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OUTLINE AND MOTIVATIONS

The context:

e System: spin-1/2 Fermi gas in the so-called BEC-BCS
crossover. Zero-range T — | interactions with s-wave
scattering length a of arbitrary nonzero value (|a|/b —
oo, resonant interaction).

e Realised in the lab with cold atoms and a magnetic Fes-
hbach resonance.

e After a presentation of the basic theory tools, review
some new questions raised by these systems.



Outline:

L.
2.

Description of the system

The condensate of pairs according to BCS theory: equa-
tion of state, fermionic excitation branch, condensed
fraction

. A second, bosonic excitation branch: RPA and time-

dependent BCS, second Josephson relation

. Superfluidity: The Landau critical velocity

. Temporal coherence: Thermal blurring of the conden-

sate phase

. Maximising the interaction effects: The unitary limit



1. DESCRIPTION OF THE SYSTEM



The system:

e N fermions of mass m with two internal states T, | in
a trap (a cubic box of size L with periodic boundary
conditions)

e Try to have a coherent gas, a fermionic counterpart of
the BEC of bosons: macroscopic quantum coherence

e An attractive interaction between T and | atoms can lead
to the formation of 7| pairs and to their condensation
at sufficiently low temperature (BCS mechanism)

e To have a full pairing: take Ny = N

e To have as universal physics as possible: interaction of
negligible range b characterised only by the s-wave scat-
tering length a between T and |.

e In particular, the energy of possible bound states must
depend only on a, h and m.



e Generically, this makes the interaction in other partial
waves negligible [the p-wave scattering volume for T — T

or | — | is O(b3)].

e Strong motivation: This system can be realised in the
lab with cold atoms and a magnetic Feshbach resonance
(kpb < 1072, |a| > 100b) without having strong three-
body losses (contrarily to p-wave resonances).

Which model interaction 7
e Negligible range: a d interaction ?

e A three-dimensional Dirac delta
Arh?a
m

is not acceptable, it has no meaning beyond the Born
(first order in V') approximation.

V(r; —r;) =gé(r; — 1), g=



e A Kronecker delta on a cubic spatial grid of spacing b is
the nearest viable solution:

g0
V(r; —rj) = ﬁtsr,-,rj

with a bare coupling constant gg linked to the effective
coupling constant g by

1 1 / d°k m

go g JrBz (2m)3Nh2k?
with the first Brillouin zone [—7 /b, 7w /b[, and the usual
dispersion relation for the kinetic energy operator:

2 2
p”lk) = (hk)“|k)
e In the limit b — 0, taken at the end of the calculations,
go < 0 so an attractive interaction.

e Pure on-site interaction so 7| s-wave scattering only.



e No negative-potential-collapse in the large-N limit. Only
known bound state: N =2, a > 0 (Egj, = —h?/ma?).

Complements:

e Definition of the s-wave scattering length: The zero-
energy two-body scattering state ¢(r) out of the poten-
tial solves A¢ = 0 so is of the form

¢(r):A+§:A<1—3>

r
e To obtain gg, case of N = 2 in the box with P = 0:
|y = 90 ¢(r = 0)
L3/2E — h2k2/m
1 1

1
%‘ﬁzk:E—h%Hm

If L > |al|, energy shift of k = 0 is E ~ g/L3, negligible
as compared to h2k? /m except for k = 0.



2. THE CONDENSATE OF PAIRS ACCORDING TO
BCS THEORY: EQUATION OF STATE,
FERMIONIC EXCITATION BRANCH,

CONDENSED FRACTION



The BCS ground state variational Ansatz:

e Reminder: case of bosons. Pure condensate ansatz o
(a;ro)N |0) leads to the Gross-Pitaevskii equation for the
condensate wavefunction ¢(r).

e Bardeen, Cooper, Schrieffer (1957): a Glauber-type co-
herent state of pairs

¥pcs) = Nexp [b9Y T(r, )l ()] (') | |0)

but now the pair creation operator is not bosonic!

e Breaks U (1) symmetry but is easier to handle: Gaussian
state, one can use Wick theorem (sum over all binary
contractions, with permutation signs):

(b1babsby) = (b1b2)(b3bs) — (b1b3)(b2byg) + (b1by)(b2b3)



e One has to minimise the grand canonical Hamiltonian:
. o PP
Hgc =Y b)) (—ZmArwa> + 90y b3PLplep oy
r,o r
—H Z bgf‘ﬁi-";a
r,o

The BCS Hamiltonian:

e One associates to Hgc a quadratic Hamiltonian Hpcg
by incomplete Wick contractions:

b1bab3by — b1ba(bsby) — b1bg(baby) + b1by(babs)
—|—<i)162>i)364 — <6163>6264 -+ (13164)6263
—[(b1b2) (bgbs) — (b1b3)(baby) + (b1b4)(b2b3)]

e Modifies the interaction term only. No T — | coherences:



(gﬁ%ﬁl) — 0. As a consequence:
g0l by — (1] go (P Pr) + huc]
+[¢$¢TQO<¢I¢¢>—|— T<—>l] — c-number
e Pairing terms involving the pairing field
A(r) = go(th) (r)ehy(x))
e Hartree terms involving the densities
po(r) = (P (r)Pe(r))
disappear in the continuous space limit b — 0.

e We keep up to an additive c-number:

g0 Z bgiﬂiﬁjiﬁliﬁ — Z bSA(r)tﬁLﬁI + h.c.



Why introduce this Hamiltonian 7
e Hgcg and Hgc have the same mean value.

e For any infinitesimal variation of I:

(6{¥BCs|)HaclvBes) = (6{¥Bcs|) HBcs|¥Bes)

e The ground state of Hgcg is a BCS coherent state.

e So the ground state |vg) of Hgcg is the minimiser of
(YBCes|Hgelvnes)-

e Self-consistency conditions:
go(¥ (r)hy(r))o = A(r)
($L () ho(r))o = po(r)



How to diagonalise Hgcg ?

e A quadratic Hamiltonian gives linear Heisenberg equa-
tions of motion for the fields:

: P B —%Ar — K A(r) P
1hoy (,&i) — A*(1) o {—%Ar o UJ} <¢}>

e Modal expansion:

G 2, (2~

in real, spatially homogeneous, spin-symmetric solution

5 A
U\ _ [|[2m — H Ui
i) T\ s —e o)) v

with the normalisation condition |Ug|? + |V%|? = 1. This



gives the BCS spectrum

= |[— — A?
€f.k ( P~ H) ™
and the modal amplitudes
h2 k> 1A
- )
(Uy +iVy)? = 2m—F
€f.k

e The operators by, and Bcha obey fermionic anticommu-
tation relations. They are annihilation and creation op-
erators of fermionic quasiparticles. They correspond to
pair-breaking excitations. Ground state=vacuum of by, .

Hpcs = 2o + Z € f,kf?f;af?ka
k,o



Gap and equation of state:

e Physical interpretation of A for i > 0: spectral gap =
minimal pair breaking energy. Overall shape is a sou-
venir of the ideal Fermi sea excitation spectrum.

e For 1 < 0, minimal pair-breaking energy = (u2—|—A2)1/ 2,

2_

— WA=15 ’
—— WA=0,86 4
e wa=02| S -
N Fa
WA=-08 | ,

1,5

g /A,
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e This was expected in the limit kpa — 07 (p = k%/37‘l’2).
A dimer exists, with a size << mean interparticle dis-
tance. The ground state is a Bose-Einstein Condensate
of dimers. BCS theory correctly predicts this to leading
order: (i) the pair function o< dimer wavefunction, (ii)

p ~ Egim/2 and A/p = O(kpa)3/2.
e In the opposite BCS limit, kpa — 07, u — hzk%/2m
and A/p ~ 8e 2 exp(—mn/2kp|al|). Pairing gets fragile.

e Explicit form of the implicit equations (Ej = h?k?/2m):

d3k
p= / (27r)3 !

B —p

€fik

Y

d3k

1 1

§:/<

27)3

2E;,  2ef

The condensate mode ¢ and its pair mean number Ny:

e Generalisation to fermions of the definition of Penrose



and Onsager:

b° > pa(ry,ra;rh, rh)e(r], rh) = Nop(ry, r2)

AN 4

where po is the two-body density operator
pa(r1,rast,rh) = (P1(x)P] () (r2)hy(r1))

e Only the anomalous average 1ﬁ l¢T gives a long-range
contribution:

1/2 o o ke (11—
o(r1,r2) = (Py(r2)di(r1)) = —5 Z 2% et rr)
A? N
Ng = Z 5 = Var —
kA€t 2
Ny 3t A Ny 1
— o~ and — —




Number of condensed pairs over the number of fermions

0,7

0.6 |

0,51

i 041
3 0,35




A word of caution: BCS theory is only variational

e Precise measurements have been performed in cold atom
systems.

e The minimum A of €f) and its location in the unitary
limit [Ketterle, PRL, 2008]; Hartree shift is observed.

e Equation of state: at all accessible temperatures in the
unitary limit and at zero temperature in the whole BEC-

BCS crossover (Salomon, Nature and Science, 2010; Zwier-
lein, Science, 2012)

e The condensed fraction: Mukaiyama, Science, 2010.



3. A SECOND, BOSONIC EXCITATION BRANCH:
RPA AND TIME-DEPENDENT BCS,
SECOND JOSEPHSON RELATION



The BCS excitation branch is not the end of the story:

e It is expected from hydrodynamics that any superfluid
with short-range interactions has a gapless phononic ex-
citation branch at low wavenumber q:

€ ~ hc
b,q 40 q

with a sound velocity given by

o dp
mc® = p—
dp
e Phonons are bosons: a bosonic branch.
e For a pair-condensed Fermi gas, can be obtained with

Anderson’s RPA (1958).
Anderson’s RPA in short:

e Take as unknows all possible operators Os that are bi-
linear in the fermionic fields



e Write their Heisenberg equations of motion:

d 1
L0y = —[0s, Hei] = O
-2 z'h[ 2, HaC] 4

e Perform incomplete Wick contractions to turn O4 into
a linear superposition of the O2’s, with coefficients given
by expectation values in the ground stationary BCS state.

e The eigenmodes of these linear equations give the bosonic
mode dispersion relation.

Optimized implementation:

e Smarter to use the quasi-particle operators Bka than the
particle ones Gy .Use their sum and difference, and sort
by total momentum change hq. Setting k4 = k &= q/2:

~d 4 7 NI N BN |
yk or Sk — b—k+lbk—T - bk—i—Tb—k—l

~d pd g po L pT 7
mk or hk — bk_|_Tbk—T - b—k_lb—k—kl



e A coupling to collective variables appears:

A

+ 9o + : T _ 4+
Y+ = E Z quyquIth qu — Uk+Uk_ - Vk_|_vk_

- g0 + . : +
y:t =73 Z wququ1th Wiy = Uk, Vi = Vi Ug_
k

e Setting elj{:q = €fk, TEfKk_*

L d . S
zhd—yﬁ — Ekqsk + Wk (S~ +m™) — wl_{l_q(M — §T)

d -
hd—sk = equk -+ VV;;I(Y+ h™) — wkq(y + HT)

: ~q_ ___—17q
R — e
Yk T T %kq Mk



The resulting dispersion relation:

2
I-l--l-(wb,qa Q)I——(wb,q7 q) — hzwé [I‘l‘_(wbaQ’ Q)}

+12
ek (Wk ) 1
I++(w,Q)=/3d3k TR >
R _(hw) — (6)?  2efk
B , .
ek (Wk ) 1
I__(w,q)= [ d°k q2 d 5 T
RS | (hw)? — (gi)?  2€5k
W W,
I,_(w,q)=[ d°k kq kq

RS (hw)? — (e )?

e Gives the same spectrum as other methods: (i) a Gaus-
sian approximation of the action in a path integral frame-

work (Strinati, 1998; Randeria, 2014), (ii) a Green’s
functions approach associated with a diagrammatic ap-



proximation (Combescot, M. Kagan, Stringari, 2006).

e Has indeed a phononic start, with sound velocity given
by hydrodynamic relation for BCS equation of state.

e Discussion of the branch properties will be given in sec-
tion 4.

A simpler approach: time-dependent BCS

e Reminder: for weakly interacting bosons, the quantum
Bogoliubov spectrum can be obtained from a linearisa-
tion of the classical field Gross-Pitaevskii equation for
the condensate wavefunction ¢(r) around the steady state
solution.

e Does the same property hold for pair-condensed fermions?

e For bosons, the fields ¢o(r) and ¢*(r) are canonically con-
jugate Hamiltonian variables. For fermions, one has the



same structure for the field ®(ry,r2) defined as follows
(Blaizot, Ripka, 1985):

I' has matrix elements b°T'(rq, 12)

® has matrix elements b3®(r1, 1)
® = —I(1+LT)""/?
e The Gross-Pitaevskii-like equation is

’ihb68t(1)(r1, r2) — 3(1)*7'( with H = <HGC>

e Linearising around the minimiser ®g,

. 5 5
ehoy (5@*) =L (5@*)

one recovers the same excitation spectrum as the RPA.

e But the eigenvectors do not coincide. The RPA opera-

tors frhE and ﬁﬁ, of the form BTB, have no counterpart.



e Why ? Their expectation value is second order in 0®P:

[YBcs) = |1+ Y 65T (e, )l (1) () + O(OT)?| [wycs)
of the form (1 4 TbTb7)|0).

A spectacular consequence in the q = 0 subspace:

e The ® theory breaks U (1) symmetry. It fixes the global
phase Q to some specific value. Energy is () —independent.

e According to Goldstone theorem, there exists an excita-
tion branch reaching zero.

e Already known from Gross-Pitaevskii equation (Lewen-
stein, You, 1996; Castin, Dum, 1998):

H=Q0+vP?+ ) eB*B+ 0(6®)°

where the conserved quantity P is half the particle num-
ber and is the canonical conjugate of ().



e Coefficient ~ easy to find out:

S[B0(N) — iuN] ~  BY(N) (8N)? = 274 p2

e Resulting phase evolution:
hd(Q) dp (N
( )(SN

2 dt dN

e Same, more lengthy analysis for the RPA (Kurkjian,
Sinatra, Castin, PRA, 2013):
hdQ dp,(N)

f, A
—_— — N N) + E b b
2 dt ( ) ko

the constants of motion mk—o and hEZO acting as source
terms.

e Interpretation: adiabatic derivative of the energy of the
fermionic quasi-particles = chemical potential.



¢ A quantum version of the second Josephson relation

hdo

“2dt "

where 0 is the phase of the order parameter.
The missing piece:
e But where is the contribution of the bosonic quasi-particles?

e Can be obtained by the Gross-Pitaevskii-like approach,
reusing and adapting a calculation done for bosons (Sina-
tra, Castin, Witkowska, EPL, 2013).

e After quantisation through the bosonic image formalism
(Blaizot, Ripka, 1985), and leaving the grand-canonical
rotating frame (—t = temporal coarse-graining):

—t
hdO

- de f x dequ
——— 7 = pp(N) 4+ : ’ »
T po(N) + N Nt xo + E | Mp,q




4. SUPERFLUIDITY: THE LANDAU
CRITICAL VELOCITY

‘La vitesse critique de Landau d’une particule dans un su-
perfluide de fermions”, Comptes Rendus Physique 16, 241
(2015) [english version arXiv:1408.1326]



WHAT IS A CRITICAL VELOCITY ?
Defining property of a T' = 0 superfluid: d v > 0

e an object injected in the superfluid at a velocity v <
v and coupled to it, does not experience friction and
remains in motion forever

e v. a priori depends on the properties of the object (its
mass M), of the superfluid (its excitation spectrum q —
€q) and of their interaction.

e N.B. : object prepared in its internal ground state.

Limiting case considered by Landau: fluid-object interac-
tion — 0

e is the emission of an excitation of wavevector q in the
superfluid compatible with conservation of momentum
and unperturbed energy (Fermi golden rule) ?



e Conservation of unperturbed energy

L g2 1M( hq>2+ — 7 G
“Muv® = = vV — — € -v=——+c¢€
2 2 M 1 4 oM 4
2 2
o oyt €q
cannot be satisfied if| v < v, = Inf -
9 q

Usual criticism of the Landau critical velocity:

e Approximation (done here): include minimal nonzero
number of elementary excitations. (Gives a nonzero v..

e But it is argued that, if one includes the excitation of a
large vortex annulus of radius R,

q X R? and €q X RIn R

one gets a vanishing O(RIn R/R?) critical velocity for
our infinite superfluid.



e Does not apply however for a finite mass object:

vortex

Ve Mj—|—ooO< M1/3 >

e Lychkovskiy theorem [PRA (2015)]: for a finite M and
a weak enough superfluid-object nonnegative interaction
potential U, there exists a nonzero critical velocity and
it is almost given by Landau formula (with all possible
excitations of the superfluid included):

d3rU (r
V(t=0) = vt = +oo)| < L1 LTI
M ve — v(t = 0)]
e In this lecture object = a particle (an atom). Experi-

ment already done in a superfluid of bosons (Ketterle,
PRL, 2000). Generalisation to a superfluid of fermions
linfinite mass case: Ketterle, PRL, 2007)].



CONTRIBUTION v, f OF THE FERMIONIC BRANCH
Pair-breaking excitation spectrum of BCS theory:

- ~1/2
<h2k2 )2 ,
€fk= || 5 —H| tA

e We restrict to the fermion-like regime of a positive chem-
ical potential ¢ > 0 (in the boson-like regime, v, deter-
mined by the bosonic branch)

e Gap A, located at ki, > O |




e A trap to avoid: fermionic excitations are created by
pairs due to conservation of the number of fermions (cf.
density-density superfluid-object coupling)

1 k- ik
on.(r) — m Z Uko.ka_QZk r 4 Vkabl.‘;_a-e tk-r
k

e Emission a minima of a two excitations of wavevectors ky
and ko so, at fixed total wavevector q, effective excitation
branch in Landau reasoning:

€fia = 0 [€ £ T € flo=q—ki]

ecri = €r(k) is a smooth function of k that diverges at
infinity, so zero gradient at minimum:

€'t (k1)k1 = €p(ka2)ko
e This generates four cases:
(l)kl = kg = g, (ll)Rl = 122, kil # kig, (111)121 = —Rz, (1\/)6}(’61) = E}(kﬁz) =0



e Minimisation is trivial for q < 2k.in

©

n: ki1 and ko are
located in the minimum of €.k k1 = ko = kyin

I
. “ (zv)
T (i) q < 2km1n . Ef — ZA
T 'q
DN ORI (z)
PN .. eeft
2N L2 — HE N
m
00 i(min 2I(i:nflex ékmin q

Minimisation over gq:

e Use u as unit of energy, (2fmu)1/2 as unit of momentum,
(/2m)1/2 as unit of velocity. Then v, # is the minimum
eff(q)
of vg(q) = aq +

with a = 77. Zero g-derivative:

| d €57 (q)
0= o = Fy(ao) with Fy(q) = — J




e Graphical solution of Ff(qp) = o

F(d)

a > A/2: type (iv), g0 < 2knmin
a < A/Z : type (i)a qo > 2kpnmin

e Across the (i)-(iv) boundary: ¢qg is continuous, so is
2
%fvc, f = qo, but %fvc, f 1s discontinuous.

2

@

a=m/M




CONTRIBUTION v, OF THE BOSONIC BRANCH
General properties of this branch:

e excitation of the pair center of mass (Anderson, 1958)
e at low g, is phononic (sound wave): €, o ~ hicq

e remains below fermionic biexcitation “roof”’ (would be
otherwise unstable): € < e‘}ﬁ

o Its wavenumber existence domain can be [0, gsup| (for
krpa < 0) or [0,gsup| U [ginf, +oo[ or [0,+oo[ (1/kpa >
0.16). One has gsup > 2knjn always.

e Reaches the biexcitation roof tangentially at gsup :

d d
€p(gsup) = G?ﬂ:(CIsup) and d—qeb(QSuP) — —Ef (CIsup)

e Entirely concave (convex) in the BCS (BEC) limit, rich
concavity properties in between.



Alp_=1,27

35
ul iexcitati f ., ,1(k.8)=0.161
oA - biexcitations BCS : sq :ﬁ J./(kFa):o.157
2,5F _ .
7 - 1/(k.2)=0.108
2 B -
o N 0
w o0 [
15+ ng . oo
1; ,&\0‘\6 L 1/(k.2)=-0.072
@“61\\ — 1/(k8)=-0.144
0,5 i
O0 0I 5 I1 1I 5 |2 : _ 1/(k_a)=-0.465

[taken from Kurkjian, Castin, Sinatra, PRA (2016)]
Minimisation of vy(q) = aq + #:
e We discuss here minimisation over [0, gsup)].

e Three possible cases:

(O) :qo = 0, (QO) :0 < g0 < gsup; (CIsup) ‘d0 — gsup



e Median case:
d €y(q)

d [}
0 = a—Fp(qo) and ——Fp(qo) < 0 with Fp(q) = —
dq dqg q

e Graphical solution of & = Fy(q) for A = 0.31:
,Ub(q(i)nside) I A—I— A

0 am** < a:qgp=0
S0 17 Fp(gsup) < a < o™ gg €]0, gsup|
o) a < Fb(QSUp)3 d0 = dgsup




(b)

(0,55 0,27)
B A/p=1,38 1

1,5

e Similarly to fermionic branch: at boundary Bg, — Bgg,,»

2
leading order discontinuity is the one of %’Uc,b

e At the other boundaries, leading order discontinuity is
the one of %fvc’b



SYNTHESIS: v, = mm(vc’f, ’Uc,b)
1 ' I : I '
point triple
=
%0,5— B, enentier sous-partiede B, : v.=C ]
o) (0<q,<q, p) (0,=0)
Qg/o\ep sous-partiede F., (g, >
FI’ 0 % qslup)
% | 05 | 1 | 15
Al

Some simple facts coming among others from 2k,,;;, < gsup:

o e;zzﬂ-“ (gsup) < €p(gsup) so Bg,, is masked by F;)

e over its existence domain, €,(q) < e‘;cﬁ(q) so F;y) is
masked by Bg, U By

e By, — F(,,;) boundary = Bg, — Bg,, boundary



LANDAU FOR THE ENS SYSTEM (Salomon, PRL, 2015)
Experiments at ENS: superfluid cold atom mixtures

e object = small condensate of bosons of velocity v ("Li).

Bogoliubov excitation spectrum quOg + hq - v. Moves in
a big gas of spin-1/2 fermions at rest (°Li).

e conservation of energy hq-:«-v = e]E(()lg + €q impossible if

Bog
. € ~+€ . /E =01
’U<’Uc:111quh ! 1 T | B'T |
q segment accessible dans la manip
point triple
ECD
~ 0o B [g,=0] : v_=c_*c,
07 = B [0<q < ‘
o [0<q,<qy,,]
. R .
IS -
’ T + N F[9,> qg,,)]
ot ; | ; | ;
% 05 1 15

00 -04 -02 00 02 04 06 08 10 A/
1/I<FaF HF



5. TEMPORAL COHERENCE: THERMAL BLURRING
OF THE CONDENSATE PHASE

“Brouillage thermique d’un gaz cohérent de fermions”, Comptes
Rendus Physique (in press) [english version arXiv:1502.05644]



DEFINITION OF THE PROBLEM
The considered system:

e A trapped, unpolarized, interacting gas of fermions of
spin 1/2, prepared at thermal equilibrium at 0 < T <K T,

e a condensate of pairs in presence of a weak density of
thermal excitations

e the gas is isolated from the environment in its further
evolution

e May be realised with cold atoms !
The question we raise:
e what is the temporal pair coherence of the gas ?

e at long times, it is dominated by the condensate coher-
ence



e the condensate coherence time is the width of the func-
tion .
g1(t) = (ag(t)ap(0))
where ag annihilates a pair in the condensate mode

a0 = [ dPrd®/p(e, 1)) (1) ()

A generalized statistical ensemble:

e the system is in a statistical mixture of many-body eigen-
states [¢)) with eigenenergies E

e solve the problem for the pure state |1y ):
g3 () = (a(t)ao(0))x

e Equivalent to microcanonical ensemble, cf. Eigenstate
Thermicity Hypothesis (ETH)

e Finally average over statistical mixture



MODULUS-PHASE REPRESENTATION

~ 1/2
a'O_ IHON/

o NO is the number-of-condensed-pairs operator
o é() is the condensate phase operator

Neglecting the fluctuations of the modulus:

e For a large system, low relative fluctuations of the num-
ber of condensed pairs: NO ~ Ny

g7 (t) ~ N()elEAt/h<e_leoe_th/hei90>)\

e Introducing

A

W =e 9% — = —i[6y, H] +... = O(NY)
one obtains
g7 (t) ~ NoetEAt/ (g |e THHFWIL/ R4,



REINTERPRETING THE PROBLEM

g1 (t) =~ Noe'Ext/(apy | THHAWIE/ By
This is the probability amplitude that the system, being
initially in state [1)), is still in state |1¢y) after an evolution
time t in presence of the weak perturbation W.

Classic problem of a state weakly coupled to a quasi-continuum:
In thermodynamic limit, the perturbation has two effects:

e energy shift: perturbed energy Ex—+{(1y|W|y)+O(N 1)

e decay with a rate given by Fermi golden rule:

== 2 (Wl W) 6y (Bx — Ey)
HFEA



PHYSICAL INTERPRETATION

A

. hde 0 (1)
O dt N

Coarse grained time derivative of the phase operator:

hdf de
2 ar = po(N) + ) _ S: s,
s=f,b &

where pug = ground state chemical potential, ns o = quasi-
particle occupation number operator in the two branches
s = f,b. Its expectation value in eigenstate 1 is

dfy

<—>>\ = —2pmc(Ex; Ny) /R

ladiabatic derlvatlve (at fixed occupation numbers) of en-
ergy = microcanonical chemical potential|. This is the sec-
ond Josephson relation on the order-parameter phase.




e A microscopic derivation using RPA and time-dependent
BCS-type variational ansatz in section 3

e At low temperature, where only bosonic branch matters,
also predicted by quantum hydrodynamic theory.

e A quantum generalization of the 2nd Josephson relation.
Physical interpretation of ~yy:

e F'rom a closure relation:

7}\:/+Oodt Re(dé(;);t)dégiO)}A_(@)A — 0(1/N)

e This is the phase diffusion coefficient :

— D(E\.N
M LT (Ex, Ny)

e Equation for 0( ) plus kinetic equations describing the
quasi-particles colllslons allow us to calculate



TAKING THE STATISTICAL AVERAGE

g (t) ~ Noe2ithme(Ex,N))/heg—D(E),Ny)t

Average e2itimc(Ex,Ny)/ " linearising pme around (E,N)
and approximate D by its central value: extra Gaussian
decay factor

g1(t) ~ Noe2itme(E,N)t/hg—t*/2t;, o~ D(EN)t

with characteristic time

Olmc

0
Umc(E N)—I—E =

(2t /h) "2 = Var | N N

(E,N)

Whenever the two conserved quantities E or IN fluctuate,
ballistic spreading of the phase distribution.



PROPOSED MEASUREMENT SCHEME

/
\\ /ﬁ@.@

Main trap Secondary trap

e Ramsey interferometry to measure g1(t)

e Two weak pulses separated by time ¢t: at most one pair
transferred to the secondary trap

e Dimerize the pairs for preparation, pulses and detection

® (ngec) oscillates at w = 2(main — Msec)/h, the contrast
is |g1(¢)/91(0)|



UNITARY FERMI GAS IN CANONICAL ENSEMBLE

e One only needs the equation of state, measured at ENS
and MIT, at T' < T¢:
OT Mcan
3TEcan

Mmc(Ecan(T)) =~ Hcan(T) — OgMmc =

Var E = kBT28TE

e can be estimated by the one of an ideal gas of quasi-
particles, keeping the leading order in T for each branch:

N K2 ( 0 )5 (1 + 27)?

(tprerp)?  \0.46 (14 7)

where ep = kgTF is the Fermi energy, 6 = T /Tr and r
is the relative weight of the two branches:

9/2
o <0.316> / —0.44/6
—\ 0




UNITARY FERMI GAS IN CANONICAL ENSEMBLE
Discs: from the equation of state measured at MIT.

Dashed line: approximate formula (ideal gas of quasi-particles)
40 T T T

0- \ i

12
et /(hN')

10

| | | | | | | |
007 008 009 01 011 012 013 014 015
T/ T,

Typical values: For T = 0.12Tf ~ 0.7T, N = 10°, Tp =
1uK, ty, = 20ms



PHASE DIFFUSION OF UNITARY GAS AT LOW T

e one only keeps the bosonic excitation branch

e the branch is convex at low gq:

2

v [ hq

€b,q = heq 1+—(—) +0(q")|, ~Yrpa ~0.1
q—0 8 \mec

e Kinetic equations for the quasiparticle numbers includ-
ing the Beliaev-Landau decay mechanism

e Diffusion coefficient at low temperature

hIN D 4 . 9
~ C0 with C x~°,C ~04
Ep 06—0
e For Ty = 1uK, increasing the temperature to T =

0.16Tr = 0.957T, and decreasing the atom number to
N = 500 we find tD. ~ 15s



CONCLUSION OF SECTION 5

e We calculated the intrinsic coherence time of a conden-
sate of paired fermionic atoms at thermal equilibrium.

e Coherence time < phase dynamics, and déo /dt o< “chem-
ical potential operator” including pair-breaking and pair-
motion excitations.

o As Og(t) ~ —2pumc(E)t/h, energy fluctuations from one
realization to the other — Gaussian decay of the coher-
ence tp, N1/2,

e In the absence of energy fluctuations, the coherence time
scales as IN due to the diffusive motion of 6.

e Measurement proposition with cold atoms. We predict
t,y =~ 20ms for the canonical ensemble unitary Fermi
gas.



6. MAXIMIZING THE INTERACTIONS:
THE UNITARY LIMIT



OUTLINE OF SECTION 6
¢ What is the unitary gas ?

e Separability in hyperspherical coordinates

e The Efimov effect

e Cluster or virial expansion in the unitary limit



DEFINITION OF THE UNITARY GAS

e Opposite spin two-body scattering amplitude
1
= —— Vk
Tk o
e “Maximally” interacting: Unitarity of S matrix imposes

| fr] < 1/k.

e In real experiments with magnetic Feshbach resonance:

11 1
7 =3 + ik — 5/@27«6 + O(k*b?)
k

unitary if “infinite” scattering length a and “zero” ranges:

1
ktypla| > 100, ktyp|Te| and kiypb < 100

imposing |a| > 10 microns for re ~ b ~ a few nm.

e All these two-body conditions are only necessary.



THE ZERO-RANGE WIGNER-BETHE-PEIERLS MODEL

e Interactions are replaced by contact conditions.

e For r;; — 0 with fixed ¢j-centroid éij = (75 + 75)/2
different from 7, k # 1, j:

1 ~

PY(T1ye ey TN) = (r ) A;ilCiis (TR ki 5] + O(Ti5)
(¥

e Elsewhere, non interacting Schrodinger equation

S h? 1 S
Ep(X) = |—Ap 4+ -mw?X?| (X
$(X) = |~ Ayt $(X)
with X = (15 s TN)-
e Odd exchange symmetry of 9 for same-spin fermion po-

sitions.

e Unitary gas exists iff Hamiltonian is self-adjoint.



SCALING INVARIANCE OF CONTACT CONDITIONS

— ]_ —

PY(X) = —A;[C (Tr)ki 5] + O(r;5)
r;;—0 T4

e Domain of Hamiltonian is scaling invariant: If 1) obeys

the contact conditions, so does 1) with
— ]_ —
¥AX) = —x7 ¥(X/3)

e Simple consequences (also true for the ideal gas):

free space box (periodic b.c.) harm. trap

no bound state(*) | PV = 2E/3 (*%) |yvirial E = 2Fy 0rm (k)

() If 1) of eigenenergy E, 1 of eigenenergy E /A2, Square integrable
eigenfunctions (after center of mass removal) correspond to point-like
spectrum, for selfadjoint H. **) E(N,V A3, S8) = E(N,V,S)/A2, then
take derivative in A = 1. ***) For eigenstate 1, mean energy of 1y,

E, = <HL3§1§‘Cia“> + (Hparm ) A?, stationary in XA = 1.




SEPARABILITY IN HYPERSPHERICAL COORDINATES
e Use Jacobi coordinates to separate center of mass C
e Hyperspherical coordinates (arbitrary masses m;):
(F1y...,7N) — (C,R,Q)
with 3IN — 4 hyperangles Q and the hyperradius

N
’I’T’LR2 — Z mz('F'z — 5)2

where m i1s the mean mass.

e Hamiltonian is clearly separable:

h? 3N — 4 N
Hinternal = 2m 8R T R OR + =5 R2 Q

1
—I— E’ﬁzszz



Do the contact conditions preserve separability ?
e For free space EE = 0, yes, due to scaling invariance:
¢E 0 RS (3N 5)/2 (Q)
E = 0 Schrodinger’s equatlon implies

Ago(@) = - |2 = (25 5) 5(S)

with contact conditions. s? € discrete real set.

e For arbitrary F, Ansatz with £ =0 hyperrangular part
obeys contact conditions [R? = Rz(rz] =0) + O(’rz])]

¢ = F(R)R~BN=5)/2¢(()

e Schrodinger’s equation for a fictitious particle in 2D:

hz 2D hz ’ 1 2p2
EF(R) = —2—_A F(R) + sz2—|——mw R°| F(R)




SOLUTION OF HYPERRADIAL EQUATION (N > 3)

2 [ 12 2 i
EF(R) — — " A2PF(R s LR F(R
(R) =~ AWPF(R) + |+ -mw?R?| F(R)

¢ Which boundary condition for F(R) in R = 0?7 Wigner-
Bethe-Peierls does not say.

e Key point: particular solutions F(R) ~ RS for R — 0.

e Distinguish according to the sign of s?.



Case s2 > 0

F(R) ~ Cy{R°+C_R"*

Defining s > 0, one discards as usual the divergent solu-
tion:

F(R) o R° — Eq=Ecom+ (s +1+2q)hw, q €N
then a ladder structure of the spectrum

Eg+8’hoo
2hw

Eg+6hoo
2hw

Eg+4’hoo
2hw

Eg+2hoo
2hw

E
9




Case s2 < 0

F(R) ~ Cy{R°+C_R"*

e To make the Hamiltonian self-adjoint, one is forced to
introduce an extra parameter k (inverse of a length, cal-
culable via microscopic model). For s = i|s|:

F(R) ~ (kR)*—(kR)™*

e This breaks scaling invariance of the domain. In free
space, a geometric spectrum of N-mers:
k2

m
For N = 3, this is the Efimov effect:

e Efimov (1971): Solution for three bosons (1/a = 0).
There exists a single purely imaginary s3 ~ 72 X 1.00624.

e—277n/|3|, ne7

EnOC—



e Efimov (1973): Solution for three arbitrary particles
(1/a = 0). Efimov trimers for two fermions (masse m,
same spin state) and one impurity (masse m’) iff

m
o= — > ac(2;1) ~ 13.6069
m



ARE THERE EFIMOVIAN TETRAMERS ?

2,.2
E?(;l) o _h K’4€—27T’n/|84| 2

m
Negative results for bosons:

¢ Amado, Greenwood (1973): “There is No Efimov ef-
fect for Four or More Particles”. Explanation: Case of
bosons, there exist trimers, tetramers decay.

¢ Hammer, Platter (2007), von Stecher, D’Incao, Greene
(2009), Deltuva (2010): The four-boson problem (here
1/a = 0) depends only on k3, no k4 to add.

e Key point: N = 3 Efimov effect breaks separability in
hyperspherical coordinates for N = 4.

Here, we are dealing with fermions. In short: a 4-body
Efimov effect for 3 + 1 fermions, none for 2 + 2 fermions.



THE 3 +1 FERMIONIC PROBLEM
(Castin, Mora, Pricoupenko, 2010)

e Three fermions (mass m, same spin state) and one im-
purity (mass m/’)

e Our def. of 4-body Efimov effect requires a mass ratio

™m
= — < 0e(2;1) ~ 13.6069
m

e Calculate EF = 0 solution in momentum space. An inte-
gral equation for Fourier transform of A;;:

/ d3k3 D(Ela E3) -+ D(E?n E2)
2w2k2+k2—|—k2+10‘ (k1 - k2 + k1 - k3 + k2 - k3)

e D has to obey fermionic symmetry.



RESULTS

e Four-body Efimov effect obtained for a single s4, in chan-
nel I = 1 with even parity. Corresponding ansatz:

kl X kg
||k1 ko||
in the interval of mass ratio

ac(3;1) ~13.384 < a < ae(2;1) ~ 13.607

—

D(ky,ks) = € (K2 +Kk2)~(8417/2)/2F (ko /Ky, 6)

e In experiments: Use optical lattice to tune effective mass
of VK and 3He* away from a ~ 13.25
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A CONJECTURE FOR THE FOURTH
CLUSTER COEFFICIENTS OF THE UNITARY
FERMI GAS

Shimpei Endo, Yvan Castin



REMINDER ON THE CLUSTER EXPANSION

e spatially homogeneous Fermi gas at thermal equilibrium
in grand canonical ensemble

e low-density or non-degenerate limit: fugacities z4
exp(pug/kpT) — 0. Series expansion of the total pres-

sure:.

P\’
= 2 Z bnlanzz?lzgz

kBT ni,n2
e Measured at ENS up to order 4 in the unpolarised case
z1 = z9 in the unitary limit 1/a = 0: difference with

ideal gas value
Aby = 0.096(15)

e Theoretically challenging: requires the solution of all
possible up to four body problems



Take advantage of scale invariance of the unitary gas:

e The zero-energy free-space solution of Schrodinger’s equa-
tion is scale invariant with scaling exponent s

¢ In momentum space, a homogeneous integral equation:
M(S)[(I)contact] =0
so implicit equation for s:
A(s) =det M (s) =0

e Once all the possible values of s for few-bodies are known,
one knows the energy levels in an isotropic harmonic
trap after separation of the center-of-mass:

Eflel = (29g+s+1)w, q €N

so one gets the few-body partition functions foil’n , and

the cluster coeflicients By, n, of the trapped system.
The limit w — 0 gives access to the by, n,-



A 3-BODY INSPIRED CONJECTURE FOR b4

ABy, = AZ]9
ABs 1 = Azrel Z1ABj 1

7 /dSsin(cI:S) d I A(iS)]
- nA(i
NNy R 2w 2sinh wdS

We have shown with F. Werner for bosons, and with Chao
Gao and Shimpei Endo for fermions, that I2 1 = AB3 1 so

Ioq = Azrel Z1ABj 1




Ioq = AZrel Z1ABj 1

(Generalisation:

I3 = AZ — Z30AB1 1 — Z1ABa

Iz2 = Azrel Z1AB31 — Z1ABy 2
. AZrel . . Zl(Zl . erel,i.deal)ABL1

2 pairons 1 pairon
Decoupled Asymptotic Objects

(at large quantum numbers)

—_ @ pairon
=00
| — @@@ + @@triplon
= (1)~ QUD-
O - 010

Gives Aby ~ 0.06 # 0.096(15).
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