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Consider compact smooth Riemannian manifolds (Mn, g) and the
Laplace equation ∆f = λf , f ∈ C∞(M)

I The spectrum of ∆ is a discrete set
{0 = λ0 < λ1 ≤ λ2 ≤ · · · }:

∆ = − 1√
det(g)

∂
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)

= −g ij ∂2
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+ lower order terms.

I In case of manifolds with boundary, the eigenfunctions are
required to satisfy boundary conditions such as Dirichlet
(u = 0 on ∂B) or Neumann (∂νu = 0 on ∂B) conditions.

I The eigenvalues are k(k + n − 1) for (Sn, gstd), k = degree of
harmonic homogeneous polynomial in Rn+1,

I 4π2|γ|2, γ ∈ Γ∗ for flat tori Γ\Rn.
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Except the images under submersion of the manifolds whose
spectra are known, very hard to compute explicitly.

I In 1966, M. Kac raised a question ‘Can one hear the shape of
a drum?’
i.e. given the frequencies of vibration on planar domain, can
one determine its shape?

I The answer to the Kac’s question is ‘no’ in general, but can
ask ‘can one find manifolds with same spectrum with different
geometry?’.

I Spectral geometry deals with the mutual influences between
the spectrum of a Riemannian manifold and its geometry
- D. Schueth.
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I Heat trace determines the spectrum of ∆.

I The first three heat invariants are
a0 = vol(M)

a1 = 1
6

∫
M R

a2 = 1
360

∫
M 2||Riem||2 − 2||Ric ||2 + 5R2

where ||Riem||2 =
∑

ijkl(Rijkl)
2, ||Ric ||2 =

∑
ik(Rijkj)

2.

I For surfaces, spectrum determines Euler characteristic (G-B)

I Round sphere is spectrally determined for dim ≤ 6.

I Spectra on functions, one-forms, two-forms determine whether
the manifold has a constant sectional curvature.

I For Einstein manifolds M1,M2 with same a0, a1, a2, if M1 has
constant curvature K , so does M2.
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Counterexamples/ Developments

Two manifolds are said to be isospectral if they have the same
eigenvalue spectrum. Non-isometry in each example is proved by
ad-hoc method.

[Milnor 1964] first example of isospectral manifolds: 16
dimensional flat tori (Rn/Γi , gcan/Γi ), Γi are lattices in Rn.

[McKean 1972] There are at most finitely many Riemann surfaces
with a given spectrum.

[Urakawa 1982] Isospectral bounded non-convex domains in Rn,
n ≥ 4.

[Sunada 1985] Seminal paper ‘Riemannian coverings and
isospectral manifolds’.

From this point on, the ‘covering technique’ is commonly used
for construction of isospectral manifolds.



Counterexamples/ Developments

Two manifolds are said to be isospectral if they have the same
eigenvalue spectrum. Non-isometry in each example is proved by
ad-hoc method.

[Milnor 1964] first example of isospectral manifolds: 16
dimensional flat tori (Rn/Γi , gcan/Γi ), Γi are lattices in Rn.

[McKean 1972] There are at most finitely many Riemann surfaces
with a given spectrum.

[Urakawa 1982] Isospectral bounded non-convex domains in Rn,
n ≥ 4.

[Sunada 1985] Seminal paper ‘Riemannian coverings and
isospectral manifolds’.

From this point on, the ‘covering technique’ is commonly used
for construction of isospectral manifolds.



Counterexamples/ Developments

Two manifolds are said to be isospectral if they have the same
eigenvalue spectrum. Non-isometry in each example is proved by
ad-hoc method.

[Milnor 1964] first example of isospectral manifolds: 16
dimensional flat tori (Rn/Γi , gcan/Γi ), Γi are lattices in Rn.

[McKean 1972] There are at most finitely many Riemann surfaces
with a given spectrum.

[Urakawa 1982] Isospectral bounded non-convex domains in Rn,
n ≥ 4.

[Sunada 1985] Seminal paper ‘Riemannian coverings and
isospectral manifolds’.

From this point on, the ‘covering technique’ is commonly used
for construction of isospectral manifolds.



Counterexamples/ Developments

Two manifolds are said to be isospectral if they have the same
eigenvalue spectrum. Non-isometry in each example is proved by
ad-hoc method.

[Milnor 1964] first example of isospectral manifolds: 16
dimensional flat tori (Rn/Γi , gcan/Γi ), Γi are lattices in Rn.

[McKean 1972] There are at most finitely many Riemann surfaces
with a given spectrum.

[Urakawa 1982] Isospectral bounded non-convex domains in Rn,
n ≥ 4.

[Sunada 1985] Seminal paper ‘Riemannian coverings and
isospectral manifolds’.

From this point on, the ‘covering technique’ is commonly used
for construction of isospectral manifolds.



Counterexamples/ Developments

Two manifolds are said to be isospectral if they have the same
eigenvalue spectrum. Non-isometry in each example is proved by
ad-hoc method.

[Milnor 1964] first example of isospectral manifolds: 16
dimensional flat tori (Rn/Γi , gcan/Γi ), Γi are lattices in Rn.

[McKean 1972] There are at most finitely many Riemann surfaces
with a given spectrum.

[Urakawa 1982] Isospectral bounded non-convex domains in Rn,
n ≥ 4.

[Sunada 1985] Seminal paper ‘Riemannian coverings and
isospectral manifolds’.

From this point on, the ‘covering technique’ is commonly used
for construction of isospectral manifolds.



[Buser 1986, 1992, Brooks-Tse 1987] Isospectral Riemann
surfaces (const. curv. -1) of genus ≥ 4.

[Brooks-Tse 1987] Isospectral surfaces of genus 3 with variable
curvature.

[Berárd 1992] Isospectral non-convex planar domains using the
‘transplantation’ method which is a version of ‘Sunada’s theorem’.

[Gordon-Webb-Wolpert 1992] Isospectral flat surfaces with
boundary and non-convex domains as underlying spaces of
2-dimensional orbifolds.

[Gordon-Webb 1994] Isospectral convex domains in the Euclidean
space for dimension ≥ 4. (Dirichlet and Neumann isospectral)

[Gordon-Webb 1994] Isospectral convex polygons in the
hyperbolic plane (constant curvature=-1). (Dirichlet and Neumann
isospectral)
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[Gordon et al, Schueth, Szabo 1993-2005] Using torus action/
Riemannian submersion, produced isospectral manifolds with
different local geometry such as isospectral left-invariant metrics
on Sm × Sn and Sm × Bn and other compact Lie groups:

[Buser-Conway-Doyle-Semmler 1994] Isospectral non-convex
planar domains (with fractal boundary) explaining how to
transplant eigenfunction on one domain to the other.

[Miatello-Rossetti 1999-] Manifolds isospectral on p-forms

[Jakobson-Levitin-Nadirashvili-Polterovich 2006] Isospectral
planar domains with mixed Dirichlet-Neumann conditions whose
spectra are invariant under boundary condition swap. (conjecturing
a disk does not admit Dirichlet-Neumann conditions)

[Barden-K 2012] Isospectral non-isometric Riemannian surfaces of
genus 2, 3 with variable curvature.
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Sunada’s theorem

Definition
Let G be a finite group and U, V be subgroups of G . Then U and
V are said to be almost conjugate if ∀g ∈ G , |[g ]∩U| = |[g ]∩V |.
If U,V are not conjugate, call (G ,U,V ) a Sunada triple.

Example

T = Σ6 permutation group on {1, 2, ..., 6}.

U1 = {id , (12)(34), (13)(24), (14)(23)}
U2 = {id , (12)(34), (12)(56), (34)(56)}

Check both Ui meet the conjugacy class of permutations with
cycle 2-2-1-1 in 3 elements. So almost conjugate.
U1 has common fixed points 5, 6 whereas U2 has none. So
non-conjugate.
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Theorem
(Sunada 1985) Let G act on a compact Riemannian manifold M
by isometries. Suppose that U and V are almost conjugate
subgroups of G and U and V act freely on M. Then U\M and
V \M are isospectral.

Remark Giving a ‘bumpy metric’ (no two points have isometric
nhds) on M0 = G\M, Sunada showed that isospectral manifolds
can be non-isometric. When constructed isospectral manifolds turn
out to be isometric, we give a bumpy metric in the common
covered manifold to endow non-isometry between covering
manifolds.
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Isospectral surfaces

I Apply Sunada’s theorem with a Sunada triple (G ,U,V ).

I Construct a surface M on which G acts as a group of
diffeomorphisms.

I Then π1 : M → M1 = U\M and π2 : M → M2 = V \M will
be coverings if Stab(G) ∩(U ∪ V ) = Id . (so that no fixed
points, thus no singularity occurs)

I Using the generators of G and their actions on the cosets of
U,V , check the almost conjugacy.

I To check non-isometry, ad hoc method.



Isospectral surfaces

I Apply Sunada’s theorem with a Sunada triple (G ,U,V ).

I Construct a surface M on which G acts as a group of
diffeomorphisms.

I Then π1 : M → M1 = U\M and π2 : M → M2 = V \M will
be coverings if Stab(G) ∩(U ∪ V ) = Id . (so that no fixed
points, thus no singularity occurs)

I Using the generators of G and their actions on the cosets of
U,V , check the almost conjugacy.

I To check non-isometry, ad hoc method.



Isospectral surfaces

I Apply Sunada’s theorem with a Sunada triple (G ,U,V ).

I Construct a surface M on which G acts as a group of
diffeomorphisms.

I Then π1 : M → M1 = U\M and π2 : M → M2 = V \M will
be coverings if Stab(G) ∩(U ∪ V ) = Id . (so that no fixed
points, thus no singularity occurs)

I Using the generators of G and their actions on the cosets of
U,V , check the almost conjugacy.

I To check non-isometry, ad hoc method.



Isospectral surfaces

I Apply Sunada’s theorem with a Sunada triple (G ,U,V ).

I Construct a surface M on which G acts as a group of
diffeomorphisms.

I Then π1 : M → M1 = U\M and π2 : M → M2 = V \M will
be coverings if Stab(G) ∩(U ∪ V ) = Id . (so that no fixed
points, thus no singularity occurs)

I Using the generators of G and their actions on the cosets of
U,V , check the almost conjugacy.

I To check non-isometry, ad hoc method.



Isospectral surfaces

I Apply Sunada’s theorem with a Sunada triple (G ,U,V ).

I Construct a surface M on which G acts as a group of
diffeomorphisms.

I Then π1 : M → M1 = U\M and π2 : M → M2 = V \M will
be coverings if Stab(G) ∩(U ∪ V ) = Id . (so that no fixed
points, thus no singularity occurs)

I Using the generators of G and their actions on the cosets of
U,V , check the almost conjugacy.

I To check non-isometry, ad hoc method.



Isospectral surfaces

[Perlis 1977] For a Sunada triple, index[G:U] ≥ 7.

[Bosma-de Smit 2002] Classification of Gassmann-Sunada triples
up to index 15.

I Both motivated came from number field theory;

Fields derived for U and V have the same zeta function.

⇔ G-sets U\G ,V \G are linearly equivalent, i.e. every g ∈ G has
the same number of fixed points in U\G ,V \G .

⇔ U,V are almost conjugate in G .
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[Brooks-Tse 1987] constructed genus 3 surfaces of variable
curvature.

Use SL(3,Z/2) of order 168 has two generators of order 7 with our
choice of generators of order 7

E =

 0 0 1
1 0 0
1 1 0

 , F =

 1 0 1
1 1 0
0 1 0

 .

with its product EF has order 7.

Theorem (Barden-K)

There are isospectral non-isometric Riemann surfaces of genus 3.



Isospectral surfaces of genus 2

Use the 2-generator group G = 〈a, b〉 of order 96 realised as a
subgroup of A12, group of even permutations on 12 symbols:

a = (0 7 11)(1 5 6)(2 9 10)(3 4 8)

b = (0 4 2)(1 5 9)(3 7 11)(6 10 8)

ab = (0 11 4 6 5 10)(1 9 8 7 3 2)

⇒ Obtain non-conjugate subgroups U,V of index 12 as direct
products of cyclic groups C2 and C4.

⇒ χ(Mi ) = 12
(
1
3 + 1

3 + 1
6 − 1

)
= −2

[Barden-K 2012] Isospectral non-isometric Riemannian surfaces of
genus 2 with variable curvature.



I With singularities of order 3, 3, 6, we do not have figure 8
geodesics as in genus 3 case. However with a continuous
deformation of the fundamental domain, one claim:

[Claim] There exist isospectal but non-isometric Riemann surfaces
of genus 2.



Future work

I What additional data other than spectrum is required in order
to determine the geometry of Riemannian manifolds, in
particular, for Riemann surfaces? In higher dimension, more
data will be required.
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