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Notations

(Mn,∇) is said to be minimal in (M
n+p

,∇) if the mean curvature

vector
−→
H =

∑
hαii eα =

∑
〈∇ei ei , eα〉eα =

−→
0 .

The length of the second fundamental form A is defined by
|A|2 :=

∑
(hαij )2.

An end of a manifold M is a connected component of M \ K where
K is a sufficiently large compact subset of M.
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Question (Bernstein)
Is a minimal graph over Rn a hyperplane?

Yes, if n ≤ 7 (Fleming 1962, De Giorgi 1965, Almgren 1966,
Simons 1968)

No, if n ≥ 8 (Bombieri-De Giorgi-Giusti 1969)

We now consider a complete minimal hypersurface which is not a
graph.
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Note that a minimal graph is stable.

A minimal submanifold M is said to be stable if the second variation
of its volume is always nonnegative for any normal variation with
compact support.

In particular, when the codimension = 1, a minimal submanifold M
in a Euclidean space is stable iff

d2Vol(Mt)

dt2
=

∫
M

|∇ϕ|2 − |A|2ϕ2dv ≥ 0,

where ϕ ∈W 1,2
0 (M).
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Question
Is a complete stable minimal hypersurface M in Rn+1 hyperplane for
n ≤ 7?

This question is still open but we have the following partial results.

Yes, if n = 2 (Do Carmo and Peng 1979, Fischer-Colbrie and
Schoen 1980)

Yes, if

∫
M

|A|2dv <∞ for any n (Do Carmo and Peng 1980)

Yes, if

∫
M

|A|ndv <∞ for any n (The quantity

∫
M

|A|ndv is called a

total scalar curvature. ) (Shen and Zhu 1998)
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Topological structure of minimal submanifolds

If M is a stable minimal hypersurface in a Euclidean space, then M
has only one end. (Cao-Shen-Zhu 1997)

There is no nontrivial L2 harmonic 1-form on a complete stable
minimal hypersurface in a Euclidean space. (B. Palmer 1991)

Remark.
If a noncompact complete manifold M has no nontrivial L2 harmonic
1-form, then any codimension 1 cycle disconnects M. In particular, if
dim(M) = 2, then M has no genus. (Dodziuk 1982)

Therefore
if there exists a codimension 1 cycle on a complete minimal hypersurface
M in Euclidean space which does not separate M, then M is unstable.
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Let Mn be an n-dimensional complete immersed minimal
submanifold in Rn+p, n ≥ 3. If(∫

M

|A|ndv
) 1

n

< C1 =

√
n

n − 1
C−1
s ,

then M has only one end. Here Cs is a Sobolev constant.

(L. Ni 2001)

The upper bound C1 of total scalar curvature in the above theorem
can be improved. (S. 2008)
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Denote by Hn the n-dimensional hyperbolic space of constant sectional
curvature −1.

Theorem (S. 2010)
Let M be an n-dimensional complete immersed minimal submanifold in
Hn+p, n ≥ 5. If the total scalar curvature satisfies(∫

M

|A|ndv
) 1

n

<
1

n − 1

√
n(n − 4)C−1

s ,

then M has only one end.
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Idea of proof

Suppose not. Then there exists a nontrivial bounded harmonic
function with finite total energy.

Bochner’s formula for the harmonic function

Ricci curvature estimate(Leung 1992)

Multiply a nice test function ϕ and integrate over M.

Sobolev inequality (Hoffman and Spruck 1974)

First eigenvalue estimate (Cheung and Leung 2001)

1

4
(n − 1)2 ≤ λ1(M) = inf

f

∫
M
|∇f |2∫
M
f 2

.

Such a harmonic function is constant. Contradiction!
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If we do not use the first eigenvalue estimate λ1(M) ≥ (n−1)2

4 , we have

Theorem (S. 2010)
Let M be an n-dimensional complete immersed minimal submanifold in

Hn+p, n ≥ 3. Assume that λ1(M) > (n−1)2

n and the total scalar curvature
satisfies (∫

M

|A|ndv
) 2

n

<
n

n − 1
Cs

−1
( n

n − 1
− n − 1

λ1(M)

)
.

Then M must have only one end.
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Theorem (N.T. Dung and S. 2012)
Let N be an (n + 1)-dimensional Riemannian manifold with sectional
curvature satisfying

K1 ≤ KN ≤ K2,

where K1,K2 are constants and K1 ≤ K2 < 0. Let M be a complete
minimal hypersurface in N. If(∫

M

|A|n
) 1

n

≤ 1

n − 1

√
n(nK2 − 4K1)

K2
C−1
s

for n > 4K1

K2
, then M has only one end. (Here Cs is the Sobolev constant.)

11 / 24



Higher codimensional case

Spruck(1975) proved that for an n-dimensional minimal submanifold
M in Rn+m, a variational vector field E = ϕν, the second variation
of its volume Vol(Mt) satisfies

d2Vol(Mt)

dt2
≥
∫
M

|∇ϕ|2 − |A|2ϕ2dv ,

where ϕ ∈W 1,2
0 (M) and ν is the unit normal vector field.

For an n-dimensional minimal submanifold M in Hn+m, a simple
computation shows that for a variational vector field E = ϕν, the
second variation of its volume Vol(Mt) satisfies

d2Vol(Mt)

dt2
≥
∫
M

|∇ϕ|2 − (|A|2 − n)ϕ2dv ,

where ϕ ∈W 1,2
0 (M) and ν is the unit normal vector field.
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Motivated by this, we will call a minimal submanifold M in Hn+m

super stable if for any ϕ ∈W 1,2
0 (M)∫

M

|∇ϕ|2 − (|A|2 − n)ϕ2dv ≥ 0.

When m = 1, the concept of super stability is the same as the usual
definition of stability.

Wang(2003) introduced the concept of super stability to prove that
if Mn(n ≥ 3) is a complete super stable minimal submanifold with
finite total scalar curvature in Rn+p, then M is an affine n-plane.
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Theorem (S. 2010)
Let M be a complete super stable minimal submanifold in Hn+m. Assume
that the first eigenvalue of M satisfies

(2n − 1)(n − 1) < λ1(M).

Then there are no nontrivial L2 harmonic 1-forms on M.

Corollary
Let M be a complete stable minimal hypersurface in Hn+1 satisfying that

(2n − 1)(n − 1) < λ1(M).

Then there are no nontrivial L2 harmonic 1-forms on M.
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First eigenvalue of complete noncompact manifolds

Let M be a complete noncompact Riemannian manifold and let Ω be a
compact domain in M. Let λ1(Ω) > 0 denote the first eigenvalue of the
Dirichlet boundary value problem{

∆f + λf = 0 in Ω
f = 0 on ∂Ω

where ∆ denotes the Laplace operator on M. Then the first eigenvalue
λ1(M) is defined by

λ1(M) = inf
Ω
λ1(Ω),

where the infimum is taken over all compact domains in M.
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(Cheung and Leung)
For a complete minimal submanifold Mn in Hm,

1

4
(n − 1)2 ≤ λ1(M).

Here this inequality is sharp because equality holds when M is
totally geodesic by McKean’s result.

(Candel)
Let Σ be a complete simply connected stable minimal surface in the
3-dimensional hyperbolic space. Then the first eigenvalue of Σ
satisfies

1

4
≤ λ1(Σ) ≤ 4

3
.
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(Bérard-Castillon-Cavalcante 2011)
Let Σ be a complete stable minimal surface in the 3-dimensional
hyperbolic space. Then

1

4
≤ λ1(Σ) ≤ 4

7
.

(S. 2011)
Let Σ be a simply connected stable minimal surface in a
3-dimensional simply connected Riemannian manifold N3 with
sectional curvature KN satisfying −b2 ≤ KN ≤ −a2 < 0 for
0 < a ≤ b. Then the first eigenvalue of Σ satisfies

1

4
a2 ≤ λ1(Σ) ≤ 4

3
b2.
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Theorem (S. 2011)
Let M be a complete stable minimal hypersurface in Hn+1 with∫
M
|A|2dv <∞. Then we have

(n − 1)2

4
≤ λ1(M) ≤ n2.

It suffices to show that λ1(M) ≤ n2 by the result of Cheung-Leung.
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Sketch of proof

Step1 : Use λ1(BR) for a ball BR of radius R centered at p ∈ M.

λ1(M) ≤ λ1(BR) ≤
∫
BR
|∇φ|2∫

BR
φ2

for any compactly supported Lipschitz function φ.

Step2 : Substitute |A|f for φ in the above inequality.

Step3 : Use the following Simons-type inequality due to Chern, do
Carmo, and Kobayashi(1970).

|A|∆|A|+ |A|4 + n|A|2 ≥ 2

n
|∇|A||2.
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Step4 : Multiply both sides by a Lipschitz function f 2 with compact
support in BR ⊂ M and integrate over BR .∫
BR

f 2|A|∆|A|dv +

∫
BR

f 2|A|4dv + n

∫
BR

f 2|A|2dv ≥ 2

n

∫
BR

f 2|∇|A||2dv

Step5 : Use the stability inequality. (Substitute |A|f for f )∫
BR

|∇(|A|f )|2 − (|A|2 − n)|A|2f 2dv ≥ 0.
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Step6 : By the above steps and Schwarz inequality, we finally obtain{
1+

2n(1 + α)

λ1(M)

}∫
BR

|A|2|∇f |2dv ≥
{2

n
−

2n(1 + 1
α )

λ1(M)

}∫
BR

|∇|A||2f 2dv .

Step7 : Suppose that λ1(M) > n2. Choosing α > 0 sufficiently
large and letting R →∞, we obtain ∇|A| ≡ 0, i.e., |A| is constant.
However, since

∫
M
|A|2 <∞ and the volume of M is infinite, it

follows that |A| ≡ 0 which means that M is a totally geodesic
hyperplane. Since the first eigenvalue of totally geodesic hyperplane

in Hn+1 is equal to
(n − 1)2

4
, this is a contradiction. Therefore we

get λ1(M) ≤ n2.
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Vanishing theorems for Lp harmonic 1-forms

(S. 2014)
Let N be an (n + 1)-dimensional complete Riemannian manifold
with sectional curvature satisfying that K ≤ KN where K ≤ 0 is a
constant. Let M be a complete noncompact stable minimal
hypersurface in N. Assume that, for 0 < p < n

n−1 +
√

2n,

λ1(M) >
−2n(n − 1)2p2K

2n − [(n − 1)p − n]2
.

Then there is no nontrivial L2p harmonic 1-form on M.
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Application

(Schoen and Yau 1976)
Let M be a complete noncompact stable minimal hypersurface in a
Riemannian manifold with nonnegative sectional curvature. If f is a
harmonic function on M with finite L2 energy, then f is constant.

Recall that a function f on a Riemannian manifold M has finite Lp

energy if |∇f | ∈ Lp(M).

(S. 2014)
Let M be a complete noncompact stable minimal hypersurface in a
Riemannian manifold with nonnegative sectional curvature with
λ1(M) > 0. Then there is no nontrivial harmonic function on M
with finite Lp energy for 0 < p < n

n−1 +
√

2n.
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Thank you for your attention.
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