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Dynamics of Isolated Quantum System

4(0)) =) caln) : Initial nonequilibrium state

n

() = e |y(0) ch —*Entip) @ State at time t

e As a whole, a state can never thermalize
- Never approaches a stationary state



Thermalization of isolated system:
Local thermalization

 What we observe: local system

4 A  Universe : S (system) + B (bath)

 Lookat (¥(1)|Os|¥(t))
‘ e When |S|>>1& |B|>>]|S],
(similar to von Neumann’s

B macroscopic operator) Og can
< - reach stationary value for a long

time

Ref: Linden, Popescu, Short, Winter, PRE 2009



Local Thermaliztion (formal)
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(W(1)|0s|(t)) = Trs(Osps(t))

ps(t) = Tra(() (1))
— Trp( ¢ Pn=Enter e, [n) (ml)

n,m

— Z \CnszI'B(\m (n\) for most t

n

ps(00) = Z e, |*Trg(|n)(n|) : “Stationary State”
n

(“Diagonal Ensemble”)

Q: How to efficiently describe the stationary state?



Thermal Ensembles (ME & GE)

 Thermal ensemble: fixed by Energy conservation
($(0)|H|$(0)) = (w()|H[p(t)) = E
 Microcanonical Ensemble (ME):
1 Rigol, et. al., Nature ‘08
’OS(OO) — NTrB( Z |n> <n|) Poioesgu,aet aI,aNatire phys. ‘06
|[E,—E|<é

* Gibbs Ensemble (GE):

1 1 - ‘
_ —BH\ ~, — _—BHg Tasaki, PRL ‘96
ps(o0) = ZTI‘B(6 ) = 7© Goldstein et. al, PRL '06

Common feature: Use only energy conservation



More conservation laws:
Integrable systems

* Integrability:
— # of “nontrivial” conservation lawsox L

<w(t) Hh w(t» B N * More conserved
<¢(t) Hy w(t» — quantities
(P(t)|Hs|(t)) = ¢ More Cpnstrained
dynamics
e * No reason to relax to a
<¢(t) ]HLW(t» = ], — simple canonical form

Subsystem can still reach a stationary state (Linden et. al, PRE ‘09)



Extension of GE:
Generalized Gibbs Ensemble (GGE)

 Natural extension of Gibbs ensemble with more

conservation laws
1
— . Ain,;
pPaaE = € 2

Ai :Lagrange multipliers : ((0)|H;|v¥(0)) = Tr(pearH;)

ps(00) = Tre(pggEe) * Only in thermodynamic limit
* Short range interaction
 Known to be correct for free

fermions

Refs: Rigol, PRL 'O7, Gurarie, J Stat Mech ‘13, llievski, et. al, arXiv:1507.02993



Extension of ME:
Generalized Microcan. Ensemble (GME)

* In principle (Popescu, et. al, Nat. Phys. ‘006):

Hp : Restricted Hilbert Space

1
PGME = d_IR (Ig : Identity on Hp)
R

ps(00) = Tre(pamE)
 Natural Choice:
PGME = % Z in)(n|  (Jn) : Eigenstate of H)

Z : [(n|H;n) — pi| < foralli=1, ..., L

n



Extension of ME:
Generalized Microcan. Ensemble (GME)

* In principle (Popescu, et. al, Nat. Phys. ‘006):

Hp : Restricted Hilbert Space

1
PGME = d_IR (Ig : Identity on Hp)
R

ps(oo) = Tre(pemE)

e Natural Choice:

1 B
Novn ey — |\ /| (In\ - Fioonctato nf )

However, VERY hard to construct in practice...

: . I\Il/l.L.LZ'll// le ~ U 1UL dl1l — _L7 o o ey X1 J
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Outline

e Difficulties of construction of GME
— Discrete spectra
— Finite gap

— Long-range interaction

* Proposal of GME: Gaussian GME

— Properties
— Case studies



Difficulties of GME construction:
[. Discrete spectra

Free fermions:

* Natural conserved quantities: T}k (momentum
occupation number)

* Each eigenstate: (n|ng|n) =0 or 1

- Initial state:  (¢(0) |7 | (0)) € [0, 1]



Difficulties of GME construction:
[. Discrete spectra

Free fermions:

* Natural conserved quantities: 7} [ (momentum
occupation number)

* Each eigenstate: (n|ng|n) =0 or 1
- Initial state:  (¢(0) |7 | (0)) € [0, 1]

* Possibility: no eigenstate matches all occupation
numbers => which state to include in GME?



Difficulties of GME construction:
[. Discrete spectra

Free fermions:

* Natural conserved quantities: T}k (momentum
occupation number)

Each eigenstate: (n|ng|n) =0 or 1

Initial state:  (¥(0)|nk|y(0)) € [0, 1]

A construction of free fermions: Cassidy et. al, PRL '11,
Local Hamiltonian: Caux & Essler, PRL '13

- explicit construction of free fermions



Difficulties of GME construction:
[1. Finite gap
* Central Spin Model:

N
HizBSf+ZSi'Sj

A

[Hi,Hj] = 0 for all 7 = 1,2,...,N

— Finite gap in the middle of spectrum

— Long-range interaction
* previous remedy is not applicable



Difficulties of GME construction:
[1. Finite gap
* Central Spin Model:

15 . . . .
1F / i
0.5} /
2 ol
= pi = (Y(0)[Hr|¥(0))
'0'5/ Conserved quantity in
p the middle of gap: no

close eigenstate

'1'50 1 2 3 4 5



Begin from classical physics

e Classical integrable system: Yuzbashyan, arXiv:1509.06351

N
) 1
peme = 7 | | 6(Hi(p, @) — i)
=1

lim dtO(p(t),q(t)) = / dpqu(PaQ)PgME

T—o00 0

* Phase space average over invariant tori

 Valid for
— Any deg. of freedom (thermodynamic limit NOT required)
— Any interaction (long-range & short-range)



Quantize Classical GME

 From function to operator
S(Hi(p,aq) — wi) — 6(H; — ps)

— Broaden delta functions
— Need nontrivial way of broadening

— Nalve equal-weight eigenstate broadening does
not work



Proposal: Gaussian GME

1

PGME = - €Xp | — Z(Hz — 1) (C™ )i (Hy — pj)

M, (C_l)i,j fixed by

(¥(0)|Hi|(0)) = Tr(pgmeHi)
(W (0)[HiH;[1(0)) = Tr(peymeHil))

Construct in energy eigenstates but discard equal-weight
ensemble



Properties of Gaussian GME

1 _
PGME — E eXp | — ;(HZ — Mi)(c l)i,j(Hj - Mj)

More accurate than GGE (fixing second moments)

Smooth connection to exact classical GME
— Captures first quantum correction in classical limit

Can be defined for any type of interaction &
spectrum

Operationally simple



Properties of Gaussian GME

~ A ;
S Classical GME (all interactions and system size)
N |
GGE
(short-range
interactions)
N BV, »
6.7 L

Long-range interactions



Properties of Gaussian GME

Classical GME (all interactions and system size) ]

)

GGE
(short-range
interactions)

>

CCL??

Long-range interactions ]




Application: Two Interacting Spins

H1 — BSf ‘|"}’Sl . SQ
Hz — BSf —’}’Sl y SQ

Model: |Hy,H3] =0

5 conservation laws
in GME. Hl’H2’(H1)27(H2)27H1H2

Initial state: ~ [(0)) = |S1) ® |S2)

Product of two spin coherent states 4 z
Minimal uncertainty state
Classical limit: |S| — oo

Parameters: vy =1,B = |S,




Results of Two Interacting Spins

H{ = BSf —I-’}’Sl - S9

Observable: S7 H, = BS? —~S; - S
2 = BO5] — 91+ 59

Two cases: |S1| = |S3| Both spins become classical
as |Ss| increases

<Sf> ~ Sl(a—i—b/Sl —|—C/(Sl)2 + .. )

Increase |Ss|

S1| = 1/2 Spin 1 remains quantum,
Tncrease |So| Spin 2 becomes classical
Classical limit is not evident



Results of Two Interacting Spins

10 ' '
1 -0-|Sl| = |SQ| Data

N —|SQ|_2'0 fit

e GME results

[(ST)anre — (ST) 5ol /1(5T) oo

-3 N

107¢ converge to
classical results
1 | | &+ Captures

4 --|S,| = 1/2 Data leading
10 —|SQ|‘3'° fit ) quantum
10°° correction
10°F

4 8 16 32 48



Application: Central Spin Model

N
HizBSerZSi'Sj

A

[Hi,Hj] = 0 for all 7 = 1,2,...,N

 Model for electron spin decoherence due to nuclear spins
* Long-range interaction (GGE has not been applied)

* Energy is NOT extensive

 Allspinsare 1/2



Setup of Central Spin Model

Initial state:  [(0)) = f[®|51> ﬁ @ @ @

Product of spins pointing random directions
(average over 100 random realizations)

Observable: S%

Compare three ensembles

* Conventional equal weight GME
 Gaussian GME

« GGE



Equal Weight GME

GME criterion: Include eigenstate |2) of small 0n

N (n|Hi|n) =
bn =~ D Ihi — pil PR
i=1 (W(0)|H;il(0)) =
1
0-8-% I I {5 * No single
Zos) I - _ eigenstate
= 0 matches all
e conserved
0.2 i quantities
O |
9 10 11 12



Expectation Value Comparison

0.4

—

+Gauséian GME |

—<Equal-weight GME

~GGE |
N S
10 11 12

GME works
better than the
other two
ensembles!



Summary & Outlook

Practical Construction of Generalized
Microcanonical Ensemble is hard

— Discrete spectra
— No eigenstate may match conserved quantities

Gaussian GME
— Guided by exact classical GME
— Works well for a few case studies

More detailed comparison with GGE

Complete connection to classical GME for many-
body system



Collaborations:

Emil Yuzbashyan, Anatoli Polkovnikov,
Rutgers University | Boston University

Feeds me



