Transversally harmonic and holomorphic maps on foliated manifolds

Seoung Dal Jung

Jeju National University, Jeju 690-756, Korea

August 21 - 24, 2014. ICM satellite Conference on Geometric Analysis, SungKyunKwan University

・ 同 ト ・ ヨ ト ・ ヨ ト

2 Harmonic maps

4 Variation formulas

6 References

・ 同 ト ・ ヨ ト ・ ヨ ト

Abstract & Keyword

Abstract

Let (M, \mathcal{F}) and (M', \mathcal{F}') be two foliated Riemannian manifold and let $\phi : M \to M'$ be a smooth foliated map, i.e., ϕ is a leaf-preserving map. Then we study the transversally holomorphic maps. In fact, a transversally holomorphic map is transversally harmonic map with the minimum energy in its foliated homotopy class.

Keyword

Riemannian foliation, Kähler foliation, transversal energy, transversally holomorphic map, transversally harmonic map.

Harmonic function

Definition

Harmonic function on an open domain Ω of \mathbb{R}^m is a solution of the Laplace equation

$$\Delta f = 0, \qquad (1)$$

where $\Delta := -\frac{\partial^2}{(\partial x_1)^2} - \cdots - \frac{\partial^2}{(\partial x_m)^2}$ and $(x_1, \cdots, x_m) \in \Omega$. The operator Δ is called the **Laplace operator** or **Laplacian**.

• The harmonic functions are critical points of the Dirichlet functional

$$\mathsf{E}_{\Omega}(\mathsf{f}) = \frac{1}{2} \int_{\Omega} |\mathsf{d}\mathsf{f}|^2 \mathsf{d}\mathsf{x}.$$
 (2)

Tension field

- Let (M,g) and (N,h) be smooth Riemannian manifolds and let $\varphi:M\to N$ be a smooth map.
- The tension field $\tau(\varphi)$ of φ is defined by

$$\tau(\phi) := \mathrm{tr}_{g} \nabla d\phi = \mathrm{div}(d\phi) = \sum_{i=1}^{m} (\nabla_{e_{i}} d\phi)(e_{i}), \qquad (3)$$

where $\{e_i\}$ is a local orthonormal frame field on M.

Harmonic map

Definition

Let $\varphi : (M, g) \to (N, h)$ be a smooth map. Then φ is said to be **harmonic** if the tension field vanishes, i.e., $\tau(\varphi) = 0$.

 Let f: M → ℝ be a smooth function. Then the Laplace-Beltrami operator Δ is given by

$$\Delta f = \delta df = -tr(\nabla df) = -\tau(f).$$
(4)

• Hence $\Delta f = 0$ if and only if $\tau(f) = 0$. That is, $f: M \to \mathbb{R}$ is a harmonic function if and only if $\tau(f) = 0$.

イロト 不得 とくき とくき とうせい

Examples

Examples. (1) **Constant maps** and **identity maps**. (2) **Geodesics**. For a unit speed curve $\gamma : I \to N$ ($I \subset \mathbb{R}$), the tension field $\tau(\gamma)$ is $\tau(\gamma) = \nabla_{\gamma'}\gamma'$, the acceleration vector; hence γ is harmonic if and only if it is a geodesic curve. (3) **Isometric immersions**. Let $\phi : M^m \to N^n$ be an isometric immersion. Then $\tau(\phi) = mH$, where H is the mean curvature vector of M in N, so that ϕ is harmonic if and only if M is a minimal submanifold of N.

(4) **Gauss maps**. Let G(k, n) be the Grassman manifold of k-planes in \mathbb{R}^n . Let $G: M^k \to G(k, n)$ be the Gauss map associated to an immersion $i: M \to \mathbb{R}^n$. Then the tension field $\tau(G)$ of G is $\tau(G) = \nabla H$, where H is the mean curvature vector field of M. Hence G is harmonic if and only if the mean curvature vector field is parallel.

Variation formula

• The energy of $\varphi: M \to N$ over a compact domain Ω is

$$\mathsf{E}_{\Omega}(\phi) = \frac{1}{2} \int_{\Omega} |d\phi|^2 d\mathsf{M}. \tag{5}$$

Theorem(Variation formula)

The first variation is given by

$$\frac{d}{dt}E_{\Omega}(\varphi_{t})|_{t=0} = -\int_{M} <\tau(\varphi), V > dM, \tag{6}$$

where $V = \frac{d\phi_t}{dt}|_{t=0}$ and $\{\phi_t\}$ be all smooth variations of ϕ .

• Hence a harmonic map ϕ is a critical point of $E_{\Omega}(\phi)$ over any compact domain Ω .

◆□ > ◆□ > ◆臣 > ◆臣 > □ ● ● ● ●

Riemannian foliation

- Let (M, \mathcal{F}) be a (p+q)-dimensional foliated Riemannian manifold with foliation \mathcal{F} of codimension q.
- Let TM be the tangent bundle of M, L the tangent bundle of \mathcal{F} , and Q = TM/L the corresponding normal bundle of \mathcal{F} .
- A foliation is Riemannian if there exists a Riemannian metric g satisfying θ(X)g = 0 for all X ∈ ΓL. (This is called a bundle-like metric).
- Equivalently, a bundle-like metric means that all geodesics orthogonal to a leaf at one point are orthogonal to each leaf at every point.
- Let \mathbb{R}^Q and \mathbb{Ric}^Q and be the transversal curvature and Ricci operator with respect to transversal Levi-Civita connection $\nabla^Q \equiv \nabla$ on Q, respectively.

Basic cohomology

• Let $\Omega_B^r(\mathcal{F})$ be a space of **basic form** ω , i.e., $i(X)\omega = 0$ and $i(X)d\omega = 0$ for any $X \in \Gamma L$. Locally, for a foliated coordinate (x_j, y_α) ,

$$\omega = \sum f_{a_1, \cdots, a_r} dy_{a_1} \wedge \cdots \wedge dy_{a_r}, \quad \frac{\partial f}{\partial x_j} = 0.$$

- Let $d_B=d|_{\Omega_B}$ and $\delta_B\colon$ the adjoint operator of $d_B.$ Note that $\delta_B\neq \delta|_{\Omega_B}.$
- The **basic Laplacian** is defined by $\Delta_B = d_B \delta_B + \delta_B d_B$.
- (de-Rham Hodge decomposition) Let \mathcal{F} be a Riemannian foliation on a closed manifold M. Then

$$\Omega_{B}^{r}(\mathcal{F}) = \mathcal{H}_{B}^{r} \oplus \mathsf{imd}_{B} \oplus \mathsf{im\delta}_{B}, \qquad (7)$$

where $\mathcal{H}_{B}^{r} = \text{Ker}\Delta_{B}$ is finite dimensional space.

• $\mathcal{H}_B^r \cong H_B^r$, where $H_B^r = \frac{\text{Kerd}_B}{\text{Im}d_B}$ is the de-Rham basic cohomology group.

Transversally harmonic maps

- Let (M, g, \mathcal{F}) and (M', g', \mathcal{F}') be two foliated Riemannian manifolds and let $\phi : (M, g, \mathcal{F}) \to (M', g', \mathcal{F}')$ be a smooth leaf preserving map, i.e., $d\phi(L) \subset L'$.
- \bullet The differential map $d_T\varphi:Q\to Q'$ is defined by

$$d_{\mathsf{T}}\phi := \pi' \circ d\phi \circ \sigma, \tag{8}$$

where $\sigma: Q \to L^{\perp}$ is an isomorphism with $\pi \circ \sigma = id$.

- Then $d_T \phi$ is a section in $Q^* \otimes \phi^{-1} Q'$.
- Let ∇^φ and $\tilde\nabla$ be the connections on $\varphi^{-1}Q'$ and $Q^*\otimes\varphi^{-1}Q',$ respectively.

Transversally harmonic maps

• A map ϕ is said to be transversally totally geodesic if

$$\tilde{\nabla}_{tr} d_{T} \phi = 0, \qquad (9)$$

where $(\tilde{\nabla}_{tr}d_T\varphi)(X,Y) = (\tilde{\nabla}_Xd_T\varphi)(Y)$ for any $X,Y \in Q$. This means that if γ is transversally geodesic, then $\varphi \circ \gamma$ is also transversally geodesic.

 \bullet The transversal tension field $\tau_b(\varphi)$ is defined by

$$\tau_{b}(\phi) = tr_{Q}\tilde{\nabla}d_{T}\phi = \sum_{\alpha=1}^{q} (\tilde{\nabla}_{E_{\alpha}}d_{T}\phi)(E_{\alpha}), \quad (10)$$

where $\{E_a\}$ is a local orthonormal basis of Q.

イロト 不得 とくき とくき とうせい

Transversally harmonic map

Definition

A foliated map
$$\phi : (M, g, \mathcal{F}) \to (M', g', \mathcal{F}')$$
 is said to be transverally harmonic if $\tau_b(\phi) = 0$.

• The transversal energy of φ on a compact domain $\Omega \subset M$ is defined by

$$\mathsf{E}_{\mathsf{B}}(\phi;\Omega) = \frac{1}{2} \int_{\Omega} |d_{\mathsf{T}}\phi|^2 \mu_{\mathsf{M}}, \tag{11}$$

where μ_M is the volume element of M.

(4回) (注) (注) (注) (注)

The first variation formula I

Theorem (Jung-Jung(2012) [4])

Let $\varphi:(M,g,\mathfrak{F})\to(M',g',\mathfrak{F}')$ be a smooth foliated map. Let $\{\varphi_t\}$ be a smooth foliated variation of φ supported in a compact domain $\Omega.$ Then

$$\frac{d}{dt} E_{\rm B}(\phi_{\rm t};\Omega)|_{\rm t=0} = -\int_{\Omega} \langle V, \tau_{\rm b}(\phi) - d_{\rm T} \phi(\kappa_{\rm B}^{\sharp}) \rangle \mu_{\rm M}, \qquad (12)$$

where $V(x)=\frac{d\varphi_t}{dt}(x)|_{t=0}$ is the normal variation vector field of $\{\varphi_t\}.$

• If \mathcal{F} is minimal, then the transversally harmonic map is a critical point the transversal energy $E_B(\varphi)$.

The transversal f-energy

Definition

Let f be a non-zero basic function on M. Then the **transversal** f-energy of ϕ on a compact domain Ω is defined by

$$\mathsf{E}_{\mathsf{f}}(\boldsymbol{\varphi};\Omega) = \frac{1}{2} \int_{\Omega} |\mathsf{f} d_{\mathsf{T}} \boldsymbol{\varphi}|^2 \mu_{\mathsf{M}}. \tag{13}$$

• When f is constant, $E_1(\phi) = E_B(\phi)$.

・ 戸 ト ・ ヨ ト ・ ヨ ト

The first variation formula II

Theorem (Jung, 2013 [3])

Let $\varphi:(M,g,\mathfrak{F})\to (M',g',\mathfrak{F}')$ be a smooth foliated map. Let $\{\varphi_t\}$ be a smooth foliated variation of φ supported in a compact domain $\Omega.$ Then, for any non-zero basic function f

$$\frac{d}{dt} E_{f}(\phi_{t};\Omega)|_{t=0} = -\int_{\Omega} \langle V, \tau_{b}(\phi) - d_{T}\phi(\omega_{f}^{\sharp}) \rangle f^{2}\mu_{M}, \qquad (14)$$

where $V(x) = \frac{d\varphi_t}{dt}(x)|_{t=0}$ and

$$\omega_{\rm f} = \kappa_{\rm B} - d_{\rm B} (\ln f^2). \tag{15}$$

The first variation formula III

Theorem (Jung, 2013 [3])

Let $\varphi:(M,g,\mathcal{F})\to (M',g',\mathcal{F}')$ be a smooth foliated map. If \mathcal{F} is of positive transversal Ricci curvature or minimal, then

$$\frac{d}{dt} E_{f_k}(\phi_t; \Omega)|_{t=0} = -\int_{\Omega} \langle V, \tau_b(\phi) \rangle f_k^2 \mu_M,$$
 (16)

where f_k is a solution of $\omega_f = 0$. Specially, any transversally harmonic map is a critical point of the transversal f_k -energy.

• The existence of the solution of $\omega_f = 0$ is partially assured on a foliated Riemannian manifold with positive transversal Ricci curvature. In fact, $H_B^1(\mathcal{F}) = 0$.

イロト 不得 とくき とくき とうせい

Kähler foliations

- Let (M, g_M, J, \mathcal{F}) be a Kähler foliation with a foliation \mathcal{F} and a bundle-like metric g_M . Here $J : Q \to Q$ is a complex structure.
- Let $\omega \in \Omega^2_B(\mathfrak{F})$ be a basic Kähler 2-form.
- Let $Q_C = Q \otimes \mathbb{C}$ be the complexified normal bundle.
- $\bullet~$ Then $Q_C=Q^{1,0}\oplus Q^{0,1},$ where

$$Q^{1,0} = \{X - iJX | X \in Q\}, \quad Q^{0,1} = \{X + iJX | X \in Q\}.$$

 $\bullet~\mbox{And}~Q_{C}{}^{*}=Q_{1,0}\oplus Q_{0,1},$ where

 $Q_{1,0}=\{\theta+iJ\theta|\ \theta\in Q^*\} \quad \text{and} \quad Q_{0,1}=\{\theta-iJ\theta|\ \theta\in Q^*\},$

where $(J\theta)(X) = -\theta(JX)$ for any $X \in Q$.

Harmonic functions on \mathbb{R}^n Harmonic maps Transversally harm

Transversally holomorphic maps

- Let (M, g_M, J, F) and (M', g', F', J') be two Riemannian manifolds with Kähler foliations F (codim F = 2n) and F' (codimF' = 2n'), respectively.
- Let $\varphi:(M,g,\mathfrak{F},J)\to (M',g',\mathfrak{F}',J')$ be a smooth foliated map. We define the operators

$$\begin{split} &\partial_{\mathsf{T}}\varphi:Q^{1,0}\to Q'^{1,0}, \quad \partial_{\mathsf{T}}\bar{\varphi}:Q^{1,0}\to Q'^{0,1}, \\ &\bar{\partial}_{\mathsf{T}}\varphi:Q^{0,1}\to Q'^{1,0}, \quad \bar{\partial}_{\mathsf{T}}\bar{\varphi}:Q^{0,1}\to Q'^{0,1}, \end{split}$$

by

$$\begin{aligned} &d_{T}\varphi|_{Q^{1,0}} = \partial_{T}\varphi + \partial_{T}\bar{\varphi}, \qquad (17) \\ &d_{T}\varphi|_{Q^{0,1}} = \bar{\partial}_{T}\varphi + \bar{\partial}_{T}\bar{\varphi}. \end{aligned}$$

Transversally holomorphic maps

 φ: (M, g, 𝔅, J) → (M', g', J', 𝔅') is a transversally holomorhic map (resp. anti holomorhic map) if

$$d_{\mathsf{T}} \phi \circ J = J' \circ d_{\mathsf{T}} \phi \quad (\text{resp. } d_{\mathsf{T}} \phi \circ J = -J' \circ d_{\mathsf{T}} \phi). \tag{19}$$

Note that

$$\begin{split} \bar{\vartheta}_T \varphi &= 0 & \Longleftrightarrow \quad d_T \varphi \circ J = J' \circ d_T \varphi, \\ \vartheta_T \varphi &= 0 & \Longleftrightarrow \quad d_T \varphi \circ J = -J' \circ d_T \varphi. \end{split}$$

 Trivially, φ is transversally holomorphic (resp. anti-holomorphic) if and only if ∂̄_Tφ = 0 (resp. ∂_Tφ = 0).

イロト 不得 トイヨト イヨト 二日

Harmonic functions on \mathbb{R}^n Harmonic maps Transversally harm

Transversally holomorphic maps

• Any transversally holomorphic(or anti-holomorhic) map $\phi: (M, g, \mathcal{F}, J) \rightarrow (M', g', \mathcal{F}', J')$ is transversally harmonic. In fact, for J-basis {E_a, JE_a},

$$\begin{aligned} \tau_{b}(\phi) &= \sum_{\alpha=1}^{n} \{ \nabla_{E_{\alpha}}^{\phi} d_{T} \phi(E_{\alpha}) + J' \nabla_{E_{\alpha}}^{\phi} J' d_{T} \phi(E_{\alpha}) \} \\ &= 0 \ (\phi: \text{ holomorphic map}) \end{aligned}$$

• Transversal partial f-energies.

$$E_{f}^{+}(\varphi) = \int_{\mathcal{M}} |f\partial_{T}\varphi|^{2} \mu_{\mathcal{M}}, \quad E_{f}^{-}(\varphi) = \int_{\mathcal{M}} |f\bar{\partial}_{T}\varphi|^{2} \mu_{\mathcal{M}}.$$

• Trivially, $E_f(\varphi) = E_f^+(\varphi) + E_f^-(\varphi)$.

(1日) (日) (日) 日

Harmonic functions on \mathbb{R}^n Harmonic maps Transversally harm

Transversally holomorphic maps

- Define $K_f(\varphi) := E_f^+(\varphi) E_f^-(\varphi)$.
- \bullet For basic Kähler forms ω and ω' on ${\mathfrak F}$ and ${\mathfrak F}',$

$$K_{f}(\varphi) = \frac{1}{2} \int_{M} \langle \varphi^{*} \omega', \omega \rangle f^{2} \mu_{M}.$$
 (20)

• Let $\{\varphi_t\}$ be a foliated variation of $\varphi_..$ Then $\frac{d}{dt}\varphi_t^*\omega'$ is an exact form, i.e.,

$$\frac{d}{dt}\phi_t^*\omega' = d_B\theta_t. \tag{21}$$

• Then $K_{f_k}(\varphi_t)$ is constant, where f_k is a solution of $\omega_f=0.$ In fact,

$$\frac{d}{dt}K_f(\varphi_t) = \frac{1}{2}\int_M <\theta_t, \delta_T \omega + i(\omega_f^\sharp)\omega > f^2.$$

Transversally holomorphic map

Theorem (Jung-Jung, 2014)

Let $\varphi:(M,g,\mathcal{F},J)\to (M',g',\mathcal{F}',J')$ be a foliated map with M compact. If φ is transversally holomorphic, then φ is transversally harmonic with the minimum transversal f_k -energy in its foliated homotopy class.

Proof. Harmonicity is trivial. Since ϕ is transversally holomorphic, $E_{f}^{-}(\phi) = 0$. Then

$$\begin{split} E_{f_k}(\varphi) &= E_{f_k}^+(\varphi_0) - E_{f_k}^-(\varphi_0) \\ &= K_{f_k}(\varphi_0) = K_{f_k}(\varphi_t) \quad (\mathrm{constant}) \\ &\leqslant E_{f_k}(\varphi_t). \end{split}$$

Generalized Jacobi fields

• The generalized Jacobi field V is the kernel of J_{Φ}^{T} , where

$$J_{\Phi}^{\mathsf{T}}(\mathsf{V}) = \left(\nabla_{\mathsf{tr}}^{\Phi}\right)^* \left(\nabla_{\mathsf{tr}}^{\Phi}\right) \mathsf{V} - \nabla_{\kappa}^{\Phi} \mathsf{V} - \mathsf{tr}_{\mathsf{Q}} \mathsf{R}^{\mathsf{Q}'}(\mathsf{V}, \mathsf{d}_{\mathsf{T}} \Phi) \mathsf{d}_{\mathsf{T}} \Phi.$$

• (Jung-Jung, 2014 [5]) Let M be a closed, oriented, connected Riemannian manifold and let $\varphi:(M,g,\mathcal{F},J)\to (M',g',\mathcal{F}',J')$ be a transversally holomorphic map. Assume that $Ric^Q \ge 0$ and >0 at some point or \mathcal{F} is minimal. Then $V \in \varphi^{-1}Q'$ is a generalized Jacobi field along φ if and only if V is a transversally holomorphic section.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Generalized Jacobi fields

- (Jung-Jung, 2014 [5]) Let (M, g, F, J) be a closed, oriented, connected Riemannian manifold with a Kähler foliation F. If Ric^Q ≥ 0 and > 0 at some point or F is minimal, then for any Y ∈ V(F), π(Y) is a transversally holomorphic field, that is, θ(Y)J = 0 if and only if π(Y) is a generalized Jacobi field of F, that is, J^T_{id}(π(Y)) = 0.
- When \mathcal{F} is minimal, it is proved by S. Nishikawa and Ph. Tondeur [10].
- Let (M, g, 𝔅, J) be a compact Riemannian with a Kähler foliation. If Ric^Q ≤ 0 and < 0 at some point, then any transversally holomorphic field Y
 is trivial (Jung-Liu, 2012 [6]).

References

[1] J. A. Alvarez López, *The basic component of the mean curvature of Riemannian foliations*, Ann. Global Anal. Geom. 10(1992), 179-194.

[2] J. Eells and J. H. Sampson, *Harmonic mappings of Riemannian manifolds*, Amer. J. Math. 86(1964), 106-160.

[3] S. D. Jung, Variation formulas for transversally harmonic and bi-harmonic maps, J. Geom. Phys. 70(2013), 9-20.

[4] M. J. Jung and S. D. Jung, *Transversally harmonic maps of foliated Riemannian manifolds*. J. Korean Math. Soc. 49(2012), 977-991.

[5] S. D. Jung and M. J. Jung, *Transversally holomorphic maps between Kähler foliations*, J. Math. Anal. Appl. 416(2014), 683-697.

イロト 不得 とくき とくき とうせい

[6] S. D. Jung and H. Liu, Transversal infinitesimal automorphisms on Káhler foliations, Bull. Aust. Math. Soc. 86 (2012), 405-415. [7] J. Konderak and R. Wolak, On transversally harmonic maps between manifolds with Riemannian foliations, Quart. J. Math. Oxford ser. (2) 54(2003), 335-354. [8] J. Konderak and R. Wolak, Some remarks on transversally harmonic maps, Glasgow Math. J. 50(2008), 1-16 [9] P. Molino, Riemannian foliations, Boston; Birkhäser, 1988. [10] S. Nishikawa and Ph. Tondeur, Transversal infinitesimal automorhisms for harmonic Kähler foliations, Tohoku Math. J. 40 (1988), 599-611[11] H. C. J. Sealey, Harmonic maps of small energy, Bull. London Math. Soc. V13(5), 1981), 405-408.

Thank You for your attention!

イロト イロト イヨト イヨト