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OUTLINE

TODAY

 Superconducting Josephson junction qubit: 

an artificial atom

 Circuit Quantum electrodynamics: Interaction 

between microwave light and artificial atoms

TOMORROW

 Quantum Experience: A 5-qubit in the cloud 

July, 20162016 ICAP Summer School



IBM T.J. Watson Research Center

© 2016 IBM Corporation

SUPERCONDUCTING 
JOSEPHSON JUNCTION QUBIT

INTRODUCTION TO

March,  201344th IFF Spring School
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• PHOTONS

• NUCLEAR  SPINS

• IONS

• ATOMS 

• MOLECULES

• QUANTUM DOTS

• SUPERCONDUCTING CIRCUITS

QUANTUM INFORMATION SYSTEMS

micro

MACRO

coupling

with environment
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• PHOTONS

• NUCLEAR  SPINS

• IONS

• ATOMS 

• MOLECULES

• QUANTUM DOTS

• SUPERCONDUCTING CIRCUITS

micro

MACRO

coupling

with environment

A.J. Leggett, 1982

- FIRST DEMONSTRATION BY DEVORET, MARTINIS, CLARKE (1985)

- engineered hamiltonian with "LEGO" blocks:

capacitors, inductors and Josephson junctions

Circuits are quantized!!

QUANTUM INFORMATION SYSTEMS
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Sub-mm dimensions         L ~ nH, C ~ pF, wr /2p ~ GHz

SIMPLEST EXAMPLE: SUPERCONDUCTING  LC OSCILLATOR  CIRCUIT

ATOM → SUPERCONDUCTING CIRCUIT;

ELECTRON DEGREES OF FREEDOM → 

MACROSCOPIC CURRENTS AND VOLTAGES 

ELECTRONIC FLUID SLOSHES BACK AND FORTH

FROM ONE PLATE TO THE OTHER, NO INTERNAL DISSIPATION

Lumped elements
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Rydberg atom
Superconducting

LC oscillator

L C

velocity of electron → voltage (charge) across capacitor

force on electron → current (flux) through inductor

DEGREE OF FREEDOM IN ATOM vs CIRCUIT
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SUPERCONDUCTING JOSEPHSON JUNCTION QUBIT

Al

Al

AlOx

• Couple two superconductors 

via oxide layer

• Qubit (two level system) requires nonlinearity.

• Oxide layer acts as tunneling 

barrier

• No loss

Superconducting Josephson Junction

• Josephson junction provides a nonlinear element.

SC

SC

• Conducts electricity without resistance (no loss).
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JOSEPHSON JUNCTIONS – FEYNMAN’S MODEL

Al

Al

AlOx

Equations of motion from a toy model

K – tunneling energy

2eV – energy across the junction

density of electrons on 

either side of the SC 

phase of the SC

DC-Josephson effect

AC-Josephson effect
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THE JOSEPHSON JUNCTION HAMILTONIAN
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THE CHARGE LIMIT

Charge fluctuations 

First experiment in 1999

FIRST coherent manipulation of SC qubit by Nakamura et. al. Nature  398, 786 (1999)
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Charge fluctuations 

First experiment in 1999

Sweet spot operation in 2002

FIRST BREAKTHROUGH IN COHERENCE by Vion et. al. Science 296, 886 (2002)

THE CHARGE LIMIT
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THE TRANSMON

The transmon = Capacitively-shunted Josephson junction qubit

where                      and

• Engineering an artificial atom with a capacitor and an inductor 

(JJ critical current).

• Depending on EJ/Ec, the transmon dynamics varies. 

Koch et. al. PRA 76, 04319 (2007)

Cs
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FROM A CHARGE REGIME TO A “TRANSMON” REGIME

Increasing 

• Charge dispersion 

becomes flat

• anharmonicity

decreases

Koch et. al. PRA 76, 04319 (2007)

Nowadays (2016), T2 ~ 50000 ns (50 ms) to 200000 ns (200 ms).

“Transmon’ regime
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EIGENFUNCTIONS OF THE TRANSMON

Eigen functions similar to a harmonic oscillator – suggest a 

good basis is the harmonic oscillators eigenfunctions
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LARGE EJ/EC HAMILTONIAN

Expanding the cosine to 4th order gives 

where

Defining dimensionless variables                         and

where

This is just a weakly anharmonic oscillator (w0 >> Ec)

Qubit frequency engineered by 

Ec and Ej (capacitance and inductance)
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Decay |  1 → |  0
as 𝑒−𝑡/𝑇1

T1
Best T2

Reproducible T2
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Year

(1)

3D
2D

– Understand charge noise e.g. [1]

– 3D transmon [5]

– IR Shielding [6,7],

– Cold cavities & cold qubits [8]

– High Q cavities [9]

– Materials e.g. [2,10]

– Design and geometries [4,10]

– Microwave environment [3] 

[1] Koch et. al. PRA 76, 04319 (2007)

[2] J. Martinis et al., PRL 95 210503 (2005)

[3] Houck et. al. PRL 101, 080502 (2008)

[4] K. Geerlings et al., APL 100, 192601 (2012)

[5] H. Paik et al., PRL 107, 240501 (2011)

[6] R. Barends et al., APL 99, 113507 (2011)

[7] A. Corcoles et al.,  APL 99, 181906 (2011)

[8] C. Rigetti et al., PRB 86, 100506 (2012)

[9] M. Reagor et al., APL 102, 192604 (2013)

[10] J. Chang et al. APL 103, 012602 (2013) 

IMPROVEMENTS IN COHERENCE TIMES

Quality factor of 

the transmon 

qubit > 2M 

routinely 

achievable

(1) Noise threshold for 2D fault tolerant computation assuming 30-100ns gate time
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SUPERCONDUCTING QUBITS IN 3D CAVITIES:
MITIGATING SURFACE LOSSES

d

t

Substrate (Si/Al2O3)

Native oxide
E-field

(|Esurf|/|Etot|)
2 ~ 1/d

• Big features predicted to have higher Q (less surface contribution)

– But radiation also increasingly worse

– flux trapping quickly can be an issue

• Placing a large qubit in a 3D microwave cavity mitigates both surface and 
radiation losses with decreased surface participation. 

Paik et al. PRL, 107, 240501 (2011)
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CIRCUIT QUANTUM 
ELECTRODYNAMICS (cQED)

INTERACTING WITH SUPERCONDUCTING QUBIT
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CAVITY QUANTUM ELECTRODYNAMICS 

(CQED)
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2g = vacuum Rabi freq.

k = cavity decay rate

g = “transverse” decay rate

Jaynes-Cummings Hamiltonian
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CIRCUIT QUANTUM ELECTRODYNAMICS 
(cQED)

Superconducting artificial 

“atom”
10 mm

Microwave

in

out

Superconducting

transmission

line “cavity”

Theory: Blais et al., Phys. Rev. A 69, 062320 (2004)

• Strong coupling achieved!
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THE JAYNES CUMMINGS HAMILTONIAN 

The resonator can be represented by a simple harmonic osc.

The voltage is given by

with

The interaction with the resonator is described by 

where

It is possible to reach the strong coupling regime
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THE STRONG COUPLING REGIME

Wallraff et al. Nature, 431, 162 (2004)
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THE (Ultra-Strong) DISPERSIVE LIMIT

Solving to second order after a dispersive approximation 

Lamb shift

~ 0n

~ 0.5n

~ 1n

Qubit Frequency (GHz)    

n=0

n=1

n=0

n=1

n=2

n=2
2

; 0g e n ; 1g e n ; 2g e n 

 >> k, g 

Stark shift 

per photon

now > 1,000 

linewidths

 is AC Stark shift: a state-dependent qubit or cavity frequency shift
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MICROWAVE CONTROLS OF TRANSMON:
SINGLE QUBIT GATES

drive resonator 

qubit

After making the rotating wave approximation (driving frame D  wd  w)

Complete control in the qubit subspace by using

A microwave drive V is applied to the 

qubit through a resonator

)ˆˆ)(()ˆˆ(ˆˆ   bbtbbVQQVH ZPFd 

Driving Hamiltonian
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TOMORROW

 TWO-QUBIT GATE FOR SC QUBITS: 

CROSS RESONANCE

 EXPERIMENTAL SET UP

 QUANTUM EXPERIENCE DEMO
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QUANTUM EXPERIENCE
IBM RESEARCH

SIGN UP FOR FREE AT 

https://quantumexperience.ng.bluemix.net
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BUILDING A QUANTUM COMMUNITY:
IBM QUANTUM EXPERIENCE

IBM Quantum Experience (launched May 2016)

• Free to use

• Sign up at www.ibm.com/quantumcomputing

• Access to real 5Q device. Compare noise & 

deficiencies of real device to ideal simulation.

• Detailed user guide about quantum computing

• Learn about quantum algorithms, try your own!

• Universities adopting our tool for teaching

• Become part of a growing community of users.

…Just the beginning

• External users to contribute content

• Expanded hardware capabilities

• IBM Research Frontiers Institute to foster closer 

collaborations with university, industry partners

> 25,000 registered users

New papers enabled by IBM 

Quantum Experience within first 

month of operation

• arXiv:1605.04220

• arXiv:1605.05709

• Others in preparation!


