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Motivation:
Kinetic networks are widely used for studying complex systems,

e.g., structural biology systems biology.
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Noé, et al JCP (2007) Saj, et al (2010)
metastable states modules



share the same
mathematics

—

what are states and
transition rates
between states?

small system large system

Q: How fine we should coarse grain a system?

A: Unfortunately, no a priori rule.

=» Hierarchical networks

e



experimental data models
unique non-unique

Which kinds of equivalence?

e thermodynamical (meanatt » o) =» textbook level

e kinetical (mean at all t) =» lumping analysis (LA)

e complete (mean & fluctuations at all t) =» | stochastic LA




Stochastic LA introduces stochasticity into traditional LA.

Traditional lumping analysis (deterministic dynamics)

rate equations (RE)

Stochastic lumping analysis (stochastic process)

chemical master equations (CME)
(for )

stochastic differential equations (SDE)
(for )




Traditional lumping analysis



Kinetic model

Rate equation (RE)
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N; : the concentration (or prob.) of the i-th state

n

i—1 N; = constant (conservation law)




Exact and approximate lumpings

Suppose system A has a RE

2h] — MN n —dim. (1)
dt
If there exists an n’ X n lumping matrix U such that N’ = UN fulfills

/4

—= M'N’ + fi(¥) n'-dim (n’ <n), (2)

then A is exactly lumpable.

If the memory f(N) = 0 but # 0 = A is approximately lumpable.

Condition for (exact) lumpability (Wei & Kuo 1969)

1> 2OV _
dt | = [uM=M"U (3)
AN’

2> G =N




Lumpability condition in terms of rate constants

U groups N; inton’sets S,,a =1,...,n'.

kllja — k]l (4)

¥ a,bwithj € S,and b + a

A and A’ fulfill (4).

< A can be (exactly) lumped into A’
< A is kinetically equivalent (KE) to A’
< UN and N’ are identical.

& N and N’ are indistinguishable (after N is projected by U).




Stochastic lumping analysis



Chemical master equation (CME)

dP (N t)

dP(t) /dt = L P(t)

Zku[(N + 1D)P(N — w;;,t) — N;P(N, t)]

w;; = number change of N; and N;

Evolution of joint probability P(N,t) = P ((N2> , t)
P(N,t) =0ifany N; < 0.

(5)

Protein with three conformations (n = 3)



Lumping matrix U associated lumping operator U

For each matrix U : N = N’ for lumping the rate equation, there
exists an associated operator U: P = P’ for lumping the chemical
master equation.

(6)
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Theorem 1:

dN N'= UN dN’

— = MN > — = M'N’

dt I‘ rate eq. dt H

dp P’ = UP /

—=LP > d_P — ' P’

dt chem master eq. dt
Implications:

e Lumpability of RE < Lumpability of CME
N and N’ indist. < P and P’ indist.

Weak indist. (1st moment) =» strong indist. (all moments)
e.g., covariance & variance, ...

e For intrinsic noises, fluctuation measurements cannot be used
to judge whether a system has internal states.




Numerical confirmation (to Theorem 1)

A is KE to A, indist. means

A-state model A between n,+n, and n,’.
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Thermodynamically equivalence (TE)

If systems A and A’ are TE to each other, their states N and N’
are indist. ,1.e.,

UNS = N'® (s = stationary).

TE is weaker than KE (KE implies TE, but not vice versa).

Stationary joint prob. TL Hill (1971), YD Chen (1973), N Saito (1974)

s\\ N j
(closed) P*(N) = HnN!N,. i=1 (%) " | since P* only depends
t=1 "t on the means N/,

infinitely many k;; can

(open) P*(N) = ?zl%fvie—wis) generate the same P




Theorem 2:

If the RE of A is thermodynamically equivalent to that of
A’ (not necessarily kinetically equivalent), then

UPS = P’s,

Implications:

e Evenif Nand N’ (P and P’) of two TE networks are initially
dist., they will become indist. at t — oo. =2 asymptotic
lumpability

e “Lumpability” seems to play the same role as a Lyapunov
function for characterizing entropy production.
Kullback-Leibler divergence may be a measure.




Numerical confirmation (to Theorem 2)

100 realizations of a system of 100 molecules

]
Probability p( » f)

System number Np

TE but not KE

p(Nl’(?’l)i t) p(N1’(12)1 t)

Note: p(N;, t) # joint prob. P((Ny, ..., N;))T, t).



Stochastic differential equation (SDE)

N (£(1)) = 0
— = MN +£() (FOFENT) =Tt —t)

(7)

t
N(t) = eM'N(0) + j eM? f(t — 1) dt,
0

Covariance of fluctuations of N :

6(t) = (N — N)(NT — NT) = j eMe I (M) dr (8)
0]

Covariance of fluctuations of UN:
UosUT = U(N—N)(NT - NT)UT (9)
i CLERY) ((UN)T — (UN)T) = U [feMT (eMr) druT.



If A can be lumped into A" by U,
t

I/ / T
UoUT = j eMTurut (eMT) dr. (10)
0
Covariance of fluctuations of N’ of A’:
t
!/ I/ T
o = j e'Tr’ (eM") dr. (11)
0

Covariance difference between (11) of A’ and (10) of A,

t
’ T
G4if = 6 — UoUT = J eM* Tyier (eM?) dr, (12)

° With Tgipe = I’ — UTUT.
Variance difference

V 4isg = diagonal part of ogj¢t,

Faifs



Theorem 3: (for varaince)

Variance ordzring between two KE systems A and A’

Siffir Faicr 20 = Vairr= 0 response

Faitt =0 = Vqgier=0 (13)
Laict =0 = Vgigr= 0 \
where = 0 (< 0) denotes positive (negativehsemi-definite.
st
The derivative of covariance differnce (12): renigEr
; - ERREE)
O diff= f eMT Tyige (eMT) dt
: 0 G 4itf = 0
s DD ff
G 1 / / T
d(;lff = Mty [eM] Laier = 0




Theorem 4: (for covariance)

If A can be lumped into another KE system A’, with the
corresponding ¢’ and I'’, then

I'=Urv?! o o =UcUT (14)

Implication:

e (14) is a generalization of Keizer’s contraction™ from the
invertible transformation to the lumping transformation.

* J. Keizer (1987)
“Statistical Thermodynamics of Nonequilibrium Processes”



Application I:
Intrinsic noises in ion channels



FJ Sigworth (J. Physiol, 1980)
The variance of Na current
fluctuations at the node of

Ranvier

Voltage-clamped single
myelinated nerve fibers
from Rana pipiens

=» N=20,400 Na channels

Variance from the stochastic
gating of Na channels (dots)
& thermal noise (solid line)
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SDE approach to ion channel

For that problem, the covariance of stochastic force in the SDE is

n
[ij = Z(kkiNk + kixNy) 6i5 — kjiN; — ki N; (15)
k=1

J. Keizer (1987): Canonical theory for transition rates
Van Kampen (2007): linear noise approximation

If two KE networks A and A’ are used to describe the intrinsic
noises of an ion channel, we can prove that their I'and I'" are
indist. (also for the chemical Langevin eq. of DT Gillespie (2000)).

According to Theorem 4, o and ¢’ are also indist..

Consistent “indist. o0 and 6’” from SDE and CME for intrinsic noises.




Application II:
Extrinsic noises in signal receptors



Free energy surface variations of receptor

5E, 4 ‘!SE1

external noises

State fluctuations?



Lumping minima of free energy surface

If there exists two KE models, »@

do N and N’ have indist. fluctuations?



Ordering relation of state variances

It’s a special case of Theorem 3 and 4 at equilibrium (t — o)

Laise = DyerT'Dyer — UDyelDyeUT

T
~ ~ ~ / o= T /
O Jiff — 0', — UO'UT = ﬁzf eM TM’l-‘diffM, [eM T] dt

(0.0)
0
Vyi¢s = diagonal part of 6 4i¢¢

The distinguishiability of variances depends on Fyj¢¢:
Lairr =0 = Vgirr= 0
Laier =0 = Vqigr= 0
Faier =0 = Vgigr= 0

Q: Which T and I’ would appear in real biological systems?



Criterion | (incoherent driving)

f‘ == Inxn and f" — In’xn’ then f‘diff >0 and Vdiff =0

1 0 O _ 1 0
System A fg =10 1 0 System A" I = [O 1
0 0 1
incoherent

Smaller networks = larger state fluctuations.




Criterion Il (coherent driving)

e.g., ion channels with symmetric conformations

OE = UTSE' then f‘diff = 0 and Vdiff =0

N L = _1 0
SystemA ILb=[1 1 0 System A Fl:[o 1
0O 0 1

coherent

3 1 2 3

A and A’ are indistinguishable in variance.



Numerical confirmation (to Theorem 4 & Corollary |, i)
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—— M(S8N + SD{8E) (solid curves, simulation of 102 molecules)

~ t H s 111 : : :
Gaire = B2 [, e "Tgiee|€™ T| dt (circles, analytical solution)

Both follow the ordering predicted by the theorems & criteria.



Summary:

This work
e generalizes lumping analysis from deterministic
dynamics to stochastic processes.
 introduces lumping technique from systems
biology to structural biology.

e opens a possibility of identifying correct network
models by

e goes beyond traditional contractions under “fast
relaxation” assumption.

e provides a theoretical basis for the legitimate use
of low-dim models for fluctuations.
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