ICAP Summer School, Seoul, S. Korea, July 19, 2016

3. Other topics in Cold Collisions: Universality, Confinement, and Chaos

Paul S. Julienne

Joint Quantum Institute NIST and The University of Maryland

Thanks to many colleagues in theory and experiment who have contributed to this work

http://www.jqi.umd.edu/

QDT Semiclassical considerations $f(R, E) \rightarrow \frac{1}{\sqrt{k}} \sin(kR + \eta(E))$ $\lneta(R,0)$ ¥(B) $R_{\rm vdw}$ n=-1 bound state а E/k_p=1 µK scattering $f(R, E) = C(E)^{-1}\hat{f}(R, E)$ 100 R [a₀] For $R << R_{vdw} = C(E)^{-1} \hat{f}(R, 0)$ Julienne and Mies, J. Opt. Soc. Am. B 89, 2257 (1989) If short-range coupling $<< R_{vdw}$ $\alpha(R,E) =$ Consequently: $V_n(E) = \langle n | H | E \rangle = C(E)^{-1} \hat{V}_n$ $\Gamma_n(E) = C(E)^{-2} \hat{\Gamma}_n$ $\beta(R,E) =$

Universal inelastic loss rates: Molecular reactions

Creation of a Dipolar Superfluid in Optical Lattices

B. Damski,^{1,2} L. Santos,¹ E. Tiemann,³ M. Lewenstein,¹ S. Kotochigova,⁴ P. Julienne,⁴ and P. Zoller⁵

¹Institut für Theoretische Physik, Universität Hannover, D-30167 Hannover, Germany ²Instytut Fizyki, Uniwersytet Jagielloński, Reymonta 4, PL-30 059 Kraków, Poland ³Institut für Quantenoptik, Universität Hannover, D-30167 Hannover, Germany ⁴National Institute of Standards and Technology, Gaithersburg, Maryland 20899 ⁵Institut für Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria (Received 20 August 2002; published 17 March 2003)

We show that, by loading a Bose-Einstein condensate of two different atomic species into an optical lattice, it is possible to achieve a Mott-insulator phase with exactly one atom of each species per lattice site. A subsequent photoassociation leads to the formation of one heteronuclear molecule with a large electric dipole moment, at each lattice site. The melting of such a dipolar Mott insulator creates a dipolar superfluid, and eventually a dipolar molecular condensate.

A High Phase-Space-Density Gas of Polar Molecules K.-K. Ni, et al. Science 322, 231 (2008); Ye/Jin group, JILA

⁴⁰K⁸⁷Rb
20000 v=0, J=0 molecules
in single hyperfine state
200 nK trapped gas
10¹² molecules/cm³
Loss by chemical reaction:
KRb + KRb → K₂ + Rb₂

Current (<5000 v=0 nonreactive molecules) RbCs (Innsbruck, Durham) NaK (MIT) NaRb (Hong Kong) s-wave collision summary

In general,
$$S_{\alpha\alpha} = e^{-2ik(a-ib)}$$
 as $k \to 0$

Complex scattering length *a-ib*

$$\sigma_{\alpha\alpha} = 4\pi(a^2 + b^2)$$
$$K_{\text{loss}} = \sum_{\alpha' \neq \alpha} K_{\alpha\alpha'} = 2\frac{h}{\mu}b$$

"Universal" van der Waals capture model Quantum version of classical Langevin (1905) and Gorin (1938) models

Identical fermions (p-wave):

Idziaszek & PSJ, PRL 104, 113204 (2010) Similar: Gao, PRL 105, 263203(2010)

Universal Transmission Functions $\ 1 - |S_{\ell,\ell}|^2$

VOLUME 59, NUMBER 3

Spin polarization and quantum-statistical effects in ultracold ionizing collisions

C. Orzel,* M. Walhout,[†] U. Sterr,[‡] P. S. Julienne, and S. L. Rolston National Institute of Standards and Technology, PHY A167, Gaithersburg, Maryland 20899

 $\operatorname{Xe}({}^{3}P_{2}) + \operatorname{Xe}({}^{3}P_{2}) \rightarrow$ Penning or associative ionization

Applied to collisional quenching of excited vibrational levels of RbCs by Hudson, Gilfoy, Kotochigova, Sage, and De Mille, Phys. Rev. Lett. 100, 203201 (2008) Trapped ⁴⁰K⁸⁷Rb molecules in the lowest energy state (electronic, vibrational, rotational, hyperfine)

S. Ospelkaus et al., Science 327, 853 (2010)

Slide from Ye/Jin JILA group

Apply to ⁴⁰ K ⁸⁷ Rb collisions			
Universal rate coefficient, van der Waals potentials			
Identical fermions (p-wave): $K^{ m loss}_{\ell=1}(T) = 1513ar{a}^3rac{k_BT}{h}$			
1	Non-identical (s-wave):	$K_{\ell=0}^{\rm loss}(T) = 2 \frac{h}{\mu} \bar{a}$	
a = 6.2(2) nm S. Kotochigova, New J. Phys. 12, 073041(2010)			
	Measured	Universal	
KRb + KRb	1.1(3)x10 ⁻⁵ cm ³ /s/K	0.8(1)x10 ⁻⁵ cm ³ /s/K	p-wave ≈s lifetime
KRb + KRb'	1.9(4)x10 ⁻¹⁰ cm ³ /s	0.8x10 ⁻¹⁰ cm ³ /s	s-wave ≈10ms lifetime
K + KRb	1.7(3)x10 ⁻¹⁰ cm ³ /s	1.1x10 ⁻¹⁰ cm ³ /s	s-wave

S. Ospelkaus et al., Science 327, 853 (2010)

Z. Idziaszek and PSJ, Phys. Rev. Lett. 104, 113204 (2010)

Reaction rate for identical ultracold ⁴⁰K⁸⁷Rb fermions ⁴⁰K⁸⁷Rb has Universal "chemistry" $KRb + KRb \rightarrow K_2 + Rb_2$ Experimental data Ni et al., Nature 464, 1324(2010) y=1, C_e=16130 100 K_{loss}/T (10⁻⁵ cm³/sK) Numerical $H\Psi = E\Psi$ for dipole +vdW potential NO 10 **RESONANCES!!** Analytic for vdW potential 0.1 0.01 E-field \rightarrow Dipole moment (Debye) Effect of Strong 1D or 2D confinement:

Micheli, et al Phys. Rev. Lett. 105, 073202 (2010)

Universal van der Waals rate constant ("black hole")

From Quéméner and PSJ, Chem. Rev. 112, 4949 (2012)

Universal "grey hole" reaction rate theory

y=1 special case, "black hole," Langevin theory $P^{re} = 1$ y=0, no loss, reaction, $P^{re}=0$

Gao , PRA 78, 012702(2008); PRL 105, 263203(2010); Idziaszek and PSJ (2010) Jachymski, Krych, Idziaszek, PSJ, Phys. Rev. Lett. 110, 213202 (2013) Phys. Rev. A 90, 042705 (2014) Confined collisions in reduced dimension

Received 12 Jan 2016 | Accepted 3 Mar 2016 | Published 14 April 2016

DOI: 10.1038/ncomms11279

OPEN

Doublon dynamics and polar molecule production in an optical lattice

Jacob P. Covey^{1,2}, Steven A. Moses^{1,2}, Martin Gärttner^{1,2}, Arghavan Safavi-Naini^{1,2}, Matthew T. Miecnikowski^{1,2}, Zhengkun Fu^{1,2}, Johannes Schachenmayer^{1,2}, Paul S. Julienne³, Ana Maria Rey^{1,2}, Deborah S. Jin^{1,2} & Jun Ye^{1,2}

 ${}^{40}K + {}^{87}Rb \iff {}^{40}K^{87}Rb$

Two atoms in a trap

3D spherically symmetric harmonic trap: $\omega = 2\pi v$ 2-body potential: V(r)

Separate the center of mass and relative motion

$$\frac{\text{Center}}{\text{of mass}} \left[-\frac{\hbar^2}{2(2m)} \nabla_R^2 + \frac{1}{2} (2m) \omega^2 R^2 \right] \Psi_{cm}(R) = E_{cm} \Psi_{cm}(R)$$

$$\frac{1}{2(2m)} \nabla_R^2 + \frac{1}{2} (2m) \omega^2 r^2 + V(r) \Psi(r) = E \Psi(r)$$

$$V_{eff}(r)$$

From Tiesinga, Williams, Mies, and PSJ, Phys. Rev. A 61, 063416 (2000)

Wave function in a harmonic trap 2 Cs atoms

From Tiesinga, Williams, Mies, and PSJ, Phys. Rev. A 61, 063416 (2000)

Solid: numerical Dashed: pseudopotential

Tiesinga, Williams, Mies, and Julienne, Phys. Rev. A 61, 063416 (2000)

E. L. Bolda, E. Tiesinga, and P. S. Julienne, *Phys. Rev.* A 66, 013403 (2002)
D. Blume and Chris H. Greene, *Phys. Rev.* A 65, 043613 (2002)

Extension to quasi-1D and -2D: Bolda, Tiesinga, and PSJ, *Phys. Rev.* A**68**, 032702 (2003) Naidon, Tiesinga, Mitchell, PSJ, New J. Phys. **9**, 19 (2007)

Making cold molecules by time-dependent resonances in a trap

F. H. Mies, E. Tiesinga, P. S. Julienne, *Phys. Rev.* A **61**, 022721 (2000) P. S. Julienne, E. Tiesinga, T. Köhler, cond-mat/0312492; J. Mod. Opt. **51**, 1787(2004) Adapt coupled channels free-space scattering to a trap (QDT viewpoint).

$$\frac{V_{\rm nv}}{\hbar\omega} = \left(\frac{2\sqrt{3}}{\pi}\right)^{\frac{1}{2}} \left(\frac{A_{bg}}{d}\right)^{\frac{1}{2}} \left(\frac{s_{\rm n}\Delta_{\rm n}}{\hbar\omega}\right)^{\frac{1}{2}} \left(1 + \frac{4}{3}v\right)^{\frac{1}{4}}$$

Landau-Zener curve crossing:

$$A_{LZ} = \frac{2\pi}{\hbar} \frac{\left|V_{\rm nv}\right|^2}{s_{\rm n}\dot{B}} = \frac{4\hbar}{\mu d^3} \left|\frac{A_{bg}\Delta_n}{\dot{B}}\right|$$

Fraction converted: $1 - e^{-A_{LZ}}$

⁸⁷Rb F=1, M=+1 in lattice cell near 1007 G

⁸⁷Rb 2 *a* atoms in lattice cell near 1007 G

Thalhammer, Winkler, Lang, Schmid, Grimm, Hecker Denschlag, "Long-lived Feshbach molecules in a 3D optical lattice," PRL 96, 050402(2006)

Complexity and Chaos

B. Laburthe-Tolra, Physics 5, 58 (2012) "Quantum Dipolar Gases in Boson or Fermion Flavor"

Diagonal potential energy curves for 164 Dy + 164 Dy at B = 50G

Asymptotic $|(j_1j_2)jm_j,lm_l\rangle$ channels, $m_l+m_l = -16$, $0 \le l \le 10$

From Petrov, Tiesinga, Kotochigova, PRL 109, 103002 (2012)

Quantum chaos in ultracold collisions of gas-phase erbium atoms

Albert Frisch¹, Michael Mark¹, Kiyotaka Aikawa¹, Francesca Ferlaino¹, John L. Bohn², Constantinos Makrides³, Alexander Petrov^{3,4,5} & Svetlana Kotochigova³

 $\mathbf{I} \in \mathbf{I} \cap \mathbf{E} \mathbf{R}$

¹⁶⁸Er in ground state ${}^{3}H_{6}(m=-6)$

Dense set of overlapping (interacting) resonances: mixed eigenstates of "random" character

From Frisch et al, Nature 507, 475 (2014)

Fig. 40 of Quéméner and PSJ, Chem. Rev. 112, 4949 (2012)

¹⁶⁴Dy M=-8

Pfau/Ferlaino/Kotochigova collaboration, Phys. Rev. X 5, 041029 (2015)

Feshbach resonances in Dysprosium

Atom-loss spectroscopy of ¹⁶⁴Dy at high field, observation of several broad features

"Patterned" complexity \rightarrow underlying simplicity

T. Maier, I. Ferrier–Barbut, H. Kadau, M. Schmitt, M. Wenzel, C. Wink, T. Pfau, K. Jachymski, and PSJ, Phys. Rev. A, 92, 060702 (2015) Plus Supplemental Material (data & theory)

Grusi 16/03/2015

T. Maier, I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, C. Wink, T. Pfau, K. Jachymski, and PSJ, Phys. Rev. A, 92, 060702 (2015) + Supplemental material

Dy "Toy" QDT model: 1 strong (broad), many narrow (weak) resonances

Bohn-Cavagnero-Ticknor model

Bohn, Cavagnero, Ticknor, New. J. Phys. 11, 055039 (2009)

Ea² versus a in van der Waals units

<u>Non-reactive</u> cold molecular collisions e.g., NaK, RbCs, NaRb, KCs

Many open research questions:

Are their collisions "chaotic" due to dense resonance set?

Do their collisions exhibit "patterned complexity" when tuned?

Are hyperfine spin-relaxation collisions fast?

Do they exhibit "sticky loss collisions" at universal rates?

Is collision control possible in reduced dimensional structures?

