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In 1974, Muto has studied the behavior of the total scalar curvature and
shown that for any Riemannian metric g on a compact manifold, the total
scalar curvature can decrease as one deforms g to g+ th for some symmetric
(2,0)-tensor h. Moreover, Muto could choose h supported in any ball.

In 1995, Lohkamp has made the following conjecture in Riemannian ge-
ometry.

Conjecture 1 Let (Mk, g0), k ≥ 3, be a manifold and B ⊂M an open ball.
Then there is a C∞-continuous path of Riemannian metrics gt, 0 ≤ t ≤ ε on
M with g(0) = g and

(i) Ricci curvature of gt is strictly decreasing in t on B.
(ii) gt ≡ g0 on M\B.

In this talk, such a gt shall be called a (Ricci) melting of g on B in M .

A related scalar-curvature deformation result can be found in Lohkamp’s
paper in 1999, where it is shown that for any metric g in M and a ball
B ⊂M , and a smooth function f such that f = s(g) outside B and f < s(g)
inside B, for any ε > 0 there exists a deformed Riemannain metric gε whose
scalar curvature s(gε) lies f − ε ≤ s(gε) ≤ f on Bε and gε = g on M \ Bε,
where Bε is a ε-neighborhood of B. From the construction, these metrics
can be close to g in C0 sense, but not in C∞ topology.
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Concerning this conjecture, not even the scalar-curvature case is thor-
oughly studied, although one may believe that for generic metrics such a
scalar-curvature-decreasing path of metrics should exist.

Note that the conjecture is concerned with local deformation of metrics
on a ball in a manifold; on a compact Riemannian manifold, Muto’s inte-
gral decrease and conformal deformation argument (Yamabe solutions) would
produce a scalar-curvature decrease on the whole manifold. More simply, ho-
mothetic changes on a metric can decrease the scalar curvature if it is not
zero. Here we prove the following result.

Theorem 2 Given a Riemannian metric g on a manifold M of dimension≥
3 and a ball B in M , we obtain C∞-continuous paths of Riemannian metrics
gt, 0 ≤ t < ε on M with g0 = g such that the scalar curvatures s(gt) strictly
decrease, i.e. s(gt1) > s(gt2) for t1 < t2 on B, gt = g on M \B.

1 Frame of Proof

Consider the scalar curvature functional s : M → C∞(M) by s : g 7→ s(g)
where M is the space of smooth Riemannian metrics on a manifold M . Its
derivative is Dsg : TgM→ C∞(M); for a symmetric (2, 0) tensor field h,

Dsg(h) = ∆g(trgh) + δg(δgh)− g(ricg, h). (1)

The formal L2 adjoint of Dsg is

Ds∗g(ψ) = ∇gdψ +
s

n− 1
(∆gψ)g − ψrg.

Finding its kernel is equivalent to solving for a function ψ;

∇gdψ +
s

n− 1
ψg − ψrg = 0. (2)

For an open set U , let L2
loc(U) be the space of functions on U which is L2

on each compact subsets. And H2
loc(U) is the space of functions f on U such

that f , |∇f |g and |∇∇f |g are L2 on each compact subsets of U .

Consider Ds∗g : H2
loc(U)→ L2

loc(U) and set

Ds∗g(ψ) = ∇gdψ +
s

n− 1
ψg − ψrg = 0, ψ ∈ H2

loc(U). (3)
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Lemma 1 Suppose that there is a point in B that has a neighborhood where
there is a nonzero solution of (3). Then there exists a scalar curvature melting
on a smaller ball in B.

Lemma 2 Suppose that there is a point p in B that does not have a neigh-
borhood where there is a nonzero solution of (3). Then there exists a scalar-
curvature melting of g on a smaller ball.

Lemma 3 If there is a melting on a ball, then there is a melting on any
larger ball.

Above three lemmas prove the theorem.

2 Argument

We mainly discuss about Lemma 1, which needs a second order perturbation
g 7→ g + th+ t2k of a given metric g as its main ingredient.

For the Euclidean metric g0 on Rn, there is nonzero C∞ symmetric (2, 0)
tensor field h0 supported in a ball B in Rn such that trg0h0 = 0 and δg0h0 = 0.

Then Dsg0(h0) = 0. It is known that d2s(g0+th0+t2Q0)
dt2

|t=0 ≤ 0 where Q0 is a
symmetric (2, 0) tensor field related to h0.

Next,

Lemma 4 If a Riemannian metric g satisfies ‖ g − g0 ‖Ck+1(g0)< ε on B,
then there exists a symmetric (2, 0) tensor h such that h is supported in B
and trgh = 0 and δgh = 0 and that ‖ h− h0 ‖Cl+1(g0)< k(ε), where k(ε) is a
positive number depending on ε and limε→0 k(ε) = 0.

Proof. Set h = h0 + U . We look for a tensor field U with small norm
‖U‖C3(g0) supported in B such that

δg(h0 + U) = 0 (4)

To find such a compactly supported smooth solution U , we apply the
existence and regularity theory for elliptic differential equations defined for
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the weighted Sobolev and Hölder function spaces, developed recently by
Corvino, Delay etc.. In fact, we set up the following equation for u;

δg(h0 + ψ2δ∗g(u)) = 0 (5)

where ψ is some weight function, defined in terms of the distance function x
to the boundary of B. (ψ = xαe−

1
x .) By Schauder estimate for interior and

near-boundary, we get smooth h which has support in B.

With h obtained above, we should deform h just a little bit;

Lemma 5 Suppose that h satisfies δgh = 0, trgh = 0 as obtained in Lemma
4. Then there exists a smooth compactly supported (2, 0) tensor field h̃ so
that Dsg(h̃) = 0 and small norm ‖h− h̃‖.

We define gt on M by

gt :=

{
g + th̃+ t2Q(h̃) on B,

g on M \B.
(6)

This gt almost gives a scalalr curvaure melting; one more (slight) geo-
metric diffusion is needed to produce a melting G(t) on a smaller ball in B.
Lemma 1 is proved.

The above diffusion argument can prove other lemmas and so the theorem.

Remark 1

A. Extending our argument, we can prove that the melting can be done
in a ‘big’ scale.

B. The space of Riemannian metrics of non-positive scalar curvature on
a compact or noncompact manifold can be shown to be contractible. -
Lohkamp proved that the space of metrics with negative scalar curvature
is contractible.

C. Our work here may be solved by some Yamabe type problem?


