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Abstract

k-Curvature homogeneous three-dimensional Walker metrics are
described for k ≤ 2. This allows a complete description of locally
homogeneous three-dimensional Walker metrics, showing that
there exists exactly three isometry classes of such manifolds. As an
application one obtains a complete description of all locally
homogeneous Lorentzian manifolds with recurrent curvature.
Moreover, potential functions are constructed in all the locally
homogeneous manifolds resulting in steady gradient Ricci and
Cotton solitons.



Walker Lorentzian 3 dimensional manifolds

Let M = (M, gM ) be a 3-dimensional Lorentzian manifold which
admits a parallel null vector field, i.e. M is a 3-dimensional Walker
manifold. Such a manifold admits local adapted coordinates
(x, y, x̃) so that the (possibly) non-zero components of the metric
are given by

g(∂x, ∂x) = −2f(x, y), g(∂x, ∂x̃) = g(∂y, ∂y) = 1 .

define a signature (2, 1) metric on R3. We examine curvature
homogeneity in this setting; this extends previous work where we
assumed f = f(y) was a function of only one variable.
We shall denote this manifold by Mf .



Introduction

The study of Lorentzian three-manifolds admitting a parallel null
vector field is central both in geometry and physics. Physically
they represent the simplest non-trivial pp-waves and, from a
geometrical point of view, they are the underlying structure of
many Lorentzian situations without Riemannian counterpart. A
Lorentzian manifold is said to be irreducible if the holonomy group
does not leave invariant any non-trivial subspace. Moreover, the
action of the holonomy is said to be indecomposable it leaves
invariant only non-trivial subspaces for which the restriction of the
metric degenerates. Then the de Rham-Wu’s Theorem shows that
any complete and simply connected Lorentzian manifold is a
product of indecomposable ones. Thus Walker three-manifolds
constitute the basic material to build many Lorentzian metrics.



When trying to analyze the curvature of a given manifold, one
must deal not only with the curvature tensor itself, but also with
its covariant derivatives. In the locally symmetric case, the
curvature tensor is parallel and hence the study can be reduced to
the purely algebraic level. Generalizing this condition, one naturally
considers the case when the curvature tensor is recurrent (i.e.,
∇R = ω ⊗R for some 1-form ω) but not parallel (∇R 6= 0). The
class of recurrent Lorentzian manifolds reduces to the study of
plane waves and the three-dimensional Walker manifolds
(A.S.Galaev-Lorentzian manifolds with recurrent curvature tensor,
arXiv; A.G.Walker 1950 -On Ruse’s spaces of recurrent curvature).
Homogeneous plane waves were discussed in (M.Blau and
M.O’Loughlin 2003) and hence one of the purposes of this paper is
to give a complete description of all locally homogeneous Walker
three-manifolds.



Our main result shows that there exists exactly three isometry
classes of such manifolds , which allows a complete description of
all locally homogeneous Lorentzian manifolds with recurrent
curvature. Recall that, in any locally homogeneous
pseudo-Riemannian manifold, the curvature tensor and all its
covariant derivatives are the same at each point . Generalizing this
condition, a manifold (M, g) is said to be k-curvature
homogeneous if for any two points there exists a linear isometry
between the corresponding tangent spaces which preserves the
curvature tensor and its covariant derivatives up to order k. Clearly
any locally homogeneous space is curvature homogeneous of any
order; conversely, given m, there is k = k(m) so that any
k-curvature homogeneous manifold is in fact homogeneous
(I.M.Singer-1960, F.Podesta and A.Spiro-1996, B.Opozda-1997).



Moreover it is shown (Bueken,Djoric-2000) that a
three-dimensional Lorentzian manifold which is curvature
homogeneous up order two is also locally homogeneous. Our
approach is based on a careful analysis of the curvature
homogeneity of a Walker three-manifold.
A purpose of this work to give a complete description of all Walker
three-manifolds . It is our second purpose in this paper to analyze
their geometry, thus showing that any 1-curvature homogeneous
Walker three-manifold is either a gradient Ricci soliton or a
gradient Cotton soliton.



Recall that, generalizing the Einstein condition, a Lorentzian
manifold (M, g) is said to be a Ricci soliton if and only if it is a
self-similar solution of the Ricci flow, i.e., the one-parameter family
of metrics g(t) = σ(t)ψ∗t g is a solution of the Ricci flow
∂
∂tg(t) = −2Ricg(t), for some smooth function σ(t) and some
one-parameter family of diffeomorphisms ψt of M , where Ricg(t)
denotes the Ricci tensor of (M, g(t)). From a physical viewpoint,
Ricci solitons can be interpreted as special solutions of the Einstein
field equations, where the stress-energy tensor essentially
corresponds to the Lie derivative of the metric. We analyze in
detail the structure of gradient Ricci solitons on Walker
three-manifolds , showing that any 1-curvature homogeneous
Lorentzian three-manifold with recurrent curvature is indeed a
steady gradient Ricci soliton. While one of the possible 1-curvature
homogeneous Walker three-manifold is indeed a plane wave and
thus a expanding, steady and shrinking Ricci soliton, it is shown
that the non-homogeneous family does not support any non-steady
Ricci soliton.



The Cotton tensor, C, measures the failure of the Schouten tensor
to be Codazzi. The existence of self-similar solutions to the Cotton
flow ∂

∂tg(t) = −λCg(t) also provide a family of three-dimensional
metrics which generalize the locally conformally flat manifolds.
Locally homogeneous Walker three-manifolds split essentially into
two families, one of which is locally conformally flat. The existence
of gradient Cotton solitons is also studied, showing that any locally
homogeneous Walker three-manifold is a steady gradient Cotton
soliton. Moreover, a locally homogeneous Walker three-manifold
admits a non-steady Cotton soliton if and only if it is locally
conformally flat.



Preliminaries

A Lorentzian manifold admitting a parallel null vector field will be
refereed in what follows as a Walker manifold. Let (x, y, x̃) be
coordinates on R3, let O be a connected open subset of R2, let
M := O × R, let f ∈ C∞(O), and let Mf := (M, gf ) where
g = gf is the Lorentz metric on M given by:

g(∂x, ∂x) = −2f(x, y), g(∂x, ∂x̃) = g(∂y, ∂y) = 1 .

We shall assume that fyy > 0 and thus the curvature does not
vanish identically; the case fyy < 0 is similar. This implies that
Mf is 0-curvature homogeneity.



We note for future reference that the non-zero covariant
derivatives are given by:

∇∂x∂x = −fx∂x̃ + fy∂y and ∇∂x∂y = ∇∂y∂x = −fy∂x̃.

Since ∇x∂x = −fx∂x̃ + fy∂y involves a ∂y component which can
depend on y, these manifolds are not generalized plane wave
manifolds and in fact can be geodesically incomplete; they can
exhibit Ricci blowup.
The only (potentially) non-zero components of the (1, 3) curvature
tensor R are given by

R(∂x, ∂y)∂y = fyy∂x̃ and R(∂x, ∂y)∂x = −fyy∂y.

Thus the (0, 4) curvature tensor is determined by
R(∂x, ∂y, ∂y, ∂x) = fyy. Similarly, when considering ∇R, the only
possible contributions from the Christoffel symbols arise when
plugging ∂x or ∂y in the last entry ∇R(∂x, ∂y, ∂y, ∂x; · ).



Consequently the (possibly) non-zero entries in ∇R are given by:

∇R(∂x, ∂y, ∂y, ∂x; ∂x) = fxyy and ∇R(∂x, ∂y, ∂y, ∂x; ∂y) = fyyy.

It follows from previous equations that Mf is locally symmetric
if and only if fyy is a constant. Whenever fyy = const. 6= 0, the
resulting manifold is a Cahen-Wallach symmetric space
(CLPTV-1990). In dimension 3, all Walker metrics have
recurrent curvature in a neighborhood of any point of non-zero
curvature, i.e., ∇R = ω ⊗R, for a 1-form

ω = (ln fyy)x dx+ (ln fyy)y dy.

We refer to (V,R,G,N,L-2009) and the references therein for
more information on Walker three-manifolds.



We compute similarly that the (possibly) non-zero entries in ∇2R
are:

∇2R(∂x, ∂y, ∂y, ∂x; ∂x, ∂x) = fxxyy − fyfyyy,

∇2R(∂x, ∂y, ∂y, ∂x; ∂x, ∂y) = fxyyy,

∇2R(∂x, ∂y, ∂y, ∂x; ∂y, ∂x) = fxyyy,

∇2R(∂x, ∂y, ∂y, ∂x; ∂y, ∂y) = fyyyy .



Definition

Let Mf be a three-dimensional Walker manifold given by
Walker-metric.

1. Let Nb be defined by taking f(x, y) = b−2eby for b 6= 0.

2. Let Pc be defined by taking f(x, y) = 1
2y

2α(x) where

αx = cα3/2 and α > 0.

3. Let CW be the three-dimensional Cahen-Wallach symmetric
space defined by taking f(x, y) = εy2.



Theorem
There is a geodesic γ(t) in Pc which defined for t ∈ [0, 1) and
there exists a parallel vector field Y (t) along γ(t) with

gf (γ̇, γ̇) = 1, gf (γ̇, Y ) = 0, gf (Y, Y ) = 1, lim
t→1−

R(γ̇, Y, Y, γ̇) =∞ .

Consequently, Pc is geodesically incomplete and can not be
embedded in a geodesically complete manifold.

Theorem

1. The manifolds CWε are locally symmetric.

2. The manifolds Nb and Pc are locally homogeneous.

3. The manifolds {CWε,Nb,Pc} have non-isomorphic
1-curvature models and represent different local isometry
types.



The manifolds Pc are pp-waves one supposes since the function
f(x, y) is quadratic in y; they are not generalized plane. The
manifolds Nb are not pp-waves since fyy is not quadratic in y.
Note that the Cahen-Wallach symmetric spaces CWε are
geodesically complete. The geodesic equations corresponding to
the manifolds Nb can be integrated explicitly.



Geometric Solitons

The objective of the different geometric evolution equations is to
improve a given initial metric by considering a flow associated to
the geometric object under consideration. The Ricci, Yamabe, and
mean curvature flows are examples extensively studied in the
literature. Under suitable conditions, the Ricci flow evolves an
initial metric to an Einstein metric while the Yamabe flow evolves
an initial metric to a new one with constant scalar curvature within
the same conformal class. There are however certain metrics which,
instead of evolving by the flow, remain invariant up to scaling and
diffeomorphisms, i.e., they are self-similar solutions of the flow.
For any solution of the form g(t) = σ(t)ψ∗t g(0), where σ(t) is a
smooth function and {ψt} a one-parameter family of
diffeomorphisms of M , there exists a vector field X (the soliton
vector field) which relates the Lie derivative of the metric LXg
with the geometric object defining the flow under consideration.



Ricci solitons

A Ricci soliton is a pseudo-Riemannian manifold (M, g) which
admits a smooth vector field X (which is called a soliton vector
field) on M such that

LXg +Ric = λg, (1)

where LX denotes the Lie derivative in the direction of X, Ric is
the Ricci tensor, and λ is a real number (λ = 1

n(2divX + Sc),
where n = dim M and Sc denotes the scalar curvature of (M, g)).
A Ricci soliton is said to be shrinking, steady or expanding, if
λ > 0, λ = 0 or λ < 0, respectively. Moreover we say that a Ricci
soliton (M, g) is a gradient Ricci soliton if the vector field X
satisfies X = gradh, for some potential function h. In such a case
Equation (1) can be written in terms of h as 2Hesh +Ric = λg.



Three-dimensional Walker metrics admitting a non-trivial (i.e., not
Einstein) gradient Ricci soliton were completely described in
BVGRGF. where it is shown that one of the following two
possibilities must occur:
[(R.1)] There exist coordinates (x, y, x̃) for some function f
satisfying f−1yy fyyy = b. Hence

f(x, y) =
1

κ2
eκyα(x) + yβ(x) + γ(x)

for some arbitrary functions α(x), β(x) and γ(x). The potential
function of the soliton is given by

h(x, y, x̃) =
κ

2
y + ĥ(x), where ĥxx =

κ

2
β(x),

and the soliton vector field is spacelike and given by
gradh = κ

2∂y + ĥx(x)∂x̃.



[(R.2)] There exist coordinates (x, y, x̃) for some function f
satisfying fyyy = 0. Hence

f(x, y) = y2α(x) + yβ(x) + γ(x)

for some arbitrary functions α(x), β(x) and γ(x).
The potential function of the soliton is given by

h(x, y, x̃) = ĥ(x), where ĥxx = −α(y),

and the soliton vector field is lightlike and given by
gradh = ĥx(x)∂x̃.
Moreover, in both cases the Ricci soliton is steady. As we shall see
all gradient Ricci solitons above are 1-curvature homogeneous,
provided that fyy has constant sign.



Further, note that all metrics corresponding to the second case
above are plane waves (since the function f is quadratic on y), and
hence they admit non-gradient vector fields X resulting in
expanding and shrinking Ricci solitons BBGG-2011. However
metrics corresponding to the first case above only admit steady
Ricci solitons

Theorem
A gradient Ricci soliton Mf admits a vector field X resulting in a
non-steady Ricci soliton if and only if it is a locally conformally flat
metric.

Recall here that two Ricci soliton vector fields differ in a
homothetic vector field . Hence, a gradient Ricci soliton Walker
metric admits a vector field resulting in a non-steady Ricci soliton
if and only if it admits a non-Killing homothetic vector field.
Locally conformally flat Walker metrics are plane waves
CGRVA-2005, and thus they admit homothetic vector fields
resulting in expanding, steady and shrinking Ricci solitons ....



Cotton solitons

The Schouten tensor of any pseudo-Riemannian manifold is given

by Sij = Ricij −
Sc

4
gij . Then the Cotton tensor,

Cijk = (∇iS)jk − (∇jS)ik measures the failure of the Schouten
tensor to be a Codazzi tensor. The Cotton tensor is the unique
conformal invariant in dimension three and it vanishes if and only if
the manifold is locally conformally flat. Using the Hodge
?-operator, the (0, 2)-Cotton tensor is given by

Cij =
1

2
√
g
Cnmiε

nm`g`j , where ε123 = 1. Moreover, the

(0, 2)-Cotton tensor is trace-free and divergence-free York-1971
and it appears naturally in many physical contexts (see, for
example Chow-Pope-Sezgin 2010, Garcia-Hehl-Heinicke 2004 and
the references therein).



The only non-zero component of the (0, 2)-Cotton tensor of a
Walker manifold Mf is given by C(∂x, ∂x) = −1

2fyyy (and hence
the manifold is locally conformally flat if and only if fyyy = 0).
A geometric flow associated to the Cotton tensor was introduced
in Kisisel, Sarioglu,Tekin-2008 as

∂

∂t
g(t) = −λCg(t),

where Cg(t) is the (0, 2)-Cotton tensor corresponding to (M, g(t)).
Then one naturally considers soliton solutions of the Cotton flow.
Following K,S,T -2008, a Cotton soliton is a triple (M, g,X) of a
three-dimensional manifold and a vector field X satisfying

LXg + C = λ g, (2)

where λ is a real number. The Cotton soliton is said to be
shrinking, steady or expanding if λ > 0, λ = 0 or λ < 0,
respectively.



The necessary and sufficient conditions for a Walker manifold to be
a gradient Cotton soliton were discussed in (CLGRVL-2012), where
it is shown that Mf is a non-trivial (i.e., not locally conformally
flat) gradient Cotton soliton if and only if it is steady and
fyyyy = κfyy for some non-zero constant κ. Now one of the
following three possibilities must occur:
(C.1)There exist coordinates (x, y, x̃) for some function f
satisfying fyyyy = κ2fyy .

f(x, y) =
1

κ2
(eκyα1(x) + e−κyα2(x)) + yβ(x) + γ(x)

where α1(x), α2(x), β(x) and γ(x) are arbitrary functions.
Moreover, the potential function of the soliton is given by
h(x, y, x̃) = κ

2y + ĥ(x), where

ĥxx(x) =
κ

2
(eκyα1(x)− e−κyα2(x) + 2κβ(x)).

The soliton vector field is spacelike and given by
gradh = κ2∂y + ĥx(x)∂x̃.



[(C.2)] There exist coordinates (x, y, x̃) for some function f
satisfying fyyyy = −κ2fyy . Hence

f(x, y) = − 1

κ2
(cos(κy)α1(x) + sin(κy)α2(x)) + yβ(x) + γ(x))

where α1(x), α2(x), β(x) and γ(x) are arbitrary functions.
Moreover, the potential function of the soliton is given by
h(x, y, x̃) = −κ

2y + ĥ(x), where

ĥxx(x) =
κ

2
(cos(κy)− sin(κy)− 2κβ(y)).

The soliton vector field is spacelike and given by
gradh = −κ2∂y + ĥx(x)∂x̃.



[(C.3)] There exist coordinates (x, y, x̃) for some function f
satisfying fyyyy = 0 . Hence

f(x, y) = y3α1(x) + y2α2(x) + yβ(x) + γ(x)

where α1(x), α2(x), β(x) and γ(x) are arbitrary functions.
Moreover, the potential function of the soliton is given by
h(x, y, x̃) = ĥ(x), where

ĥxx(x) = −3α1(x).

The soliton vector field is spacelike and given by
gradh = −κ2∂y + ĥx(x)∂x̃.



Moreover, in all cases above the gradient Cotton soliton is steady.
Note that two Cotton soliton vector fields
(LXig+C = λig, i = 1, 2) differ by a homothetic vector field since

LX1−X2g = (λ1 − λ2)g.

Hence, as well as for Ricci solitons, no Walker metric
corresponding to (C.1) and (C.2) supports any non-trivial Cotton
soliton of non-steady type as a consequence of the following.

Theorem
Let Mf be a non-flat Walker manifold satisfying fyyyy = bfyy
(b 6= 0). Then any homothetic vector field on Mf is necessarily a
Killing vector field.



Remark

Let Mf be given by f(x, y) = y3e−λx + y2 + yeλx + γ(x). Then
the vector field X = 1

2∂x + λ
2y∂y + {λx̃+ θ(x)} ∂x̃ is a Cotton

soliton for any function θ(x) which satisfies the identity
θx = 3e−λx + (12 − λ)γ(x). Moreover the Cotton soliton is
expanding or shrinking depending on the sign of λ. Hence there
are gradient Cotton solitons (C.3) which also admit non-Killing
homothetic vector fields.



Curvature homogeneity

A pseudo-Riemannian manifold (M, g) is said to be k-curvature
homogeneous if for each pair of points p, q ∈M there is a linear
isometry Φpq : TpM → TqM such that

Φ∗pqR(q) = R(p), Φ∗pq∇R(q) = ∇R(p), . . . , Φ∗pq∇kR(q) = ∇kR(p)

where R, ∇R, . . . , ∇kR stands for the curvature tensor and its
covariant derivatives up to order k.
Clearly any locally homogeneous manifold is curvature
homogeneous and the converse holds true if k is sufficiently large.
An open question in the study of curvature homogeneity is to
decide the minimum level of curvature homogeneity needed to
show that a space is locally homogeneous. A general estimate of
the form kM + 1 ≤ n(n− 1)/2 (where n is the dimension of the
manifold) was obtained by Singer.



However, there are sharper bounds in low dimensions. A
Riemannian manifold which is 1-curvature homogeneous is locally
homogeneous in dimension ≤ 4. However one needs 2-curvature
homogenenity to ensure local homogeneity in the three-dimensional
Lorentzian setting (see PG-2007) for more information and
references).
A 0-curvature homogeneous manifold is said to be modeled on a
symmetric space if its curvature tensor at each point is that of a
symmetric space. A complete and simply connected
indecomposable Lorentzian symmetric space is either irreducible,
and hence of constant sectional curvature, or otherwise it is a
Cahen-Wallach symmetric space (CLPTV-1990). Now, an
immediate application of Schur’s lemma shows that a curvature
homogeneous Lorentz manifold modeled on an irreducible
symmetric space has constant sectional curvature.



On the other hand, curvature homogeneous Lorentzian manifolds
modeled on indecomposable symmetric spaces need not to be
symmetric, but they are Walker manifolds (CLPTV-1990).
The purpose of this work is to analyze the class of
three-dimensional manifolds with recurrent curvature under
different curvature homogeneity assumptions. The question of
1-curvature homogeneity is dealt with by the following result :



Theorem
Assume that fyy > 0 and that fyy is non-constant. Then Mf is
1-curvature homogeneous if and only if exactly one of the following
two possibilities holds:

1. fyy(x, y) = α(x)eby where 0 6= b ∈ R and where α(x) is arbitrary.
This manifold is 1-curvature modeled on Nb.

2. fyy(x, y) = α(x) where α = c · α1.5
x for some 0 6= c ∈ R. This

manifold is locally homogeneous and is locally isometric to Pc.

Theorem
Any 1-curvature homogeneous Lorentzian three-manifold with
recurrent curvature is a steady gradient Ricci soliton.



Theorem
The manifold Mf is 2-curvature homogeneous if and only if it falls
into one of the three families:

1. f = b−2α(x)eby + β(x)y+ γ(x) for β(x) = b−1α−1{αxx−α2
xα
−1}

where b 6= 0 and α > 0. The manifold Mf is locally isometric to
the manifold Nb and consequently is locally homogeneous.

2. fyy = α(x) > 0 where αx = cα3/2 for c > 0; thus α = c̃(x− x0)−2
for some (c̃, x0). The manifold Mf is locally isometric to the
manifold Pc and consequently locally homogeneous.

3. f = εy2 + β(x)y + γ(x) where 0 < ε ∈ R. The manifold Mf is
locally isometric to the manifold CWε and consequently is locally
homogeneous.

Theorem
Any 2-curvature homogeneous Lorentzian three-manifold with
recurrent curvature is a steady gradient Cotton soliton.



Finally note that the model manifolds Pc and CWε admit Ricci
and Cotton solitons of any kind (expanding, steady and shrinking),
but Nb only admits steady Ricci and Cotton solitons.



There is a slightly different version of curvature homogeneity that
is due to Kowalski and Vanžurová 2011. A manifold (M, g) is said
to be k-curvature homogeneous of type (1, 3)(homothety curvature
homogeneity) if for any two points there exists a linear homothety
between the corresponding tangent spaces which preserves the
(1, 3)-curvature tensor and its covariant derivatives up to order k.
This concept lies between the notion of affine k-curvature
homogeneity and k-curvature homogeneity since the conformal
group lies between the orthogonal group and the general linear
group. This is genuinely a different concept.



Theorem
Suppose fyy is never zero and non-constant.

1. If fyyy never vanishes, then Mf is homothety 1-curvature
homogeneous.

2. If fyy = α(x) with αx never zero, then Mf is homothety
1-curvature homogeneous if and only if
f = a(x− x0)−2y2 + β(x)y + γ(x) where 0 6= a ∈ R. This
manifold is locally homogeneous.

3. Assume that Mf is homothety 2-curvature homogeneous, and that
fyy and fyyy never vanish. Then Mf is locally isometric to one of
the examples:

3.1 M±eay for some a 6= 0 and M = R3. This manifold is
homogeneous.

3.2 M± ln(y) for some a 6= 0 and M = R× (0,∞)× R. This manifold
is homothety homogeneous but not locally homogeneous.

3.3 M±yε for ε 6= 0, 1, 2 and M = R× (0,∞)× R. This manifold is
homothety homogeneous but not locally homogeneous.



It will follow from our analysis that the manifolds M± ln(y) and
M±yc are homothety homogeneous VSI manifolds which are
cohomogeneity one, thereby exhibiting non-trivial examples in the
VSI setting. We also refer to recent work of Dunn and McDonald
(2013) for related work on homothetical curvature homogeneous
manifolds.
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M. Brozos-Vázquez, E. Garćıa-Ŕıo and S. Gavino-Fernández,
Locally conformally flat Lorentzian gradient Ricci solitons, J.
Geom. Anal., to appear (doi: 10.1007/s12220-011-9283-z).
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