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Notation

I M a compact Riemannian manifold without boundary,

I ΛpT ∗M the exterior vector bundle,

I ∆p := dd∗ + d∗d the Hodge-Laplace operator on p-forms,

I If M is compact, the spectrum of ∆p is a sequence

λ1 ≤ λ2 ≤ · · · ≤ λn → +∞

each λn counted with multiplicities.

Definition
Two manifolds are p-isospectral if the spectrum of the operators
∆p is the same for both manifolds.

Hodge-isospectral means p-isospectral for every p; 0-isospectral
means isospectral.

There are many examples of non-isometric isospectral manifolds
(Milnor, Vigneras80, Ikeda80, Gordon86, Gordon-Wilson, Schueth).
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Sunada gave a very general construction of isospectral manifolds,
however the manifolds are always strongly isospectral, i.e.
isospectral for every natural strongly elliptic operator acting on
sections of a natural vector bundle over M.

A. Ikeda80, P. Gilkey85, J. A. Wolf88 applied Sunada’s method to
produce strongly isospectral non-isometric spherical space forms.

Also, examples known of manifolds p-isospectral for some values of
p only (Gordon86, Gornet, Miatello-Rossetti99, 01, Ikeda).

Question
Hodge-isospectral implies strongly isospectral? (Wolf88, Gordon,
Webb and others)
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Jointly with E.Lauret and J.P.Rossetti (2013) we constructed, for
any n ≥ 5, pairs of n-dimensional Hodge-isospectral Riemannian
manifolds that are not strongly isospectral.

For this purpose, we first show infinitely many pairs of
5-dimensional Hodge-isospectral lens spaces that are not strongly
isospectral.
Our goal in this lecture will be to describe these pairs together
with their spectral properties.

Lens spaces are spherical space forms with cyclic fundamental
groups. For q ∈ N, and s1, . . . , sm ∈ Z coprime to q, let

L(q; s1, . . . , sm) = 〈γ〉\S2m−1,

where

γ = diag
([

cos(2πs1/q) sin(2πs1/q)
− sin(2πs1/q) cos(2πs1/q)

]
, . . . ,

[
cos(2πsm/q) sin(2πsm/q)
− sin(2πsm/q) cos(2πsm/q)

])
.
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Proposition

Let L = L(q; s1, . . . , sm) and L′ = L(q; s ′1, . . . , s
′
m) be lens spaces.

The following assertions are equivalent.

1. L is isometric to L′.

2. L is diffeomorphic to L′.

3. L is homeomorphic to L′.

4. There exist t ∈ Z coprime to q and ε ∈ {±1}m such that
(s1, . . . , sm) is a permutation of (ε1ts ′1, . . . , εmts ′m) (mód q).

We now obtain a consequence from the previous proposition. To
the lens space L(q; s1, . . . , sm) we associate the congruence lattice
L(q, s) = L(q; s1, . . . , sm) of all (a1, . . . , am) ∈ Zm such that

a1s1 + · · ·+ amsm ≡ 0 mód q,
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Proposition

Let L(q; s), L(q; s ′) be lens spaces, L(q, s) and L(q, s ′) the
associated lattices. Then, L(q; s) and L(q; s ′) are isometric if and
only if L(q, s) and L(q, s ′) are ‖·‖1-isometric.

Proof
L and L′ are isometric if and only if there exist t coprime to q and
ϕ, a composition of permutations and changes of signs, such that
ϕ(ts) = ϕ(ts1, . . . , tsm) = (s ′1, . . . , s

′
m) = s ′.

The congruence lattices associated to the parameters s1, . . . , sm
and ts1, . . . , tsm are the same.
On the other hand, L(q, ϕ(s)) = ϕ(L(q, s)) and ϕ is an isometry
of Rn with respect to ‖·‖1.

The converse follows from the fact that every ‖·‖1-linear isometry
of Rn is a composition of permutations and changes of signs.
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We recall some facts on Lie group representations. Let G be a
compact Lie group K a closed subgroup. (We may suppose
G = SO(2m), K = SO(2m − 1).)
For a finite dimensional unitary representation (τ,Wτ ) of K ,
consider the homogeneous vector bundle

Eτ = G ×τ Wτ −→ X = G/K ,

The space Γ∞(Eτ ) of smooth sections of Eτ is isomorphic to the
space C∞(G/K ; τ) := {f smooth : G →Wτ such that
f (xk) = τ(k−1)f (x)}.

We form the vector bundle Γ\Eτ over Γ\G/K and denote by
L2(Γ\Eτ ) the closure of C∞(Γ\G/K ; τ) with respect to the inner
product (f1, f2) =

∫
Γ\X 〈f1(x), f2(x)〉 dx .
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The Casimir element C lies in the center of U(g) and defines
second order elliptic differential operators ∆τ on C∞(G/K ; τ) and
∆τ,Γ on Γ\Eτ ; C acts on an irreducible representation Vπ of G by
a scalar λ(C , π).

The left regular representation of G on L2(Eτ ) ' L2(G/K ; τ)
decomposes into a sum of irreducible subrepresentations with finite
multiplicity. The multiplicity of each π ∈ Ĝ is given by Frobenius
reciprocity: [τ : π|K ] := dim HomK (Vτ ,Vπ).

By taking Γ-invariants, we get

L2(Γ\G/K : τ) =
∑
π∈Ĝ

[τ : π|K ] V Γ
π , (0.1)
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[τ : π|K ] V Γ
π , (0.1)



This implies

Proposition

Let G be a compact Lie group and K a closed subgroup. Let Γ be
a discrete cocompact subgroup of G that acts freely on X = G/K .
Let ∆τ,Γ be the Laplace operator acting on sections of Γ\Eτ .

If λ ∈ R, the multiplicity dλ(τ, Γ) of the eigenvalue λ of ∆τ,Γ is
given by

dλ(τ, Γ) =
∑

π∈Ĝ :λ(C ,π)=λ

dΓ
π dim (HomK (W ∗

τ ,Vπ)) . (0.2)



Lemma
Let L = L(q; s1, . . . , sm) be a lens space and let
L = L(q; s1, . . . , sm). If (π,Vπ) is a finite dimensional
representation of SO(2m), then

dim V Γ
π =

∑
µ∈L

mπ(µ), (0.3)

where mπ(µ) denotes the multiplicity of the weight µ in the
representation π.



Proof.
One has that Vπ = ⊕µ∈P(G)Vπ(µ), where Vπ(µ) is the µ-weight
space, i.e. the space of vectors v such that π(h)v = hµv for every
h ∈ T . Hence, if Γ ⊂ T is generated by γ, then
V Γ
π = ⊕µ∈P(G)Vπ(µ)Γ.

Now, v ∈ Vπ(µ), v 6= 0, is Γ-invariant if and only if γµ = 1, hence

dim V Γ
π =

∑
µ:γµ=1

mπ(µ).

We let

Hγ = diag
((

0 2πs1/q
−2πs1/q 0

)
, . . . ,

(
0 2πsm/q

−2πsm/q 0

))
,

thus exp(Hγ) = γ. If µ =
∑m

j=1 ajεj ∈ P(SO(2m)) then

γµ = eµ(Hγ) = e
−2πi

(
a1s1+···+amsm

q

)
= 1,

if and only if a1s1 + · · ·+ amsm ≡ 0 (mód q), that is, µ ∈ L.
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Let L be an arbitrary sublattice of Zm. For µ ∈ Zm we set
Z (µ) = #{j : 1 ≤ j ≤ m, aj = 0}. Denote, for any 0 ≤ ` ≤ m and
any k ∈ N0,

NL(k) = # {µ ∈ L : ‖µ‖1 = k} , (0.4)

NL(k, `) = # {µ ∈ L : ‖µ‖1 = k , Z (µ) = `} . (0.5)

NL(k , `) counts the number of lattice points µ in L of 1-norm k
that lie in exactly one of the

(m
`

)
coordinate subspaces of

dimension m − `.

Definition
Let L and L′ be sublattices of Zm.

(i) L and L′ are said to be ‖·‖1-isospectral if NL(k) = NL′(k) for
every k ∈ N.

(ii) L and L′ are said to be ‖·‖∗1-isospectral if
NL(k , `) = NL′(k , `) for every k ∈ N and every 0 ≤ ` ≤ m.
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To investigate the p-spectrum of lens spaces we will need two
useful lemmas on weight multiplicities.

Lemma
Let k ∈ N and 0 ≤ p ≤ m. If µ =

∑m
j=1 ajεj ∈ Zm we have

mπkε1
(µ) =

{(r+m−2
m−2

)
if ‖µ‖1 = k − 2r with r ∈ N0,

0 otherwise,
(0.6)

mπΛp
(µ) =

{(m−p+2r
r

)
if ‖µ‖1 = p − 2r with r ∈ N0, and |aj | ≤ 1 ∀ j ,

0 otherwise.

(0.7)

Here Λp =
∑p

j=1 εj and π0,p = πΛp is the exterior representation of

SO(2m) on
∧p C2m.



The second lemma is crucial in the proof of the main theorem.

Lemma
Let µ, µ′ ∈ P(SO(2m)) ' Zm. If ‖µ‖1 = ‖µ′‖1 and Z (µ) = Z (µ′)
then mπk,p(µ) = mπk,p(µ′) for every k ∈ N and every 1 ≤ p ≤ m.
Here πk,p is the irreducible representation of SO(2m) with highest
weight kε1 + Λp if p < m and the sum of the irreducible
representations with highest weights kε1 + Λp and kε1 + Λp, when
p = m.



The next theorem gives an explicit formula for dim V Γ
πk,p

in terms
of weight multiplicities mπk,p(µ) and number of lattice points
NL(k , `), where L is the congruence lattice of L.

Theorem
Let L = Γ\S2m−1 be a lens space with associated lattice L and let
k ∈ N and 0 ≤ p ≤ m. Then

dim V Γ
πk,p

=

[(k+p)/2]∑
r=0

m∑
`=0

mπk,p(µr ,`) NL(k + p − 2r , `), (0.8)

where µr ,` is any weight such that Z (µr ,`) = ` and
‖µr ,`‖1 = k + p − 2r .
In the particular case when p = 0 we get that

dim V Γ
πkε1

=

[k/2]∑
r=0

(
r + m − 2

m − 2

)
NL(k − 2r). (0.9)



We can now state

Theorem
Let L = Γ\S2m−1 and L′ = Γ′\S2m−1 be lens spaces with
associated congruence lattices L and L′ respectively. Then

(i) L and L′ are 0-isospectral if and only if L and L′ are
‖·‖1-isospectral.

(ii) L and L′ are p-isospectral for all p if and only if L and L′ are
‖·‖∗1-isospectral.

Remark
A pair of non-isometric lens spaces as given by Theorem 0.4
cannot be strongly isospectral, since two strongly isospectral lens
spaces are necessarily isometric.



Remark
Ikeda (80) gave many pairs of non-isometric lens spaces that are
0-isospectral. The simplest is L(11; 1, 2, 3) and L(11; 1, 2, 4) in
dimension 5. It follows that the associated congruence lattices
L = L(11; 1, 2, 3) and L′ = L(11; 1, 2, 4) must be ‖·‖1-isospectral.

However, L and L′ are not ‖·‖∗1-isospectral.

In fact, ±(2,−1, 0) and ±(1, 1− 1) are the only vectors in L with
1-norm equal to 3, while ±(2,−1, 0) and ±(0, 2,−1) are those in
L′ with the same 1-norm. Thus,

NL(3, 0) = 2 6= NL′(3, 0) = 0 and NL(3, 1) = 2 6= NL′(3, 1) = 4.
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Remark
We shall give later infinitely many pairs of congruence lattices that
are ‖·‖∗1-isospectral in dimension m = 3. Such examples cannot
exist in dimension m = 2; Ikeda and Yamamoto showed that two
0-isospectral lens spaces are necessarily isometric for n = 3.

Remark
In an important paper, Ikeda88 constructed, for each given p0,
pairs of lens spaces that are p-isospectral for every 0 ≤ p ≤ p0, but
are not p0 + 1 isospectral. No pair in his set of examples is
p-isospectral for all p.
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Finiteness conditions

If q ∈ N, we define an equivalence relation in Zm: if µ =
∑

j ajεj ,
µ′ =

∑
j a′jεj ∈ Zm then µ ∼ µ′ if and only if µ− µ′ ∈ (qZ)m and

aja
′
j ≥ 0 for every j such that aj 6≡ 0 (mód q).

If C (q) =
{∑

j ajεj ∈ Zm : |aj | < q , ∀ j
}
, then for any

congruence lattice L, C (q) and C (q) ∩ L give a complete set of
representatives of ∼ on Zm and on L.

Definition
Let L be a q-congruence lattice. For any k ∈ N0 and 0 ≤ ` ≤ m,
set

Nred
L (k, `) = #{µ ∈ C (q) ∩ L : ‖µ‖1 = k , Z (µ) = `}.

NL(k , `) = Nred
L (k , `) for every k < q. Also, for each of the m − `

nonzero coordinates ai of a q-reduced element one has
|ai | ≤ q − 1, thus Nred

L (k , `) = 0 for every k > (m − `)(q − 1).
Hence, the totality of numbers Nred

L (k , `) is at most
(m+1

2

)
q.
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Every element in a q-congruence lattice L is equivalent to one and
only one q-reduced element in L.

Theorem
Let L and L′ be two q-congruence lattices.

(i) If k = αq + r ∈ N with 0 ≤ r < q, then

NL(k , `) =
m−∑̀
s=0

2s
(
`+ s

s

) α∑
t=s

(
t − s + m − `− 1

m − `− 1

)
Nred
L (k−tq, `+s).

(0.10)

(ii) NL(k , `) = NL′(k , `) for every k and ` if and only if
Nred
L (k , `) = Nred

L′ (k , `) for every k and `.

Hence, if Nred
L (k , `) = Nred

L′ (k , `) for every k and `, then L and L′
are ‖·‖∗1-isospectral.
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Computations and questions

We can use the finiteness theorem to produce, with the help of a
computer, many examples of pairs of non-isometric congruence
lattices that are ‖·‖∗1-isospectral. Each such pair gives rise to a pair
of non-isometric lens spaces that are p-isospectral for all p.

We explain the computational procedure. For each m and q, one
finds first a complete list of non-isometric q-congruence lattices in
Zm. Then, for each lattice L in the list, one computes the (finitely
many) numbers Nred

L (k , `) for 0 ≤ ` ≤ m and
0 ≤ k ≤ (m − `)(q − 1). The program puts together the lattices
for which these numbers coincide. By a previous theorem, such
lattices are mutually ‖·‖∗1-isospectral.

By this procedure, using Sage, we found all ‖·‖∗1-isospectral
m-dimensional q-congruence lattices for m = 3, q ≤ 300 and
m = 4, q ≤ 150. We point out that all such lattices come in pairs
for these values of q and m.
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q [s1, s2, s3 ] [s ′1, s ′2, s ′3 ]

49 [ 1, 6, 15 ] [ 1, 6, 20 ] *
64 [ 1, 7, 17 ] [ 1, 7, 23 ] *
98 [ 1, 13, 29 ] [ 1, 13, 41 ] *

100 [ 1, 9, 21 ] [ 1, 9, 29 ] *
100 [ 1, 9, 31 ] [ 1, 9, 39 ]
121 [ 1, 10, 23 ] [ 1, 10, 32 ] *
121 [ 1, 10, 34 ] [ 1, 10, 43 ]
121 [ 1, 10, 45 ] [ 1, 10, 54 ]
121 [ 1, 21, 34 ] [ 1, 21, 54 ]
121 [ 1, 21, 45 ] [ 1, 21, 56 ]
128 [ 1, 15, 33 ] [ 1, 15, 47 ] *
147 [ 1, 20, 43 ] [ 1, 20, 62 ] *
169 [ 1, 12, 27 ] [ 1, 12, 38 ] *
169 [ 1, 12, 53 ] [ 1, 12, 64 ]
169 [ 1, 12, 66 ] [ 1, 12, 77 ]
169 [ 1, 25, 40 ] [ 1, 25, 64 ]
169 [ 1, 25, 53 ] [ 1, 25, 77 ]
169 [ 1, 38, 53 ] [ 1, 38, 79 ]
169 [ 1, 12, 40 ] [ 1, 12, 51 ]
169 [ 1, 25, 66 ] [ 1, 25, 79 ]
192 [ 1, 23, 49 ] [ 1, 23, 71 ] *
196 [ 1, 13, 29 ] [ 1, 13, 41 ] *
196 [ 1, 13, 57 ] [ 1, 13, 69 ]
196 [ 1, 41, 71 ] [ 1, 41, 85 ]
196 [ 1, 13, 43 ] [ 1, 13, 55 ]
196 [ 1, 13, 71 ] [ 1, 13, 83 ]
196 [ 1, 27, 43 ] [ 1, 27, 69 ]
196 [ 1, 27, 57 ] [ 1, 27, 83 ] *
200 [ 1, 19, 41 ] [ 1, 19, 59 ] *
200 [ 1, 19, 61 ] [ 1, 19, 79 ]
242 [ 1, 21, 45 ] [ 1, 21, 65 ] *

q [s1, s2, s3 ] [s ′1, s ′2, s ′3 ]

242 [ 1, 21, 67 ] [ 1, 21, 87 ]
242 [ 1, 21, 89 ] [ 1, 21, 109 ]
242 [ 1, 43, 67 ] [ 1, 43, 109 ]
242 [ 1, 43, 89 ] [ 1, 43, 111 ]
245 [ 1, 34, 71 ] [ 1, 34, 104 ] *
256 [ 1, 15, 33 ] [ 1, 15, 47 ] *
256 [ 1, 15, 81 ] [ 1, 15, 95 ]
256 [ 1, 31, 81 ] [ 1, 31, 111 ]
256 [ 1, 47, 97 ] [ 1, 47, 113 ]
256 [ 1, 15, 97 ] [ 1, 15, 111 ]
256 [ 1, 31, 49 ] [ 1, 31, 79 ]
256 [ 1, 31, 65 ] [ 1, 31, 95 ] *
289 [ 1, 16, 35 ] [ 1, 16, 50 ] *
289 [ 1, 16, 86 ] [ 1, 16, 101 ]
289 [ 1, 16, 120 ] [ 1, 16, 135 ]
289 [ 1, 33, 69 ] [ 1, 33, 101 ]
289 [ 1, 33, 86 ] [ 1, 33, 118 ]
289 [ 1, 50, 69 ] [ 1, 50, 118 ]
289 [ 1, 50, 103 ] [ 1, 50, 137 ]
289 [ 1, 67, 86 ] [ 1, 67, 137 ]
289 [ 1, 16, 52 ] [ 1, 16, 67 ]
289 [ 1, 16, 69 ] [ 1, 16, 84 ]
289 [ 1, 16, 103 ] [ 1, 16, 118 ]
289 [ 1, 33, 52 ] [ 1, 33, 84 ]
289 [ 1, 67, 103 ] [ 1, 67, 120 ]
289 [ 1, 33, 103 ] [ 1, 33, 135 ]
289 [ 1, 50, 86 ] [ 1, 50, 135 ]
289 [ 1, 33, 120 ] [ 1, 33, 137 ]
294 [ 1, 41, 85 ] [ 1, 41, 125 ] *
300 [ 1, 29, 61 ] [ 1, 29, 89 ] *
300 [ 1, 29, 91 ] [ 1, 29, 119 ]



q [s1, s2, s3, s4 ] [s ′1, s ′2, s ′3, s ′4 ]

49 [ 1, 6, 8, 20 ] [ 1, 6, 8, 22 ]
81 [ 1, 8, 10, 26 ] [ 1, 8, 10, 28 ]
81 [ 1, 8, 10, 35 ] [ 1, 8, 10, 37 ]
81 [ 1, 8, 19, 37 ] [ 1, 8, 26, 37 ]
98 [ 1, 13, 15, 41 ] [ 1, 13, 15, 43 ]

100 [ 1, 9, 11, 29 ] [ 1, 9, 11, 31 ]
100 [ 1, 9, 21, 39 ] [ 1, 9, 29, 31 ]
121 [ 1, 10, 12, 32 ] [ 1, 10, 12, 34 ]
121 [ 1, 10, 12, 54 ] [ 1, 10, 12, 56 ]
121 [ 1, 10, 23, 56 ] [ 1, 10, 32, 56 ]

q [s1, s2, s3, s4 ] [s ′1, s ′2, s ′3, s ′4 ]

121 [ 1, 10, 34, 54 ] [ 1, 10, 43, 45 ]
121 [ 1, 21, 23, 54 ] [ 1, 21, 23, 56 ]
121 [ 1, 10, 12, 43 ] [ 1, 10, 12, 45 ]
121 [ 1, 10, 23, 43 ] [ 1, 10, 32, 34 ]
121 [ 1, 10, 23, 45 ] [ 1, 10, 32, 54 ]
121 [ 1, 10, 23, 54 ] [ 1, 10, 32, 45 ]
121 [ 1, 10, 34, 56 ] [ 1, 10, 43, 56 ]
144 [ 1, 11, 13, 47 ] [ 1, 11, 13, 49 ]
144 [ 1, 11, 25, 59 ] [ 1, 11, 35, 49 ]
147 [ 1, 20, 22, 62 ] [ 1, 20, 22, 64 ]



Next we attempt to explain in a unified manner the examples in
the tables. Let r and t be positive integers and set q = r 2t, r > 1.
We let θ = 1 + rt, as an element of (Z/qZ)×, the group of units of
Z/qZ. Then, the inverse of θ modulo q is θ−1 := 1− rt.
Clearly, for every k ∈ Z,

θk ≡ 1 + krt (mód q).

In particular, θ has order r in (Z/qZ)×. For example,

L = L(q; θ0, θ1, θ3) and L′ = L(q; θ0, θ−1, θ−3). (0.11)



All pairs in the tables have a description in terms of suitable
powers of θ for choices of r and t such that q = r 2t. For instance,
the fifth example in the table for m=3, if we take r = 10 and t = 1
can be written as

L(100; 1, 9, 31) = L(q; θ0,−θ−1, θ3) ∼=1 L(q; θ0, θ1, θ4),
L(100; 1, 9, 39) = L(q; θ0,−θ−1,−θ−4) ∼=1 L(q; θ0, θ−1, θ−4),

(0.12)
where ∼=1 denotes isometric in ‖·‖1. Furthermore, the first pair in
the table for m = 4, if r = 7 and t = 1 becomes

L(49; 1, 6, 8, 20) = L(q; θ0,−θ−1, θ1,−θ−3) ∼=1 L(q; θ0, θ1, θ3, θ4),
L(49; 1, 6, 8, 22) = L(q; θ0,−θ−1, θ1, θ3) ∼=1 L(q; θ0, θ−1, θ−3, θ−4).

(0.13)



All examples shown in the tables respond to the following
description:

L(q; θd0 , θd1 , . . . , θdm−1) and L(q; θ−d0 , θ−d1 , . . . , θ−dm−1),
(0.14)

where q = r 2t, r > 1, θ = 1 + rt and
0 = d0 < d1 < · · · < dm−1 < r .

However, for some choices of m, r and t, there are sequences
0 = d0 < d1 < · · · < dm−1 < r such that the lattices defined as
above are not ‖·‖∗1-isospectral.
For example, this happens when m = 3, r = 8, t = 1 and
[d0, d1, d2] = [0, 1, 4].



The following questions come up naturally.

Question
Give conditions on the sequence 0 = d0 < d1 < · · · < dm−1 < r for
lattices as in (0.14) to be ‖·‖∗1-isospectral.

Question
Are there examples of ‖·‖∗1-isospectral lattices that are not of the
type in (0.14) for some choice of θ?

Question
Are there families of ‖·‖∗1-isospectral lattices having more than two
elements?



Construction of ‖·‖∗1-isospectral lattices

We now give an infinite two-parameter family of pairs of
‖·‖∗1-isospectral lattices in Zm for m = 3. Note :it was shown by
Ikeda-Yamamoto that such lattices cannot exist in dimension
m = 2.

We fix r , t ∈ N, r > 1, we set q = r 2t and consider the lattices

L = L(q; 1, rt − 1, 2rt + 1), L′ = L(q; 1, rt − 1, 3rt − 1).
(0.15)

That is, L and L′ are defined by the following equations

L : a + (rt − 1)b + (2rt + 1)c ≡ 0 (mód r 2t),

L′ : (rt − 1)a′ + b′ + (3rt − 1)c ′ ≡ 0 (mód r 2t).
(0.16)

The simplest case is the pair L(49; 1, 6, 15), L(49; 1, 6, 20)
obtained by letting t = 1, r = 7 and q = 49.
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Lemma
For any ` = 1, 2, 3 and any k ∈ N, one has that
NL(k , `) = NL′(k, `).

It remains to prove that NL(k , 0) = NL′(k , 0) for every k . By
Lemma 5, this is equivalent to showing that L and L′ are
‖·‖1-isospectral, since NL(k) =

∑3
`=0 NL(k , `).

The proof of this fact requires quite some work, we omit it. Thus:

Theorem
For any r , t odd positive integers, r > 1, r 6≡ 0 (mód 3), the
lattices L(q; 1, rt − 1, 2rt + 1) and L(q; 1, rt − 1, 3rt − 1) are
‖·‖∗1-isospectral.
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Proposition

If L and L′ are strongly isospectral lens spaces, then they are
isometric.

Indeed, if Γ\S2m−1 and Γ′\S2m−1 are strongly isospectral spherical
spaces forms, by Pesce the subgroups Γ and Γ′ are representation
equivalent, i.e. L2(Γ\O(2m)) and L2(Γ′\O(2m)) are equivalent
representations of O(2m). Hence, Γ and Γ′ are almost conjugate in
O(2m) (Wolf). Since almost conjugate cyclic subgroups are
necessarily conjugate, then L and L′ are isometric.

We observe that the examples in the theorem allow to obtain pairs
of Riemannian manifolds in every dimension n ≥ 5 that are
p-isospectral for all p, but are not strongly isospectral.
Indeed, we may just take M = L× Sk and M ′ = L′ × Sk , for any
k ∈ N0, where L, L′ is any pair of non-isometric lens spaces in
dimension 5 satisfying p-isospectrality for every p.
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necessarily conjugate, then L and L′ are isometric.

We observe that the examples in the theorem allow to obtain pairs
of Riemannian manifolds in every dimension n ≥ 5 that are
p-isospectral for all p, but are not strongly isospectral.
Indeed, we may just take M = L× Sk and M ′ = L′ × Sk , for any
k ∈ N0, where L, L′ is any pair of non-isometric lens spaces in
dimension 5 satisfying p-isospectrality for every p.



Relative to lens spaces of higher dimensions we have the following
result.

Theorem
For any n0 ≥ 5, there are pairs of non-isometric lens spaces of
dimension n, with n > n0, that are p-isospectral for all p.

The proof uses Ikeda’s duality and our previous result. We
furthermore note that:

Lemma
The lens spaces L(r 2t; 1, 1 + rt, 1 + 3rt), L(r 2t; 1, 1− rt, 1− 3rt),
r 6≡ 0 (mód 3), associated to the congruence lattices in the
theorem are homotopically equivalent to each other.



We end with complementary information on τ -isospectrality. Any
representation τ of K induces a strongly elliptic natural operator
∆τ,Γ on the smooth sections of a natural vector bundle over
Γ\S2m−1.
We will show many choices of representations τ of K such that
L(49; 1, 6, 15) and L(49; 1, 6, 20) are not τ -isospectral. Denote by Γ
and Γ′ the finite cyclic subgroups of order q = 49 such that
L = Γ\S5 and L′ = Γ′\S5.

Set Λ0 = 4ε1 + 3ε2 with irreducible representation πΛ0 of G .
One can check that dim V Γ

πΛ0
= 8, dim V Γ′

πΛ0
= 6 and the only

irreducible representation π such that λ(C , π) = λ(C , πΛ0) = 47 is
π = πΛ0 . Recall that λ(C , π) = 〈Λ + ρ,Λ + ρ〉 − 〈ρ, ρ〉 is the scalar
for which the Casimir operator C acts on V Γ

π .
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Since τ = τ∗, the multiplicity of the eigenvalue λ0 = 47 in ∆τ,Γ

and ∆τ,Γ′ are given by

dλ0(τ, Γ) = 8 [τ : πΛ0 ] and dλ0(τ, Γ′) = 6 [τ : πΛ0 ].

Hence, L and L′ cannot be τ -isospectral for every τ such that
[τ : πΛ0 ] > 0. By applying the branching law from SO(6) to SO(5),
one has that there are several such representations: those having
highest weight b1ε1 + b2ε2 with 4 ≥ b1 ≥ 3 ≥ b2 ≥ 0.

Now, with the help of a computer one checks, similarly, that there
are many irreducible representations π of G satisfying
dim V Γ

π 6= dim V Γ′
π .

For each π such that dim V Γ
π 6= dimV Γ′

π
, as above one obtains many

irreducible representations τ of SO(5) such that L and L′ are not
τ -isospectral, so, we get that L and L′ are ‘very far’ from being
strongly isospectral.
Question. Show there are only finitely many irreducible
representations τ of SO(5) such that L(49; 1, 6, 15) and
L(49; 1, 6, 20) are τ -isospectral. Which ones?
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