

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD

Hanhee Paik

IBM Quantum Computing Group

IBM T. J. Watson Research Center, Yorktown Heights, NY USA

OUTLINE

TODAY

- Superconducting Josephson junction qubit: an artificial atom
- Circuit Quantum electrodynamics: Interaction between microwave light and artificial atoms

TOMORROW

Quantum Experience: A 5-qubit in the cloud

INTRODUCTION TO SUPERCONDUCTING JOSEPHSON JUNCTION QUBIT

IBM.

QUANTUM INFORMATION SYSTEMS

QUANTUM INFORMATION SYSTEMS

$\begin{array}{l} \textbf{ATOM} \rightarrow \textbf{SUPERCONDUCTING CIRCUIT};\\ \textbf{ELECTRON DEGREES OF FREEDOM} \rightarrow \\ \textbf{MACROSCOPIC CURRENTS AND VOLTAGES} \end{array}$

SIMPLEST EXAMPLE: SUPERCONDUCTING LC OSCILLATOR CIRCUIT

Sub-mm dimensions \implies L ~ nH, C ~ pF, $\omega_r/2\pi$ ~ GHz \implies Lumped elements

ELECTRONIC FLUID SLOSHES BACK AND FORTH FROM ONE PLATE TO THE OTHER, NO INTERNAL DISSIPATION

DEGREE OF FREEDOM IN ATOM vs CIRCUIT

Rydberg atom

Superconducting LC oscillator

velocity of electron \rightarrow voltage (charge) across capacitor force on electron \rightarrow current (flux) through inductor

LC OSCILLATOR AS A QUANTUM CIRCUIT

SUPERCONDUCTING JOSEPHSON JUNCTION QUBIT

- Qubit (two level system) requires nonlinearity.
- No loss

Superconducting Josephson Junction

- Josephson junction provides a nonlinear element.
- Conducts electricity without resistance (no loss).
 - Couple two superconductors via oxide layer
 - Oxide layer acts as tunneling barrier

SC

~1nm barrier

SC

JOSEPHSON JUNCTIONS – FEYNMAN'S MODEL

 $\rho_{1(2)}$ density of electrons on either side of the SC

Equations of motion from a toy model

 $i\hbar \frac{\partial}{\partial t} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} = \begin{pmatrix} 2eV & K \\ K & 0 \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$ *K*- tunneling energy 2eV - energy across the junction $\dot{\gamma} = \frac{2eV}{\hbar} - \frac{2K\rho}{\hbar\rho_0\sqrt{1-\rho^2/\rho_0^2}}\cos(\gamma) \approx \frac{V}{\varphi_0}$ AC-Josephson effect $I = \dot{\rho} = \frac{2K\rho_0}{\hbar} \sqrt{1 - \rho^2/\rho_0^2} \sin(\gamma) \approx I_c \sin(\gamma) \text{ DC-Josephson effect}$

THE JOSEPHSON JUNCTION HAMILTONIAN

Energy stored in the capacitor

Energy stored in the inductor

 $p_{\omega} =$

$$U_{K} = \frac{1}{2}CV^{2} = \frac{1}{2}C\left(\frac{\hbar}{2e}\right)^{2}\phi$$

 $U_P = \int IV dt = -E_J \cos \varphi$

V1 = 141.4 nm H 1 = 121.0 nm

60.00 К X 100 nm 5.8 mm 23 Sep 2011 9:11:51 0.0 ° 63.1 ° MQCO-092111A-18.tif

QCO-092111A

$$\left[\hat{\varphi},\hat{n}
ight]=i$$

Josephson Hamiltonian

What is the conjugate momentum
$$P_j$$
 for φ ?
 $_{\varphi} = \frac{\partial L}{\partial \dot{\varphi}} = C \left(\frac{\hbar}{2e}\right)^2 \dot{\varphi} = \frac{\hbar}{2e} CV = \frac{\hbar}{2e} (2en) = \hbar n$

$$\begin{array}{c} \hat{H} = E_0 \\ \hline Charge \\ Fneroe$$

 $G_C(\hat{n} - \frac{q_{ext}}{2e})^2 - E_J \cos\hat{\varphi}$ ging Josephson Energy gy

© 2016 IBM Corporation

THE CHARGE LIMIT

FIRST coherent manipulation of SC qubit by Nakamura et. al. Nature 398, 786 (1999)

THE CHARGE LIMIT

THE TRANSMON

The transmon = <u>Capacitively-shunted Josephson junction qubit</u>

$$H = 4E_C(n - n_g)^2 - E_J \cos(\gamma)$$

where $E_C = \frac{e^2}{2C_{\Sigma}}$ and $n_g = \frac{C_g V_g}{2e}$

- *Engineering an artificial atom* with a capacitor and an inductor (JJ critical current).
- Depending on E_J/E_c , the transmon dynamics varies.

Koch et. al. PRA 76, 04319 (2007)

FROM A CHARGE REGIME TO A "TRANSMON" REGIME

- Increasing E_J/E_C
 - Charge dispersion becomes flat
 - $\epsilon_m = E_{m0}(n_g = 1/2)$ $-E_{m0}(n_g = 0)$
 - anharmonicity decreases

$$\delta = \omega_{12} - \omega_{01}$$

Nowadays (2016), $T_2 \sim 50000$ ns (50 μ s) to 200000 ns (200 μ s).

Koch et. al. PRA 76, 04319 (2007)

© 2016 IBM Corporation

EIGENFUNCTIONS OF THE TRANSMON

Eigen functions similar to a harmonic oscillator – suggest a good basis is the harmonic oscillators eigenfunctions

LARGE E_J/E_C HAMILTONIAN

Expanding the cosine to 4th order gives

$$\hat{H}_{\rm tr} \approx \frac{\hat{Q}^2}{2\bar{C}_{\Sigma}} + \frac{\hat{\Phi}^2}{2L_J} - \frac{E_C\hat{\Phi}^4}{3Z_{\rm tr}^2\hbar^2} + \mathcal{O}(\hat{\Phi}^6)$$

where $Z_{\rm tr} = \sqrt{L_J/\bar{C}_{\Sigma}} = (\hbar/e^2)\sqrt{E_C/2E_J}$

Defining dimensionless variables $\hat{x} = \sqrt{1/\hbar Z_{tr}} \hat{\Phi}$ and $\hat{y} = \sqrt{Z_{tr}/\hbar} \hat{Q}$

$$\hat{H}_{\rm tr} = \frac{\hbar\omega_0}{2}(\hat{y}^2 + \hat{x}^2) - \frac{E_C \hat{x}^4}{3}$$

where $\omega_0 = 1/\sqrt{\bar{C}_{\Sigma}L_J} = \sqrt{8E_CE_J}/\hbar$ Qubit frequency engineered by E_c and E_j (capacitance and inductance)

This is just a weakly anharmonic oscillator ($\omega_0 >> Ec$)

IMPROVEMENTS IN COHERENCE TIMES

- Understand charge noise e.g. [1]
- 3D transmon [5]
- IR Shielding [6,7],
- Cold cavities & cold qubits [8]
- High Q cavities [9]
- Materials e.g. [2,10]
- Design and geometries [4,10]
- Microwave environment [3]

Koch *et. al.* PRA **76**, 04319 (2007)
 J. Martinis *et al.*, PRL **95** 210503 (2005)
 Houck *et. al.* PRL **101**, 080502 (2008)
 K. Geerlings *et al.*, APL **100**, 192601 (2012)
 H. Paik *et al.*, PRL **107**, 240501 (2011)
 R. Barends *et al.*, APL **99**, 113507 (2011)
 R. Corcoles *et al.*, APL **99**, 181906 (2011)
 C. Rigetti *et al.*, PRB **86**, 100506 (2012)
 M. Reagor *et al.*, APL **102**, 192604 (2013)
 C. Chang *et al.* APL **103**, 012602 (2013)

Quality factor of the transmon qubit > 2M routinely achievable

(1) Noise threshold for 2D fault tolerant computation assuming 30-100ns gate time

SUPERCONDUCTING QUBITS IN 3D CAVITIES: MITIGATING SURFACE LOSSES

- Big features predicted to have higher Q (less surface contribution)
 - But radiation also increasingly worse
 - flux trapping quickly can be an issue
- <u>Placing a large qubit in a 3D microwave cavity</u> mitigates both surface and radiation losses with decreased surface participation.

Paik et al. PRL, 107, 240501 (2011)

INTERACTING WITH SUPERCONDUCTING QUBIT CIRCUIT QUANTUM ELECTRODYNAMICS (CQED)

CAVITY QUANTUM ELECTRODYNAMICS (CQED)

2g = vacuum Rabi freq. $\kappa =$ cavity decay rate $\gamma =$ "transverse" decay rate

Jaynes-Cummings Hamiltonian

$$H = \hbar \omega_c a^+ a + \frac{\hbar \omega_q}{2} \hat{\sigma}_z + \hbar g (a \hat{\sigma}^+ + a^+ \hat{\sigma}^-)$$

CIRCUIT QUANTUM ELECTRODYNAMICS (cQED)

Theory: Blais et al., Phys. Rev. A 69, 062320 (2004)

Strong coupling achieved!

IBM

THE JAYNES CUMMINGS HAMILTONIAN

The resonator can be represented by a simple harmonic osc.

$$\hat{H}_{\mathbf{r}} = \hbar \omega_r \hat{a}^{\dagger} \hat{a}$$
 with $\omega_r / 2\pi = 6 - 10 \text{ GHz}$

The voltage is given by

$$\hat{V}_r = V_{\rm rms}^0(\hat{a} + \hat{a}^\dagger)$$

$$V_{\rm rms}^0 = \sqrt{\hbar \omega_r^2 Z_r/2} \approx 3\mu V$$

The interaction with the resonator is described by

$$\begin{aligned} \hat{H}_{\rm int} &= -\frac{C_g \hat{V}_r \hat{Q}}{C_{\Sigma}} = \hbar g (\hat{a} + \hat{a}^{\dagger}) (\hat{b} + \hat{b}^{\dagger}) \\ \end{aligned}$$
where
$$g &= -\beta \omega_r \sqrt{\frac{Z_r}{4Z_{\rm tr}}} = -\beta \omega_r e \sqrt{\frac{Z_r}{\hbar}} \left(\frac{E_J}{8E_C}\right)^{1/4} \approx 10 - 500 \text{ MHz} \end{aligned}$$

It is possible to reach the strong coupling regime

THE STRONG COUPLING REGIME $H_{\text{tot}} = \hbar \omega_r a^{\dagger} a + \hbar \omega b^{\dagger} b + \frac{1}{2} b^{\dagger} b (b^{\dagger} b - 1) + \hbar g (b^{\dagger} a + b a^{\dagger})$

$g/2\pi = 120$ MHz
$\kappa/2\pi = 45~\mathrm{MHz}$
$\gamma/2\pi = 1~\mathrm{MHz}$

Wallraff et al. Nature, 431, 162 (2004)

THE (Ultra-Strong) DISPERSIVE LIMIT

Solving to second order after a dispersive approximation

$$|\omega_r - \omega| \gg |g| \qquad H_{\text{tot}}^D = \hbar \omega_r a^{\dagger} a + \hbar \sum_i (\tilde{\omega}_j + \chi_j a^{\dagger} a) |j\rangle \langle j|$$

 χ is AC Stark shift: a state-dependent qubit or cavity frequency shift

MICROWAVE CONTROLS OF TRANSMON: SINGLE QUBIT GATES

A microwave drive V is applied to the qubit through a resonator

Driving Hamiltonian

$$\hat{H}_{d} = V\hat{Q} = VQ_{ZPF}(\hat{b} + \hat{b}^{+}) = \hbar\Omega(t)(\hat{b} + \hat{b}^{+})$$

 $\Omega(t) = \Omega_x(t)\cos(\omega_d t) + \Omega_y(t)\sin(\omega_d t)$

After making the rotating wave approximation (driving frame $\Delta = \omega_d - \omega$)

$$\hat{H}_{tr+dr}^{R} = \frac{\hbar\Delta(t)}{2}\hat{Z} + \frac{\hbar\Omega_{x}(t)}{2}\hat{X} + \frac{\hbar\Omega_{y}(t)}{2}\hat{Y}$$
Rotation
operator along
Pauli matrix A

$$R_{A}(\theta) = \exp\left[-i\hat{A}\frac{\theta}{2}\right] = \hat{I}\cos\left(\frac{\theta}{2}\right) - i\hat{A}\sin\left(\frac{\theta}{2}\right)$$

Complete control in the qubit subspace by using $\Delta(t)$, $\Omega_x(t)$, and $\Omega_y(t)$

TOMORROW

- TWO-QUBIT GATE FOR SC QUBITS: CROSS RESONANCE
- EXPERIMENTAL SET UP
- QUANTUM EXPERIENCE DEMO

IBM RESEARCH QUANTUM EXPERIENCE

SIGN UP FOR FREE AT https://quantumexperience.ng.bluemix.net

© 2016 IBM Corporation

BUILDING A QUANTUM COMMUNITY: IBM QUANTUM EXPERIENCE

New papers enabled by IBM Quantum Experience within first month of operation

- arXiv:1605.04220
- arXiv:1605.05709
- Others in preparation!

IBM Quantum Experience (launched May 2016)

- Free to use
- Sign up at www.ibm.com/quantumcomputing
- Access to real 5Q device. Compare noise & deficiencies of real device to ideal simulation.
- Detailed user guide about quantum computing
- Learn about quantum algorithms, try your own!
- Universities adopting our tool for teaching
- Become part of a growing community of users.

...Just the beginning

- External users to contribute content
- Expanded hardware capabilities
- IBM Research Frontiers Institute to foster closer collaborations with university, industry partners