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Introduction

 Granular materials behave as unusual solids and
liquids.
« Jamming is an athermal solid-liquid transitions.
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Jamming transition

« Above the crifical
density, the
granular material
has rigidity and

behaves as a solid.

« Jamming fransition
IS similar fo glass
fransition.
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Differences between jamming and

glass transitio

Although both describes
the freezing of motion,
there are some
differences between two.

Most important
differences is that the
jamming is the phase
fransition, but glass is not.

There is no plateau of
time correlation in the
jamming.

There is the divergence
of the first peak.
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Divergence of viscosity

Approach from below the jamming, the most
Important characteristics is the divergence of the
viscosity at the jamming.

n ~ (g7 — )™ with A\ ~ 2

Kawasaki et al estimated as 1.67 < 1 < 2.5.

This divergence with 1 = 2 is known even in colloid
systems (see e.g. Brady 1993).

However, some people indicated that A for
granular materials is larger than the estimated value.
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Granular systems under a
plane shear

« Granular systems under uniform steady shear
(SLLOD dynamics and Lees-Edwards boundary
condifion)




Limitation of Kinetic Theory
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The agreement of the temperature is poor.

« SO we need to consfruct a new approach
for dense sheared granular flow.




Equation of motion

 Newton's equation (equivalent to Liouville equation)
m’j’;i _ _F;(El) _|_ P}(VIS) (’:{'r — 1? s ?N)?
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Liouville equation

 Liouville equation is equivalent fo Newton's
equation.

« An arbitrary observable A(T'(t)) satisfies

L(t) = {r:(t). pi(t) }1L,
d .0
&A(F(t)) =1 ﬁ 'Phafe thlume

« The distribution function satisfies  dugto dissipation

apg;ﬁ) :_%, [I’\p(r,t)} = — [f+§+@ p(T, 1)

AT (1)) = iLAT(E))




Energy balance equation

e Hamiltfonian

N
H(T) = Z 2m

: ’I;

« Safisfies the energy balance equation

H = — YV Oy — 2R
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Perturbation of the
Liouville equation

Liouville equation contains 6N dimensional
distribution.

This cannot be exactly solved because it contains
too many degrees of freedom.

Unperturbed state: canonical distribution (no
dissipation)
o This corresponds to the degenerated unperturbed state.

o Zero-eigenmodes correspond to the density, momentum
and energy conservations.

Perturbation: inelasticity + shear => constant energy
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Expansion parameters &
restitution constant

« Perturbation parameter C:

* Restitution constant

€ — €Xp [_th/m]
to = 7/ \/Infm ()
e~ V2(1 —e)/m for e 1
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Perturbative spectrum analysis
0
U ()~ [ diem (T

W3 () = pig () | W () 4 W (T)] + Oe?)

2f = 2O 4 ezlD L 02,
Unperturbed canonical state
LV (D) pig(T) = 0
Zero-eigenmodes
iLLVH(T )qu;(l“) =0 (a=1,--,5).

*(T) o { Zp ijyj przj H*(F)}
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Eigenvalue

Lowest eigenvalues are easily obtained as

~(1
:g ) — 0,
2
21 — —39 (a=2.3.4.5),
Where

G — n* /d.Sr* g(r*. )01 —r")

In the hard-core limit, the relaxation time is

. 1 N B
Trel =~ — ~(1) — [‘_))Fg?] j G — \/E“:*’!E(T )
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Steady distribution

pia’(T) = exp U_OOO dr Qeq(F(—T))] Peq(I'(—00))

0
exp [/ dr Qeq(I‘(—'r))] r eI T =

Qss(T) = — B3 [3V75 (D (T) + 28R ()]

T ry

. 2
A RO = 32 (o +71) Od=r)

1 _ 1
AR(T) = RW(T) +

Thus, we obtain the effective Hamiltonian in NESS.
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Average under NESS

« Average is calculated by

<"‘>SSE/dFﬁSS(F)‘”

e—Igg(I‘)
Pss (F) — deG_ISS(F)

Iss(T') = BssH(T) — Tref2ss(T)

* fss Is determined by the energy balance equation.

i e~ PssH (L) [1 + ﬂelﬁss(F)T
pss(l') =
\_ Z _J

° Z & de‘ 6_’8§SH*(F) {1 Jr’»fﬂ:relQSS(F)} °16



Shear stress
[(A(I‘))SS ~ (A(T))o, + Frel <A(F)QSS(F)>eq ]
() = [ dT e PssM @) .

(F0y(D))gs ~ ~Fra B8V (35 (D)) () )

» This corresponds to Kubo formula under the
exponential relaxation.
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The evaluation of multi-
body correlations

« We have to evaluate 3-body and 4-body stafic
correlation functions.

« We adopt the Kirkwood approximation in which the
mult-body correlation can be represented by @
product of two-body correlations.
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Radial distribution at
contact

« We use the empirical formula for the radial
distribution at contact

g(p) = Yes(er)or —wa)/ (e — @)
Gos(p) = (1 —9/2)/(1 — )’
wr < ©w < @y, where p; = 0.49 and ;5 = 0.639
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Granular temperature and
shear stress

* From the energy balance and Kirkwood
approximation, we ob’roin[ . 3;.5/2 g ]

557 390 R

where S and R are given by
S =1+ SAngle) + Sn2g(e)? + Zan3g(p)?
R = Z5n"g(@) + Zyn*2g(v)?,

with %) = —3/4, #4 = Tr /16
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Near the jamming point

« Near the jamming point, the radial distribution
function diverges linearly. Thus, we extract the most
divergent term:

2773/2
T 10240v35 |

 The power law dependences are
Tis ~ glp) ~ (g — )™

[ 7 = —(Guy)ss/ V% X —(Gay)ss/ (i/Tag)~ (0 — W]

2n*7/2g((p)5/2.
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MD simulation

To verity the validity of our theoretical prediction,
we perform MD (or DEM) for frictionless grains.

Parameters; N=2000, ¢ = 0.018375 (e = 0.96)
,-}/=i< _ 10—3;1 10—4’ 10—5
Sllod + Lees-Edwards boundary condition
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Viscosity
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Granular temperature &
relaxation time

« Agreement of granular temperature is relatively
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Relaxation t1me

2.0E-06
103 =0.60
—Theory (y*=1e-4) 1.5E-06 |
102 *MD (y*=le-4) *g : _
0 I | exponential
) fit
10 5.0E-07
T &
S 0.0E+00
0E+00 2Ef03 4E+03  6.E+03
101 2.0E-06 ¢
102 | \ 1.5E-06
0.5 0.55 0.6 0.65 X, i
1) L SLOE-06 |

Agrees well (¥<0.62) 0.0E+00 ‘ |
MD result: extracted from fitting PE 2'E+°3t*4'E+°3 O

the relaxation due to inelastic collisions

Relaxation time Trel = eigenvalue of Liouville eq.
= Enskog (collision) frequency



Discussion

Constitutive equation still obeys Bagnold’s scaling.

. .4 '7
For example, if we assume oy, ~|p — )|, then g,y ~y*/7,
which is close to the simulation value.

Based one the nonequilibrium steady distribution, we
may discuss above the jamming point (by using
replica)=> Now in progress.

The effects of rotation and tangential friction mainly
appear in the radial distribution at contact.=> Now In
progress

Our method is generic. Thus, we can apply it to many
other systems.

Can the relaxation fime described by the
eigenvalue?
@26



Time correlation for stress
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No critical slowing down

which is consistent with the theory. :> This can change the criticalexposieg
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Summary

We have developed the theory of dense sheared
granular flow (frictionless grains).

We obtain the steady distribution, which can be
regarded as the effective Hamilitonian in the non-
equilibrium steady state.

Then, we can evaluate the viscosity and the
granular temperature analytically.

The result of the viscosity gives the quantitatively
precise result.

The granular temperature is not good.
See PRL 115, 098001 (2015) for details.
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