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Fibred varieties and new surfaces with pg = q.

Fujita’s theorems

Fujita’s first theorem

An important progress in classification theory was stimulated by
a theorem of Fujita, who showed
( On Kähler fiber spaces over curves, J. Math. Soc. Japan 30
(1978), no. 4, 779–794 ):

Theorem
If X is a compact Kähler manifold and f : X → B is a fibration
onto a projective curve B (i.e., f has connected fibres), then the
direct image sheaf

V := f∗ωX |B = f∗(OX (KX − f ∗KB))

is a nef vector bundle on B.
This means that each quotient bundle Q of V has degree
deg(Q) ≥ 0; sometimes, instead of the word nef, one uses the
terminology ‘V is numerically semipositive’.
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Fujita’s theorems

Kawamata’s theorem

Soon afterwards, using Griffihts’ results on Variation of Hodge
Structures, since the fibre of V := f∗ωX |B over a point b ∈ B
such that Xb := f−1(b) is smooth is the vector space
Vb = H0(Xb,Ω

n−1
Xb

), Kawamata improved on Fujita’s result,
solving a long standing problem and proving the subadditivity of
Kodaira dimension for such fibrations,

Kod(X ) ≥ Kod(B) + Kod(F ),

(here F is a general fibre) showing the semipositivity also for
the direct image of higher powers of the relative dualizing sheaf

Wm := f∗(ω⊗m
X |B) = f∗(OX (m(KX − f ∗KB))).

Much later, Kawamata extended his result to the case where
the dimension of the base variety B is > 1.
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Fujita’s theorems

Fujita’s second theorem

In the note The sheaf of relative canonical forms of a Kähler
fiber space over a curve Proc. Japan Acad. Ser. A Math. Sci.
54 (1978), no. 7, 183–184, Fujita announced the following
stronger result, sketching the idea of proof, but referring to a
forthcoming article concerning the positivity of the so-called
local exponents (this article was never written).

Theorem
(Fujita ’s second theorem)
Let f : X → B be a fibration of a compact Kähler manifold X
over a projective curve B, and consider the direct image sheaf

V := f∗ωX |B = f∗(OX (KX − f ∗KB)).

Then V splits as a direct sum V = A⊕Q, where A is an ample
vector bundle and Q is a unitary flat bundle.
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Fujita’s theorems

Ample, semiample, nef

Let V be a holomorphic vector bundle over a projective curve B.

Definition
Let p : P := Proj(V ) = P(V∨)→ B be the associated projective
bundle, and let H be a hyperplane divisor (s.t. p∗(OP(H)) = V).
Then V is said to be:
(NP) numerically semi-positive if and only if every quotient
bundle Q of V has degree deg(Q) ≥ 0,
(NEF) nef if and only if H is nef on P,
(A) ample if and only if H is ample on P
(SA) semi-ample if and only H is semi-ample on P (there is a
positive multiple mH yielding a morphism).
Recall that (A)⇒ (SA)⇒ (NEF)⇔(NP).
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Fujita’s theorems

Flat and unitary flat bundles

Definition
A flat holomorphic vector bundle on a complex manifold M is a
holomorphic vector bundle H := OM ⊗C H, where H is a local
system of complex vector spaces associated to a
representation ρ : π1(M)→ GL(r ,C),

H := (M̃ × Cr )/π1(M),

M̃ being the universal cover of M (so that M = M̃/π1(M)).
We say that H is unitary flat if it is associated to a
representation ρ : π1(M)→ U(r ,C).
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Answer to Fujita’s question

Fujita’s question

Recall Fujita’s second theorem, for which a complete proof was
given in our joint work with Michael Dettweiler (arXiv 1311.3232
and CRAS Ser. I, 352 (2014), 241-244)

Theorem
(Fujita ’s second theorem)
Let f : X → B be a fibration of a compact Kähler manifold X
over a projective curve B. Then
V := f∗ωX |B = f∗(OX (KX − f ∗KB)) splits as V = A⊕Q, with A
an ample vector bundle and Q a unitary flat bundle.

Fujita posed in 1982 ( Proceedings of the 1982 Taniguchi
Conference) the following

Question
(Fujita) Is the direct image V := f∗ωX |B semi-ample ?
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Answer to Fujita’s question

Fujita’s theorem and Fujita’s question

The following result is due to Hartshorne:

Proposition

A vector bundle V on a curve is nef if and only it is numerically
semi-positive, i.e., if and only if every quotient bundle Q of V
has degree deg(Q) ≥ 0, and V is ample if and only if every
quotient bundle Q of V has degree deg(Q) > 0.

Then there is a technical result we established, which clarifies
how Fujita’s question is related to Fujita’s II theorem

Theorem

Let H be a unitary flat vector bundle on a projective manifold M,
associated to a representation ρ : π1(M)→ U(r ,C). Then H is
nef and moreover H is semi-ample if and only if Im(ρ) is finite.
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Answer to Fujita’s question

Answer to Fujita’s question

This is the main new result in our joint work with Dettweiler:

Theorem

There exist surfaces X of general type endowed with a fibration
f : X → B onto a curve B of genus ≥ 3, and with fibres of genus
6, such that V := f∗ωX |B splits as a direct sum V = A⊕Q1⊕Q2,
where A is an ample rank-2 vector bundle, and the flat unitary
rank-2 summands Q1,Q2 have infinite monodromy group (i.e.,
the image of ρj is infinite). In particular, V is not semi-ample.

Thus Fujita’s question has a negative answer in general.
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Answer to Fujita’s question

Cases where V is semiample.

Corollary
Let f : X → B be a fibration of a compact Kähler manifold X
over a projective curve B. Then V := f∗ωX |B is a direct sum
V = A

⊕
(⊕h

i=1Qi), with A ample and each Qi unitary flat
without any nontrivial degree zero quotient. Moreover,
(I) if Qi has rank equal to 1, then it is a torsion bundle (∃ m such
that Q⊗m

i is trivial) (Deligne)
(II) if the curve B has genus 1, then rank (Qi) = 1, ∀i .
(III) In particular, if B has genus at most 1, then V is
semi-ample.

(I) This was proven by Deligne (and by Simpson using the
theorem of Gelfond-Schneider)
(II) Follows since π1(B) is abelian,if B has genus 1: hence every
representation splits as a direct sum of 1-dimensional ones.
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Answer to Fujita’s question

Flat versus unitary flat

While a unitary flat bundle is nef, the same does not hold for a
flat bundle.
Theorem (C-Dettweiler) Let f : X → B be a Kodaira fibration,
i.e., X is a surface and all the fibres of f are smooth curves of
genus g ≥ 2 not all isomorphic to each other. Then V := f∗ωX |B
has strictly positive degree, hence H := R1f∗(C)⊗OB is a flat
bundle which is not nef.

Proof 1) Since all the fibres of f are smooth, V = f∗(Ω1
X |B) and

we have an exact sequence

0→ V → H→ V∨ → 0,

and it suffices to show that the degree of the quotient bundle
V∨ is strictly negative, or, equivalently, deg(V ) > 0.
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Answer to Fujita’s question

Flat versus unitary flat, cont.

We want to show that deg(V ) > 0, as proven by Kodaira (this
follows also from the results of Kawamata and Arakelov).
We have that

12 deg(V ) = K 2
X − 8(b − 1)(g − 1),

where g is the genus of the fibres of f , and b is the genus of B,
since f is a differentiable fibre bundle, and we have for the
Euler- Poincaré characteristic of X

e(X ) = 4(b − 1)(g − 1).

Kodaira proved that for such fibrations the topological index
σ(X )( signature of the intersection form on H2(X ,R)) is
positive. By the index theorem we have

0 < 3σ(X ) = c2
1(X )− 2c2(X ) = K 2

X − 2e(X ) = deg(V ).
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Hermitian curvature

Curvature decreases in subbundles?

The example of Kodaira fibrations produces subbundles of a flat
bundle (they have zero curvature) which are positively curved.
Does this contradict the slogan above? Not really, the correct
principle is (see the book by Griffiths and Harris): curvature
decreases in Hermitian subbundles. The above principle is
the first ingredient in the proof of the theorem mentioned above.

Theorem
Let H be a unitary flat vector bundle on a projective manifold M,
associated to a representation ρ : π1(M)→ U(r ,C). Then H is
nef and moreover H is semi-ample if and only if Im(ρ) is finite.

Since H is unitary flat, H is a Hermitian holomorphic bundle,
and by the principle ‘curvature decreases in Hermitian
subbundles’ each subbundle has degree ≤ 0 and each quotient
bundle W of H has degree ≥ 0, hence H is nef.
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Hermitian curvature

Unitary flat bundles

If H is unitary flat, H is a Hermitian holomorphic bundle, and by
the principle ‘curvature decreases in Hermitian subbundles’
each subbundle has degree ≤ 0 and each quotient bundle W of
H has degree ≥ 0, hence H is nef.
Moreover, by Lefschetz ’ theorem, we can reduce to the case
where M is a curve. Let B be a projective curve, let
ρ : π1(B)→ U(r ,C) be a unitary representation, and let Hρ be
the associated flat holomorphic bundle. Since ρ is unitary, it is a
direct sum of irreducible unitary representations ρj , j = 1, . . . k .
Accordingly, we have a splitting

Hρ = ⊕k
j=1Hρj .

Narasimhan and Seshadri have proven that each Hρj is a
stable degree zero holomorphic bundle on B. This result plays
another crucial role in the proof of the above theorem.



Fibred varieties and new surfaces with pg = q.

Hermitian curvature

Curvature and numerical positivity

Definition
Let (E ,h) be a Hermitian vector bundle on a complex manifold
M. Take the canonical Chern connection associated to the
Hermitian metric h, and denote by Θ(E ,h) the associated
Hermitian curvature, which gives a Hermitian form on the
complex vector bundle bundle TM ⊗ E.
Then one says that E is Nakano positive (resp.: semi-positive)
if there exists a Hermitian metric h such that the Hermitian form
associated to Θ(E ,h) is strictly positive definite (resp.:
semi-positive definite).

Remark
Umemura proved that a vector bundle V over a curve B is positive
(i.e., Griffiths positive, or equivalently Nakano positive) if and only if
V is ample.
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Sketch of proof of Fujita’s theorem

Idea of proof in the case of no singular fibres

V is a holomorphic subbundle of the holomorphic vector bundle
H associated to the local system
H := Rmf∗(ZX ), m = dim(X )− 1 (i.e., H = H⊗Z OB).
The bundle H is flat, hence the curvature ΘH associated to the
flat connection satisfies ΘH ≡ 0.
We view V as a holomorphic subbundle of H, while

V∨ ∼= Rmf∗OX , m = dim(X )− 1

is a holomorphic quotient bundle of H.
By the curvature formula for subbundles we obtain

ΘV = ΘH|V + σ̄ tσ = σ̄ tσ,

and Griffiths proves that the curvature of V∨ is semi-negative,
since its local expression is of the form ih′(z)dz̄ ∧ dz, where
h′(z) is a semi-positive definite Hermitian matrix.
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Sketch of proof of Fujita’s theorem

The case of no singular fibres

In particular we have that the curvature ΘV of V is semipositive
and, moreover, that the curvature vanishes identically if and
only if the second fundamental form σ vanishes identically, i.e.,
if and only if V is a flat subbundle.
However, by semi-positivity, we get that the curvature vanishes
identically if and only its integral, the degree of V , equals zero.
Hence V is a flat bundle if and only if it has degree 0.
The same result then holds true, by a similar reasoning, for
each holomorphic quotient bundle Q.
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Sketch of proof of Fujita’s theorem

The general case

In the general case we use:
1) The semistable reduction theorem (a base change B′ → B
such that all fibres of the pull-back X ′ → B′ are reduced with
normal crossings)
2) A comparison of the pull-back of V with the analogously
defined V ′

3) Some crucial estimates given by Zucker (using Schmid’s
asymptotics for Hodge structures) for the growth of the norm of
sections of the L2-extension of Hodge bundles, and
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Sketch of proof of Fujita’s theorem

The general case, cont.

4) A lemma by Kawamata

Lemma
Let L be a holomorphic line bundle over a projective curve B,
and assume that L admits a singular metric h which is regular
outside of a finite set S and has at most logarithmic growth at
the points p ∈ S.
Then the first Chern form c1(L,h) := Θh is integrable on B, and
its integral equals deg(L).

This shows that in the semistable case singularities are
ininfluent, and the argument runs as in the case of no singular
fibres.
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Hypergeometric integrals leading to a unitary flat bundle Q of infinite order

Symmetry by a cyclic group of order 7

Proposition
Let f : X → B be a semistable fibration of a surface X onto a
projective curve, such that the group G = µ7 ∼= Z/7 acts on this
fibration inducing the identity on B. Assume that the general
fibre F has genus 6 and that G has exactly 4 fixed points on F,
with tangential characters (1,1,1,4).
Then if we split V = f∗(ωX |B) into eigensheaves, then the
eigensheaves V1,V2 are unitary flat rank 2 bundles.
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Hypergeometric integrals leading to a unitary flat bundle Q of infinite order

Symmetry by a cyclic group of order 7, cont.

Idea of proof:
we show that V1,V2 have rank 2, V3,V4 have rank 1,
V5 = V6 = 0
Let Hj := Hj ⊗OB: for j = 1,2 we have that
(V̄ )j = V7−j = 0, henceVj = Hj over B∗ = B \ S, S being
the set of critical values of f .
We saw that the norm of a local frame of Vj has at most
logarithmic grow at the points p ∈ S. This shows that Vj is
a subsheaf of Hj : by semipositivity we conclude that we
have equality Vj = Hj .

Since the fibration is semistable, the local monodromies are
unipotent: on the other hand, they are unitary, hence they must
be trivial. This implies that the local systems H∗1 and H∗2 have
respective flat extensions to local systems H1 and H2 on the
whole curve B.
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Hypergeometric integrals leading to a unitary flat bundle Q of infinite order
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Hypergeometric integrals leading to a unitary flat bundle Q of infinite order

The examples

The equation

z7
1 = y1y0(y1 − y0)(x0y1 − x1y0)4x3

0 .

describes a singular surface Σ′ which is a cyclic covering of
P1 × P1 with group G := Z/7.
Let Y be a minimal resolution of singularities of Σ: Y admits a
fibration ϕ : Y → P1 with fibres curves of genus 6.
We let X be the minimal resolution of the fibre product of
ϕ : Y → P1 with ψ : B → P1, where ψ is the G-Galois cover
branched on∞ = {x0 = 0},0 = {x1 = 0},1 = {x1 = x0}, and
with local characters (1,1,−2). In particular B has genus 3 by
Hurwitz’ formula.
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Hypergeometric integrals leading to a unitary flat bundle Q of infinite order

Properties of the example

Theorem
The above surface X is a surface of general type endowed with
a fibration f : X → B onto a curve B of genus 3, and with fibres
of genus 6, such that V := f∗ωX |B splits as a direct sum
V = A⊕Q1 ⊕Q2, where A is an ample rank-2 vector bundle,
and the unitary flat rank-2 summands Q1,Q2 have infinite
monodromy.

The last assertion is a consequence of the classification by
Schwarz of the cases where the monodromy of hypergeometric
integrals is finite, as we now see.
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Hypergeometric integrals leading to a unitary flat bundle Q of infinite order

Hypergeometric integrals

Another example is given by the equation

z7
1 = y1y4

0 (y1 − y0)(y1 − xy0), x ∈ C \ {0,1}

which gives another family of curves. It is similar to the previous
family, except that here V1 is generated by

η := y−
6
7 (y − 1)−

6
7 (y − x)−

6
7 dy , and by y · η.

Varying x , we obtain a rank-2 local system over P1 \ {0,1,∞},
which is equivalent, in view of the Riemann-Hilbert
correspondence, to a second order differential equation with
regular singular points. Indeed, using results of
Deligne-Mostow and Kohno, we see that we have a Gauss
hypergeometric equation, and we can see that the local
monodromies have order 7, hence we are not in the Schwarz
list and the monodromy is infinite (and irreducible).
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Surfaces with pg = q = 1

Surfaces fibred over elliptic curves

Let now X = S be a surface and B = E be an elliptic curve, and
assume we have a fibration f : S → E . Then, by Atiyah’s
classification of vector bundles on elliptic curves

V = (⊕jAj)
⊕

(Oq−1
E )

⊕
(⊕iQi),

where Aj is ample and indecomposable, Qi is a nontrivial
torsion line bundle, and q := q(S) = h1(OS).
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Surfaces with pg = q = 1

Surfaces with q = 1

Let X = S be a surface with q := q(S) = 1 so that the
Albanese map yields a fibration onto an elliptic curve E . Then

V = (⊕jAj)
⊕

(⊕iQi),

where Aj is ample and indecomposable, Qi is a nontrivial
torsion line bundle, and pg := pg(S) = h0(V ) =

∑
j h0(Aj).

If moreover pg = 1, then

V = A1
⊕

(⊕iQi),

where A1 is indecomposable of degree 1 and uniquely
determined by its rank, up to tensoring with a line bundle.
With Ciliberto we proved many years ago:
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Surfaces with pg = q = 1

Surfaces with pg = q = 1

Theorem
(C. - Ciliberto) Let S be a surface with pg = q = 1, let f : S → E
the Albanese map and set V = A1

⊕
(⊕λ

i Qi). Then the
projectivization of the first summand is a symmetric product of
the elliptic curve

P(A∨1 ) = E (ι), ι := g − λ

and the natural (rational map)

S → E (ι)

is the paracanonical map associating to x ∈ S the {t ∈ B} such
that x ∈ Ct (here Ct is, for general t , the unique curve in |K + t |,
and is called a paracanonical curve).
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Surfaces with pg = q = 1

Status of the classification of surfaces with
pg = q = 1

For these surfaces K 2 ∈ {2,3, . . . ,9} (Miyaoka-Yau inequality).
1 K 2 = 2: an irreducible moduli space (C. 1977, Horikawa

1978), S is a double cover of E (2), g=2
2 K 2 = 3: g ≤ 3, there are exactly 5 irreducible connected

components of the moduli space, one with g = 3 (C.-
Ciliberto, 1989), 4 with g = 2 (C.- Pignatelli, 2004)

3 K 2 = 4,5 exist, as I showed (98) with examples having
g = 2; later Pignatelli showed: for K 2 = 4,g = 2 get more
than 8 connected components !

4 K 2 = 4,6,8 exist by Polizzi, Rito, Frapporti-Pignatelli
(quotients of products of curves) (g = 3,4,5,7)

5 K 2 = 7 exist by Lei Zhang, Rito
6 K 2 = 9 existence shown by Cartwright and Steger
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New surfaces

New surfaces with pg = q

Theorem (Bauer, C., Frapporti)
There are 16 irreducible families of generalized Burniat type
surfaces with K 2

S = 6, 0 ≤ pg(S) = q(S) ≤ 3. Those with
pg(S) = q(S) = 1 are summarized in the following table, 5)-10)
form 6 connected components of the moduli space, 11) and 12)
are contained in a unique irreducible connected component of
the moduli space.



Fibred varieties and new surfaces with pg = q.

New surfaces

Table: pg = q = 1

pg H1(S,Z) dim

5) 1 (Z/2)3 × Z2 3

6) 1 (Z/2)2 × Z2 3

7) 1 Z/4× Z2 3

8) 1 (Z/2)2 × Z2 3

9) 1 (Z/2× Z/4)× Z2 3

10) 1 (Z/2)2 × Z2 3

11) 1 (Z/2)3 × Z2 3

12) 1 (Z/2)3 × Z2 3
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New surfaces

Sicilian surfaces

Definition
A Sicilian surface is a minimal surface S of general type with
K 2

S = 6, pg = q = 1 such that

there exists an unramified double cover Ŝ → S with
q(Ŝ) = 3, and
such that the Albanese morphism α̂ : Ŝ → A is birational
onto its image Z , which is a divisor in A with Z 3 = 12.

Remark
A generalized Burniat type surface S is a Sicilian surface if and only
if S is in one of the families 11 or 12.
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New surfaces

Theorem (Bauer, C. , Frapporti)
Sicilian surfaces have an irreducible four dimensional moduli
space, and the general fibre of their Albanese map α : S → A1
is a non hyperelliptic curve of genus g = 3.
Moreover, any surface homotopically equivalent to a Sicilian
surface is a Sicilian surface.

Method used: the theory of Inoue type varieties and Bagnera
de Franchis varieties, introduced in joint work with Ingrid Bauer.
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