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Notations

° (I\/I”,Vl)is said to be minimal in (W"er,ﬁl)if the mean curvature
vector H = h¥e, =Y (Veei,eq)en = 0.

@ The length of the second fundamental form A is defined by
A2 = 32 (h§)%.

@ An end of a manifold M is a connected component of M\ K where
K is a sufficiently large compact subset of M.

)
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Question (Bernstein)
Is a minimal graph over R"” a hyperplane?

@ Yes, if n <7 (Fleming 1962, De Giorgi 1965, Almgren 1966,
Simons 1968)

@ No, if n > 8 (Bombieri-De Giorgi-Giusti 1969)
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Question (Bernstein)
Is a minimal graph over R"” a hyperplane?

@ Yes, if n <7 (Fleming 1962, De Giorgi 1965, Almgren 1966,
Simons 1968)

@ No, if n > 8 (Bombieri-De Giorgi-Giusti 1969)

We now consider a complete minimal hypersurface which is not a
graph.
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Note that a minimal graph is stable.

@ A minimal submanifold M is said to be stable if the second variation
of its volume is always nonnegative for any normal variation with
compact support.

@ In particular, when the codimension = 1, a minimal submanifold M
in a Euclidean space is stable iff

2
SV _ [ (9o~ 1A >0,
dt? M

where ¢ € W, ?*(M).
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Question

Is a complete stable minimal hypersurface M in R™1 hyperplane for
n<T7?
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Question

Is a complete stable minimal hypersurface M in R™1 hyperplane for
n<T7?

This question is still open but we have the following partial results.
@ Yes, if n=2 (Do Carmo and Peng 1979, Fischer-Colbrie and
Schoen 1980)

@ Yes, if/ |Al?dv < oo for any n (Do Carmo and Peng 1980)
M

@ VYes, if/ |A|"dv < oo for any n (The quantity / |A|"dv is called a
M M

total scalar curvature. ) (Shen and Zhu 1998)
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Topological structure of minimal submanifolds
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Topological structure of minimal submanifolds

@ If M is a stable minimal hypersurface in a Euclidean space, then M
has only one end. (Cao-Shen-Zhu 1997)
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Topological structure of minimal submanifolds

@ If M is a stable minimal hypersurface in a Euclidean space, then M
has only one end. (Cao-Shen-Zhu 1997)

@ There is no nontrivial L? harmonic 1-form on a complete stable
minimal hypersurface in a Euclidean space. (B. Palmer 1991)

Remark.

If a noncompact complete manifold M has no nontrivial L? harmonic
1-form, then any codimension 1 cycle disconnects M. In particular, if
dim(M) = 2, then M has no genus. (Dodziuk 1982)

Therefore
if there exists a codimension 1 cycle on a complete minimal hypersurface
M in Euclidean space which does not separate M, then M is unstable.

6
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@ Let M" be an n-dimensional complete immersed minimal
submanifold in R"*P, n > 3. If

(A4mw@i<c;_mnflgﬂ

then M has only one end. Here C is a Sobolev constant.

(L. Ni 2001)
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@ Let M" be an n-dimensional complete immersed minimal
submanifold in R"*P, n > 3. If

(/MA|"a/v)i <G = */nﬁ1C5_l’

then M has only one end. Here C is a Sobolev constant.
(L. Ni2001)

@ The upper bound C; of total scalar curvature in the above theorem
can be improved. (S. 2008)
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Denote by H" the n-dimensional hyperbolic space of constant sectional
curvature —1.
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Denote by H" the n-dimensional hyperbolic space of constant sectional
curvature —1.

Theorem (S. 2010)

Let M be an n-dimensional complete immersed minimal submanifold in
H"*+P, n > 5. If the total scalar curvature satisfies

(/ |A|"dv)% < ﬁ\/n(n—@Cs_l,
; -

then M has only one end.
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Idea of proof
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Idea of proof

Suppose not. Then there exists a nontrivial bounded harmonic
function with finite total energy.

Bochner's formula for the harmonic function

Ricci curvature estimate(Leung 1992)

Multiply a nice test function ¢ and integrate over M.
Sobolev inequality (Hoffman and Spruck 1974)

First eigenvalue estimate (Cheung and Leung 2001)

L 2 - Ju VP
“(n— < =infM
4(n 1) < (M) |r}f fM 7

Such a harmonic function is constant. Contradiction!

24



2
If we do not use the first eigenvalue estimate A\ (M) > @, we have
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2
If we do not use the first eigenvalue estimate A\ (M) > ("_41) , we have

Theorem (S. 2010)
Let M be an n-dimensional complete immersed minimal submanifold in
2
H"P, n > 3. Assume that \;(M) > @ and the total scalar curvature

satisfies
(/M |A|”dv>; < ni 1C571<ni 1 ;1(_1\41))

Then M must have only one end.
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Theorem (N.T. Dung and S. 2012)

Let N be an (n+ 1)-dimensional Riemannian manifold with sectional
curvature satisfying
Ki < Kn < K,

where Ki, K5 are constants and K; < K, < 0. Let M be a complete
minimal hypersurface in N. If

</ |A|”> 5 . 1 \/n(nKz —4Kj) o
M n— 1 K2

for n > 4%, then M has only one end. (Here C; is the Sobolev constant.)
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Higher codimensional case

@ Spruck(1975) proved that for an n-dimensional minimal submanifold
M in R"™™ 3 variational vector field E = v, the second variation

of its volume Vol(M,) satisfies

d2V01M
Tt /|V<P|2 |A|2 2dV

where ¢ € W01’2(/\/I) and v is the unit normal vector field.
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Higher codimensional case

@ Spruck(1975) proved that for an n-dimensional minimal submanifold
M in R"™™ 3 variational vector field E = v, the second variation
of its volume Vol(M,) satisfies

d2V01M
Tt /|V<P|2 |A|2 2dV

where ¢ € W01’2(/\/I) and v is the unit normal vector field.

@ For an n-dimensional minimal submanifold M in H"™™ a simple
computation shows that for a variational vector field E = v, the
second variation of its volume Vol(M,) satisfies

d?Vol(M,)

- /M [Vel? = (|A]? = n)p?dv,

where ¢ € W}?(M) and v is the unit normal vector field.
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@ Motivated by this, we will call a minimal submanifold M in H"+™
super stable if for any ¢ € Wol’z(/\/l)

/ Vo2 — (AR - n)g?dv > 0.
M
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@ When m = 1, the concept of super stability is the same as the usual
definition of stability.
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@ Motivated by this, we will call a minimal submanifold M in H"+™
super stable if for any o € W,"*(M)

/ Vo2 — (AR - n)g?dv > 0.
M

@ When m = 1, the concept of super stability is the same as the usual
definition of stability.

@ Wang(2003) introduced the concept of super stability to prove that
if M"(n > 3) is a complete super stable minimal submanifold with
finite total scalar curvature in R""P, then M is an affine n-plane.
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Theorem (S. 2010)

Let M be a complete super stable minimal submanifold in H™ ™. Assume
that the first eigenvalue of M satisfies

(2n—=1)(n—1) < M (M).

Then there are no nontrivial L? harmonic 1-forms on M.
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Theorem (S. 2010)

Let M be a complete super stable minimal submanifold in H™ ™. Assume
that the first eigenvalue of M satisfies

(2n—=1)(n—1) < M (M).
Then there are no nontrivial L? harmonic 1-forms on M.

Corollary
Let M be a complete stable minimal hypersurface in H"*! satisfying that

2n—=1)(n—1) < A (M).

Then there are no nontrivial L2 harmonic 1-forms on M.
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First eigenvalue of complete noncompact manifolds

Let M be a complete noncompact Riemannian manifold and let Q be a
compact domain in M. Let A;(Q2) > 0 denote the first eigenvalue of the
Dirichlet boundary value problem

Af+Xf=0 in Q
f=0 on 00

where A denotes the Laplace operator on M. Then the first eigenvalue
A1(M) is defined by
(M) = igf/\l(Q),

where the infimum is taken over all compact domains in M.
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@ (Cheung and Leung)
For a complete minimal submanifold M" in H™,

%(n —1)2 < M (M).

Here this inequality is sharp because equality holds when M is
totally geodesic by McKean's result.
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@ (Cheung and Leung)
For a complete minimal submanifold M" in H™,

%(n —1)2 < M (M).

Here this inequality is sharp because equality holds when M is
totally geodesic by McKean's result.

o (Candel)
Let X be a complete simply connected stable minimal surface in the
3-dimensional hyperbolic space. Then the first eigenvalue of &
satisfies

N
IA
X
M
INA

wi s
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@ (Bérard-Castillon-Cavalcante 2011)
Let ¥ be a complete stable minimal surface in the 3-dimensional
hyperbolic space. Then

<A(Y) <

EN
TES

@ (S.2011)
Let X be a simply connected stable minimal surface in a
3-dimensional simply connected Riemannian manifold N3 with
sectional curvature Ky satisfying —b?> < Ky < —a? < 0 for
0 < a < b. Then the first eigenvalue of ¥ satisfies

1 2 4 2
—-a° < < —b“.
77 <MD <3b
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Theorem (S. 2011)

Let M be a complete stable minimal hypersurface in H"™! with
S |APdv < co. Then we have

(n—1)?
4

<\ (M) < n?.
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Theorem (S. 2011)

Let M be a complete stable minimal hypersurface in H"™! with
S |APdv < co. Then we have

(n—1)?
4

<\ (M) < n?.

It suffices to show that A\;(M) < n? by the result of Cheung-Leung.
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Sketch of proof

@ Stepl : Use A\i(Bg) for a ball Bg of radius R centered at p € M.

Jo, VoI
Jer @

for any compactly supported Lipschitz function ¢.

A(M) < Mi(Bg) <
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Sketch of proof

@ Stepl : Use A\i(Bg) for a ball Bg of radius R centered at p € M.

Jo, VoI
Jer @

for any compactly supported Lipschitz function ¢.

A1 (M) < M\(Br) <

@ Step2 : Substitute |A|f for ¢ in the above inequality.

@ Step3 : Use the following Simons-type inequality due to Chern, do
Carmo, and Kobayashi(1970).

2
AIAJA] + A" + nl AP > ~|V]A|P%,
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@ Step4 : Multiply both sides by a Lipschitz function 2 with compact
support in Bg C M and integrate over Bg.

2
/ f2|A|A|A|dv+/ f2\A|4dv+n/ fZ\A|2dv27/ 2|V|A|2dv
Bgr Br Br n Br
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@ Step4 : Multiply both sides by a Lipschitz function 2 with compact
support in Bg C M and integrate over Bg.

2
/ f2|A|A|A|dv+/ f2\A|4dv+n/ fZ\A|2dv27/ 2|V|A|2dv
Bgr Br Br n Br

@ Step5 : Use the stability inequality. (Substitute |A|f for f)

| IVQAINE = (AR = miARFdy > 0.
Br
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@ Step6 : By the above steps and Schwarz inequality, we finally obtain

2n(1+ «) 2o (2 2 2n(1+3) 22
12PN APy > {2 T o) :
{1+ }/BR' Pty = (S-S} [, VAR
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@ Step6 : By the above steps and Schwarz inequality, we finally obtain
2n(1+ «) / 2o (2 2 2n(1+3) 22
1I+——71" Alf|lVf|¢dv > ¢ —————2&~ V|A||*f<dv.
{ A1 (M) } BR| FIVF - {n A1 (M) } BR| Al

@ Step7 : Suppose that \;(M) > n?.
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@ Step6 : By the above steps and Schwarz inequality, we finally obtain

{1+W}/BR APV Pdv > {i_znij(:ﬂ%)}/& IVIA|2Fdv.

@ Step7 : Suppose that \;(M) > n?. Choosing a > 0 sufficiently
large and letting R — oo, we obtain V|A| =0, i.e., |A| is constant.
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@ Step6 : By the above steps and Schwarz inequality, we finally obtain

{1+W}/BR APV Pdv > {i_z’"'A(ll(;\;)clv)}LR IVIA|2Fdv.

@ Step7 : Suppose that \;(M) > n?. Choosing a > 0 sufficiently
large and letting R — oo, we obtain V|A| =0, i.e., |A| is constant.
However, since fM |A|? < oo and the volume of M is infinite, it
follows that |A] = 0 which means that M is a totally geodesic
hyperplane.
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@ Step6 : By the above steps and Schwarz inequality, we finally obtain

{1+W}/BR APV Pdv > {i_z’"'A(ll(;\;)clv)}LR IVIA|2Fdv.

@ Step7 : Suppose that \;(M) > n?. Choosing a > 0 sufficiently
large and letting R — oo, we obtain V|A| =0, i.e., |A| is constant.
However, since fM |A|? < oo and the volume of M is infinite, it
follows that |A] = 0 which means that M is a totally geodesic
hyperplane. Since the first eigenvalue of totally geodesic hyperplane

(n—1)
4

in H" s equal to , this is a contradiction. Therefore we

get A\ (M) < n?
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Vanishing theorems for LP harmonic 1-forms

o (S.2014)
Let N be an (n+ 1)-dimensional complete Riemannian manifold
with sectional curvature satisfying that K < Ky where K <0 is a
constant. Let M be a complete noncompact stable minimal
hypersurface in N. Assume that, for 0 < p < == 4+ /2n,

n—1

—2n(n—1)?p’K
2n—[(n—1)p —n]?’

)\1(/\/’) >

Then there is no nontrivial L2? harmonic 1-form on M.



Application

@ (Schoen and Yau 1976)
Let M be a complete noncompact stable minimal hypersurface in a
Riemannian manifold with nonnegative sectional curvature. If f is a
harmonic function on M with finite L? energy, then f is constant.
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@ Recall that a function f on a Riemannian manifold M has finite LP
energy if [Vf] € LP(M).
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Application

@ (Schoen and Yau 1976)
Let M be a complete noncompact stable minimal hypersurface in a
Riemannian manifold with nonnegative sectional curvature. If f is a
harmonic function on M with finite L? energy, then f is constant.

@ Recall that a function f on a Riemannian manifold M has finite LP
energy if [Vf] € LP(M).

o (S. 2014)
Let M be a complete noncompact stable minimal hypersurface in a
Riemannian manifold with nonnegative sectional curvature with
A1(M) > 0. Then there is no nontrivial harmonic function on M
with finite LP energy for 0 < p < —= ++/2n.

n—1
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Thank you for your attention.



