not detectable. \blacksquare $m_{\gamma^0} \lesssim 80$ GeV is excluded.

Direct detection

- There are tree level contribution via Higgs and one-loop contribution via gauge bosons.
- Large contribution is obtained from gauge boson loop, but it can be controlled by the Higgs coupling $\lambda_{\phi_{\chi}}$.

 $\sigma_{SI} = 4.6 \times 10^{-44} \text{ cm}^2 \text{ in MDM}, \quad i\mathcal{M}_{SI} \sim (\text{scalar}) + (W \text{ boson})$

O(1) coupling of λ_{φχ} is needed to cancel the gauge contribution.
 This occurs only for scalar DM, but not for fermion DM.

Indirect detection of DM

- $ightarrow \sigma v_{\gamma\gamma} \propto 1/m_{\chi^0}^2$ is expected for non-perturbative way.
- Scalar contribution

$$\sigma v_{\gamma\gamma} = \frac{\alpha_{\rm em}^2}{128\pi^3 m_\chi^2} \left(1 - \frac{\pi^2}{4}\right)^2 \left(\sum_{\chi} Q_{\chi}^2 \lambda_{\chi^0 \chi^0 \chi \chi}\right)^2 \approx 10^{-27} \text{ cm}^3/\text{s}$$

at $\lambda_{\phi\chi} \sim$ 1, $m_{\chi}^0 \sim$ 2 TeV

Takashi Toma (LPT)

Summary

- We have considered *SU*(2)_{*L*} septet DM which can be stabilized by accidental Z₂ symmetry and Neutrino masses.
- Although DM mass should be more than 10 TeV in minimal scenario, 1 TeV scale DM is possible in our case.
- DM relic density is non-thermally produced by decay of right-handed neutrinos.
- Strong monochromatic gamma-rays are generated by multi-charged scalars and Sommerfeld effect.