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Abstract & Keyword

Abstract
Let (M,F) and (M ′,F ′) be two foliated Riemannian manifold
and let φ :M→M ′ be a smooth foliated map, i.e., φ is a
leaf-preserving map. Then we study the transversally
holomorphic maps. In fact, a transversally holomorphic map is
transversally harmonic map with the minimum energy in its
foliated homotopy class.

Keyword
Riemannian foliation, Kähler foliation, transversal energy,
transversally holomorphic map, transversally harmonic map.
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Harmonic function

Definition

Harmonic function on an open domain Ω of Rm is a solution of
the Laplace equation

∆f = 0, (1)

where ∆ := − ∂2

(∂x1)2
− · · ·− ∂2

(∂xm)2
and (x1, · · · , xm) ∈ Ω. The

operator ∆ is called the Laplace operator or Laplacian.

The harmonic functions are critical points of the Dirichlet
functional

EΩ(f) =
1

2

∫
Ω

|df|2dx. (2)
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Tension field

Let (M,g) and (N,h) be smooth Riemannian manifolds and
let φ :M→ N be a smooth map.

The tension field τ(φ) of φ is defined by

τ(φ) := trg∇dφ = div(dφ) =

m∑
i=1

(∇eidφ)(ei), (3)

where {ei} is a local orthonormal frame field on M.
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Harmonic map

Definition

Let φ : (M,g)→ (N,h) be a smooth map. Then φ is said to be
harmonic if the tension field vanishes, i.e., τ(φ) = 0.

Let f :M→ R be a smooth function. Then the
Laplace-Beltrami operator ∆ is given by

∆f = δdf = −tr(∇df) = −τ(f). (4)

Hence ∆f = 0 if and only if τ(f) = 0. That is, f :M→ R is a
harmonic function if and only if τ(f) = 0.
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Examples

Examples. (1) Constant maps and identity maps.
(2) Geodesics. For a unit speed curve γ : I→ N (I ⊂ R), the
tension field τ(γ) is τ(γ) = ∇γ ′γ ′, the acceleration vector; hence γ
is harmonic if and only if it is a geodesic curve.
(3) Isometric immersions. Let φ :Mm → Nn be an isometric
immersion. Then τ(φ) = mH, where H is the mean curvature
vector of M in N, so that φ is harmonic if and only if M is a
minimal submanifold of N.
(4) Gauss maps. Let G(k,n) be the Grassman manifold of
k-planes in Rn. Let G :Mk → G(k,n) be the Gauss map
associated to an immersion i :M→ Rn. Then the tension field
τ(G) of G is τ(G) = ∇H, where H is the mean curvature vector
field of M. Hence G is harmonic if and only if the mean curvature
vector field is parallel.
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Variation formula

The energy of φ :M→ N over a compact domain Ω is

EΩ(φ) =
1

2

∫
Ω

|dφ|2dM. (5)

Theorem(Variation formula)

The first variation is given by

d

dt
EΩ(φt)|t=0 = −

∫
M

< τ(φ),V > dM, (6)

wgere V = dφt
dt |t=0 and {φt} be all smooth variations of φ.

Hence a harmonic map φ is a critical point of EΩ(φ) over any
compact domain Ω.
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Riemannian foliation

Let (M,F) be a (p+ q)-dimensional foliated Riemannian
manifold with foliation F of codimension q.

Let TM be the tangent bundle of M, L the tangent bundle of
F, and Q = TM/L the corresponding normal bundle of F.

A foliation is Riemannian if there exists a Riemannian metric
g satisfying θ(X)g = 0 for all X ∈ ΓL. (This is called a
bundle-like metric).

Equivalently, a bundle-like metric means that all geodesics
orthogonal to a leaf at one point are orthogonal to each leaf
at every point.

Let RQ and RicQ and be the transversal curvature and Ricci
operator with respect to transversal Levi-Civita connection
∇Q ≡ ∇ on Q, respectively.
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Basic cohomology

Let ΩrB(F) be a space of basic form ω, i.e., i(X)ω = 0 and
i(X)dω = 0 for any X ∈ ΓL. Locally, for a foliated coordinate
(xj,ya),

ω =
∑

fa1,··· ,ardya1 ∧ · · ·∧ dyar ,
∂f

∂xj
= 0.

Let dB = d|ΩB and δB: the adjoint operator of dB. Note that
δB 6= δ|ΩB .

The basic Laplacian is defined by ∆B = dBδB + δBdB.

(de-Rham Hodge decomposition) Let F be a Riemannian
foliation on a closed manifold M. Then

ΩrB(F) = HrB ⊕ imdB ⊕ imδB, (7)

where HrB = Ker∆B is finite dimensional space.

HrB
∼= HrB, where HrB = KerdB

ImdB
is the de-Rham basic

cohomology group.
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Transversally harmonic maps

Let (M,g,F) and (M ′,g ′,F ′) be two foliated Riemannian
manifolds and let φ : (M,g,F)→ (M ′,g ′,F ′) be a smooth
leaf preserving map, i.e., dφ(L) ⊂ L ′.
The differential map dTφ : Q→ Q ′ is defined by

dTφ := π ′ ◦ dφ ◦ σ, (8)

where σ : Q→ L⊥ is an isomorphism with π ◦ σ = id.

Then dTφ is a section in Q∗ ⊗ φ−1Q ′.

Let ∇φ and ∇̃ be the connections on φ−1Q ′ and
Q∗ ⊗ φ−1Q ′, respectively.
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Transversally harmonic maps

A map φ is said to be transversally totally geodesic if

∇̃trdTφ = 0, (9)

where (∇̃trdTφ)(X, Y) = (∇̃XdTφ)(Y) for any X, Y ∈ Q. This
means that if γ is transversally geodesic, then φ ◦ γ is also
transversally geodesic.

The transversal tension field τb(φ) is defined by

τb(φ) = trQ∇̃dTφ =

q∑
a=1

(∇̃EadTφ)(Ea), (10)

where {Ea} is a local orthonormal basis of Q.
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Transversally harmonic map

Definition

A foliated map φ : (M,g,F)→ (M ′,g ′,F ′) is said to be
transverally harmonic if τb(φ) = 0.

The transversal energy of φ on a compact domain Ω ⊂M is
defined by

EB(φ;Ω) =
1

2

∫
Ω

|dTφ|
2µM, (11)

where µM is the volume element of M.
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The first variation formula I

Theorem (Jung-Jung(2012) [4])

Let φ : (M,g,F)→ (M ′,g ′,F ′) be a smooth foliated map. Let
{φt} be a smooth foliated variation of φ supported in a compact
domain Ω. Then

d

dt
EB(φt;Ω)|t=0 = −

∫
Ω

〈V, τb(φ) − dTφ(κ
]
B)〉µM, (12)

where V(x) = dφt
dt (x)|t=0 is the normal variation vector field of

{φt}.

If F is minimal, then the transversally harmonic map is a
critical point the transversal energy EB(φ).
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The transversal f-energy

Definition

Let f be a non-zero basic function on M. Then the transversal
f-energy of φ on a compact domain Ω is defined by

Ef(φ;Ω) =
1

2

∫
Ω

|fdTφ|
2µM. (13)

When f is constant, E1(φ) = EB(φ).
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The first variation formula II

Theorem (Jung, 2013 [3])

Let φ : (M,g,F)→ (M ′,g ′,F ′) be a smooth foliated map. Let
{φt} be a smooth foliated variation of φ supported in a compact
domain Ω. Then, for any non-zero basic function f

d

dt
Ef(φt;Ω)|t=0 = −

∫
Ω

〈V, τb(φ) − dTφ(ω
]
f)〉f

2µM, (14)

where V(x) = dφt
dt (x)|t=0 and

ωf = κB − dB(ln f
2). (15)
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The first variation formula III

Theorem (Jung,2013 [3])

Let φ : (M,g,F)→ (M ′,g ′,F ′) be a smooth foliated map. If F is
of positive transversal Ricci curvature or minimal, then

d

dt
Efk(φt;Ω)|t=0 = −

∫
Ω

〈V, τb(φ)〉f2kµM, (16)

where fk is a solution of ωf = 0. Specially, any transversally
harmonic map is a critical point of the transversal fk-energy.

The existence of the solution of ωf = 0 is partially assured on
a foliated Riemannian manifold with positive transversal Ricci
curvature. In fact, H1

B(F) = 0.
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Kähler foliations

Let (M,gM, J,F) be a Kähler foliation with a foliation F and a
bundle-like metric gM. Here J : Q→ Q is a complex structure.

Let ω ∈ Ω2
B(F) be a basic Kähler 2-form.

Let QC = Q⊗ C be the complexified normal bundle.

Then QC = Q1,0 ⊕Q0,1, where

Q1,0 = {X− iJX| X ∈ Q}, Q0,1 = {X+ iJX| X ∈ Q}.

And QC
∗ = Q1,0 ⊕Q0,1, where

Q1,0 = {θ+ iJθ| θ ∈ Q∗} and Q0,1 = {θ− iJθ| θ ∈ Q∗},

where (Jθ)(X) = −θ(JX) for any X ∈ Q.
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Transversally holomorphic maps

Let (M,gM, J,F) and (M ′,g ′,F ′, J ′) be two Riemannian
manifolds with Kähler foliations F (codim F = 2n) and F ′

(codimF ′ = 2n ′), respectively.

Let φ : (M,g,F, J)→ (M ′,g ′,F ′, J ′) be a smooth foliated
map. We define the operators

∂Tφ : Q1,0 → Q ′1,0, ∂T φ̄ : Q1,0 → Q ′0,1,

∂̄Tφ : Q0,1 → Q ′1,0, ∂̄T φ̄ : Q0,1 → Q ′0,1

by

dTφ|Q1,0 = ∂Tφ+ ∂T φ̄, (17)

dTφ|Q0,1 = ∂̄Tφ+ ∂̄T φ̄. (18)
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Transversally holomorphic maps

φ : (M,g,F, J)→ (M ′,g ′, J ′,F ′) is a transversally
holomorhic map (resp. anti holomorhic map) if

dTφ ◦ J = J ′ ◦ dTφ (resp. dTφ ◦ J = −J ′ ◦ dTφ). (19)

Note that

∂̄Tφ = 0 ⇐⇒ dTφ ◦ J = J ′ ◦ dTφ,

∂Tφ = 0 ⇐⇒ dTφ ◦ J = −J ′ ◦ dTφ.

Trivially, φ is transversally holomorphic (resp.
anti-holomorphic ) if and only if ∂̄Tφ = 0 (resp. ∂Tφ = 0).
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Transversally holomorphic maps

Any transversally holomorphic(or anti-holomorhic) map
φ : (M,g,F, J)→ (M ′,g ′,F ′, J ′) is transversally harmonic. In
fact, for J-basis {Ea, JEa},

τb(φ) =

n∑
a=1

{∇φEadTφ(Ea) + J
′∇φEaJ

′dTφ(Ea)}

= 0 (φ : holomorphic map)

Transversal partial f-energies.

E+f (φ) =

∫
M

|f∂Tφ|
2µM, E−f (φ) =

∫
M

|f∂̄Tφ|
2µM.

Trivially, Ef(φ) = E
+
f (φ) + E

−
f (φ).
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Transversally holomorphic maps

Define Kf(φ) := E
+
f (φ) − E

−
f (φ).

For basic Kähler forms ω and ω ′ on F and F ′,

Kf(φ) =
1

2

∫
M

< φ∗ω ′,ω > f2µM. (20)

Let {φt} be a foliated variation of φ.. Then d
dtφ

∗
tω
′ is an

exact form, i.e.,

d

dt
φ∗tω

′ = dBθt. (21)

Then Kfk(φt) is constant, where fk is a solution of ωf = 0.
In fact,

d

dt
Kf(φt) =

1

2

∫
M

< θt, δTω+ i(ω]
f)ω > f

2.
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Transversally holomorphic map

Theorem (Jung-Jung,2014)

Let φ : (M,g,F, J)→ (M ′,g ′,F ′, J ′) be a foliated map with M
compact. If φ is transversally holomorphic, then φ is transversally
harmonic with the minimum transversal fk-energy in its foliated
homotopy class.

Proof. Harmonicity is trivial. Since φ is transversally holomorphic,
E−f (φ) = 0. Then

Efk(φ) = E
+
fk
(φ0) − E

−
fk
(φ0)

= Kfk(φ0) = Kfk(φt) (constant)

6 Efk(φt).
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Generalized Jacobi fields

The generalized Jacobi field V is the kernel of JTφ, where

JTφ(V) =
(
∇φtr

)∗(
∇φtr

)
V −∇φκV − trQR

Q ′(V,dTφ)dTφ.

(Jung-Jung, 2014 [5]) Let M be a closed, oriented, connected
Riemannian manifold and let φ : (M,g,F, J)→ (M ′,g ′,F ′, J ′)
be a transversally holomorphic map. Assume that RicQ > 0
and > 0 at some point or F is minimal. Then V ∈ φ−1Q ′ is a
generalized Jacobi field along φ if and only if V is a
transversally holomorphic section.
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Generalized Jacobi fields

(Jung-Jung, 2014 [5]) Let (M,g,F, J) be a closed, oriented,
connected Riemannian manifold with a Kähler foliation F. If
RicQ > 0 and > 0 at some point or F is minimal, then for any
Y ∈ V(F), π(Y) is a transversally holomorphic field, that is,
θ(Y)J = 0 if and only if π(Y) is a generalized Jacobi field of F,
that is, JTid(π(Y)) = 0.

When F is minimal, it is proved by S. Nishikawa and Ph.
Tondeur [10].

Let (M,g,F, J) be a compact Riemannian with a Kähler
foliation. If RicQ 6 0 and < 0 at some point, then any
transversally holomorphic field Ȳ is trivial (Jung-Liu, 2012 [6]).
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[1] J. A. Alvarez López, The basic component of the mean
curvature of Riemannian foliations, Ann. Global Anal. Geom.
10(1992), 179-194.
[2] J. Eells and J. H. Sampson, Harmonic mappings of Riemannian
manifolds, Amer. J. Math. 86(1964), 106-160.
[3] S. D. Jung, Variation formulas for transversally harmonic and
bi-harmonic maps, J. Geom. Phys. 70(2013), 9-20.
[4] M. J. Jung and S. D. Jung, Transversally harmonic maps of
foliated Riemannian manifolds. J. Korean Math. Soc. 49(2012),
977-991.
[5] S. D. Jung and M. J. Jung, Transversally holomorphic maps
between Kähler foliations, J. Math. Anal. Appl. 416(2014),
683-697.

Seoung Dal Jung Transversally harmonic and holomorphic maps on foliated manifolds



Harmonic functions on Rn Harmonic maps Transversally harmonic maps Variation formulas Transversally holomorphic maps References

[6] S. D. Jung and H. Liu, Transversal infinitesimal automorphisms
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