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Bertini theorems

Let k be a field, and let X ⊂ Pn
k be a subscheme.

Basic form of Bertini theorems:
If X has some property (smooth, geometrically irreducible,
. . . ), then so does a sufficiently general hyperplane section of
X , i.e. the set of such hyperplane sections contains a Zariski
dense open subset of P̌n

k .
Over an infinite field, every nonempty open subset of P̌n

k has a
rational point, so we can actually find such a hyperplane
section.
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Failure over finite fields

Bertini theorems can fail over finite fields.

Proposition (Katz)

Let X be the smooth hypersurface defined by

Σn+1
i=1 (XiY

q
i − X q

i Yi ) = 0

in P2n+1
Fq

. Then any hyperplane section of X is singular.

Suggestion of Katz: consider hypersurfaces of larger degree !
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A Bertini smoothness theorem over finite fields

Let k be a finite field. For d ≤ 1, let Sd be the set of hypersurfaces
of degree d in Pn

k and S =
⋃

d Sd . If E is a subset of S , the
density of E is

µ(E ) := lim
d→∞

|E ∩ Sd |
|Sd |

if the limit exists.

Theorem (Poonen 2004)

Let k be a finite field, and let X be a smooth quasiprojective
subscheme of P2n+1

k . Then the set of hypersurfaces H of Pn
k such

that H ∩ X is smooth has positive density.

In particular, there exists a smooth hypersurface in X defined
over k .
The density cannot be equal to 1: given a closed point P of X ,
the probability that a hypersurface is singular at P is positive.
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Sketch of proof

Let m be the dimension of X , q the cardinal of k .
Given P a point of degree r , the probability that a
hypersurface H ∩ X is singular at P is q−(m+1)r – write the
Taylor expansion at P .

It is reasonable to expect that these conditions are
independent as P varies. We expect the density of smooth
hypersurface sections to be ζX (m + 1)−1.
The heuristic above is correct. The desired estimates are
obtained by a somewhat tricky sieving technique.
Related, independent results of Gabber.
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A Bertini irreducibility theorem over finite fields

The result is different when one considers irreducibility.

Theorem (C., Poonen)

Let X be a geometrically irreducible subscheme of Pn
k . Assume the

dimension of X is at least 2. Then the set of hypersurfaces H of Pn
k

such that H ∩ X is geometrically irreducible has density 1.

This statement is closer to the usual Bertini theorems: most
hypersurfaces satisfy the conclusion.
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Variants and general remarks

We cannot adapt the proof of the Bertini smoothness theorem:
irreducibility cannot be checked analytically locally. We need
global arguments.

We can relax the assumptions: X can be defined over k , we
obtain the expected results for varieties that are not
geometrically irreducible.
Suitably modified, the result holds for arbitrary maps X → Pn

k
and preimages of hypersurfaces. In order to get density 1
statements, one has to ignore the components that are
contracted.
Singularities of X are a problem. We will reduce to surfaces –
using a weak version of the theorem – and use resolution of
singularities.
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Applications and a counterexample

Using density 1, we get:

Corollary
Let X be a geometrically irreducible variety of dimension m ≥ 2
over a field k. Let F be a finite set of closed points in X . Then
there exists a geometrically irreducible variety of dimension m − 1
Y ⊂ X containing F .

Used in a similar form by Duncan-Reichstein, as well as Panin,
who raised the question.

Proposition
Let k be a finite field. For any large enough d, there exists a
geometrically irreducible surface X ⊂ P3

k of degree d such that
X ∩ H is reducible for every plane H defined over k.

Take X that contains all lines defined over k !
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An easy case

Special case: X is smooth projective of dimension at least 3.
Then

H ∩ X reducible =⇒ dim(H ∩ X )sing ≥ 1.

However, for most H, the singular locus of H ∩ X is finite by
the sieving techniques above.
This is the only case where the statement can actually be
checked locally analytically. Even in dimension at least 3, it is
less clear in the presence of singularities.
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Reduction to surfaces

The most difficult case is that of (possibly singular) surfaces.

Good news however: we have resolution of singularities in that
case, so these cause less of a problem.
Idea of the reduction: start with X ⊂ Pn

k , smooth, irreducible,
dimX = m ≥ 3. Find a single irreducible hypersurface J of X
that is also irreducible, and does not contain any
positive-dimensional irreducible component of X \ X .
This is dangerously close to what we were trying to prove !
However being in dimension at least 3 and not requiring
density 1 turns out to make things easier.
Show that for most hypersurfaces H,

H ∩ J irreducible =⇒ H ∩ X irreducible.
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Finding one irreducible hypersurface

Start with X ⊂ Pn
k of dimension m ≥ 3.

Find

X //

π

��

Pn
k

��
Pm

k

with π generically finite.
Claim : for most irreducible H ⊂ Pm

k , J = π−1(H) is
irreducible.
Reduce to a statement about finite étale morphisms.
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An application of the Chebotarev density theorem

Lemma
Let π : X → Y be a finite étale morphism of irreducible schemes of
dimension at least 2, with Y ⊂ Pn

k . Then for a density 1 set of
H ⊂ Pn

k ,

H ∩ Y irreducible =⇒ π−1(H ∩ Y ) irreducible.

Proof.
Can assume that the cover is Galois with group G . FP ⊂ G the
conjugacy class of Frobenius at a closed point P .
Chebotarev density theorem (Lang): given C , the number of
Fqe -points P of Y such that FP = C is about |C ||G |

1
e q

me .
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End of the proof

Proof (continued).

Probability that a given hypersurface misses all these points is
about

(1− q−e)cqme/e → 0

as e →∞. This holds because m ≥ 2.

For most hypersurfaces H of Pn
k , the various Frobenius at closed

points of H ∩ Y meet all the conjugacy classes of G , so the étale
cover π−1(H ∩ Y )→ H ∩ Y is irreducible.
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Smooth surfaces and the Hodge index theorem

We have reduced to the case of surfaces. Basic case: X is
smooth and projective in Pn

k . Assume X is geometrically
irreducible.

D ⊂ X an ample divisor. Write D = C + C ′ if D is not
irreducible. Hodge index theorem:

(C .C ′)2 ≥ C 2(C ′)2.

We can assume both C and C ′ have high degree.
Consequence: the singular locus of a reducible curve has large
length.
We can use a local analytic analysis again to conclude that
this does not happen outside of a density zero subset of the
set of hypersurfaces.
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Treating the singular case

The argument above does not seem to work as such for
singular/open surfaces: the local analysis is harder, and the
non-isolated singularities break down the estimates.

Start with X projective, and consider a resolution of
singularities π : X̃ → X . We want to work on X̃ .
Problem : hypersurfaces in X̃ coming from X form a density
zero subset of the set of hypersurfaces in X̃ . We need better
estimates.
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Counting curves

π : X̃ → X .

Count the number of decompositions π−1(H) = D + D ′, H
section of O(d), D irreducible. Need to compare it to q

deg X
2 d2

.
Let B = π∗O(1), big and nef. We can assume that D and D ′

have large degrees. Set n = B.D.
Let ρ be the Picard number of X̃ . Then the number of
possible O(D) is O(nρ).

Idea of proof:
D.B = n. Write B = A + E , A ample, can assume that D,E
have no common component, so D.A ≤ n. The estimate holds
when considering numerical equivalence classes.
To pass from numerical equivalence classes to classes of
divisors, just multiply by the number of rational points of Picτ .
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Let B = π∗O(1), big and nef. We can assume that D and D ′

have large degrees. Set n = B.D.
Let ρ be the Picard number of X̃ . Then the number of
possible O(D) is O(nρ).

Idea of proof:
D.B = n. Write B = A + E , A ample, can assume that D,E
have no common component, so D.A ≤ n. The estimate holds
when considering numerical equivalence classes.
To pass from numerical equivalence classes to classes of
divisors, just multiply by the number of rational points of Picτ .



Counting curves 2

For fixed O(D), the number of possible D,D ′ is at most

h0(X̃ ,O(D)) + h0(X̃ ,O(dB − D)).

Easy estimate:

h0(Y , L) ≤ (L.B)2

2B.B
+ O(L.B) + O(1)

for Y smooth projective surface, B big and nef.
In the previous setting, get

h0(X̃ ,O(D)) + h0(X̃ ,O(dB − D))

≤ degX
2

d2 − n(d degX − n)

degX
+ O(d).

Final estimate: the number of decompositions
π−1(H) = D + D ′ is at most

Σd deg X−d0
n=d0

O(nρ)q
deg X

2 d2− n(d deg X−n)
deg X +O(d)

.
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End of the proof

Need to compare to q
deg X

2 d2
.

Error term is at most

2dρqO(d)Σ∞n=d0
q−nd/2 ≤ Cq−d0d2+O(d) ≤ ε.

We are done !
Remark: this is a variant of the Hodge index argument in the
smooth case.
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