L^2 harmonic 1-forms and first eigenvalue estimates of complete minimal submanifolds

Keomkyo Seo

Sookmyung Women’s University, Korea

Seoul ICM 2014 Satellite Conference on Geometric Analysis
Sungkyunkwan University

August 23, 2014
(\(M^n, \nabla\)) is said to be minimal in \((\overline{M}^{n+p}, \overline{\nabla})\) if the mean curvature vector \(\overrightarrow{H} = \sum h_{\alpha i} e_\alpha = \sum \langle \overrightarrow{\nabla} e_i, e_\alpha \rangle e_\alpha = \overrightarrow{0}\).

The length of the second fundamental form \(A\) is defined by \(|A|^2 := \sum (h_{ij}^\alpha)^2\).

An end of a manifold \(M\) is a connected component of \(M \setminus K\) where \(K\) is a sufficiently large compact subset of \(M\).
Question (Bernstein)

Is a minimal graph over \mathbb{R}^n a hyperplane?

- Yes, if $n \leq 7$ (Fleming 1962, De Giorgi 1965, Almgren 1966, Simons 1968)
- No, if $n \geq 8$ (Bombieri-De Giorgi-Giusti 1969)

We now consider a complete minimal hypersurface which is not a graph.
Question (Bernstein)
Is a minimal graph over \mathbb{R}^n a hyperplane?

- Yes, if $n \leq 7$ (Fleming 1962, De Giorgi 1965, Almgren 1966, Simons 1968)
- No, if $n \geq 8$ (Bombieri-De Giorgi-Giusti 1969)

We now consider a complete minimal hypersurface which is not a graph.
Note that a minimal graph is stable.

- A minimal submanifold M is said to be stable if the second variation of its volume is always nonnegative for any normal variation with compact support.

- In particular, when the codimension $= 1$, a minimal submanifold M in a Euclidean space is stable iff

$$\frac{d^2 \text{Vol}(M_t)}{dt^2} = \int_M |\nabla \varphi|^2 - |A|^2 \varphi^2 dv \geq 0,$$

where $\varphi \in W_0^{1,2}(M)$.
Question

Is a complete stable minimal hypersurface M in \mathbb{R}^{n+1} hyperplane for $n \leq 7$?

This question is still open but we have the following partial results.

- Yes, if $n = 2$ (Do Carmo and Peng 1979, Fischer-Colbrie and Schoen 1980)
- Yes, if $\int_M |A|^2 dv < \infty$ for any n (Do Carmo and Peng 1980)
- Yes, if $\int_M |A|^n dv < \infty$ for any n (The quantity $\int_M |A|^n dv$ is called a total scalar curvature.) (Shen and Zhu 1998)
Question

Is a complete stable minimal hypersurface M in \mathbb{R}^{n+1} hyperplane for $n \leq 7$?

This question is still open but we have the following partial results.

- Yes, if $n = 2$ (Do Carmo and Peng 1979, Fischer-Colbrie and Schoen 1980)

- Yes, if $\int_M |A|^2 dv < \infty$ for any n (Do Carmo and Peng 1980)

- Yes, if $\int_M |A|^n dv < \infty$ for any n (The quantity $\int_M |A|^n dv$ is called a total scalar curvature.) (Shen and Zhu 1998)
Topological structure of minimal submanifolds

- If M is a stable minimal hypersurface in a Euclidean space, then M has only one end. (Cao-Shen-Zhu 1997)

- There is no nontrivial L^2 harmonic 1-form on a complete stable minimal hypersurface in a Euclidean space. (B. Palmer 1991)

Remark.
If a noncompact complete manifold M has no nontrivial L^2 harmonic 1-form, then any codimension 1 cycle disconnects M. In particular, if $\dim(M) = 2$, then M has no genus. (Dodziuk 1982)

Therefore
if there exists a codimension 1 cycle on a complete minimal hypersurface M in Euclidean space which does not separate M, then M is unstable.
Topological structure of minimal submanifolds

- If M is a stable minimal hypersurface in a Euclidean space, then M has only one end. (Cao-Shen-Zhu 1997)

- There is no nontrivial L^2 harmonic 1-form on a complete stable minimal hypersurface in a Euclidean space. (B. Palmer 1991)

Remark.
If a noncompact complete manifold M has no nontrivial L^2 harmonic 1-form, then any codimension 1 cycle disconnects M. In particular, if $\dim(M) = 2$, then M has no genus. (Dodziuk 1982)

Therefore
if there exists a codimension 1 cycle on a complete minimal hypersurface M in Euclidean space which does not separate M, then M is unstable.
Topological structure of minimal submanifolds

- If M is a stable minimal hypersurface in a Euclidean space, then M has only one end. (Cao-Shen-Zhu 1997)

- There is no nontrivial L^2 harmonic 1-form on a complete stable minimal hypersurface in a Euclidean space. (B. Palmer 1991)

Remark.
If a noncompact complete manifold M has no nontrivial L^2 harmonic 1-form, then any codimension 1 cycle disconnects M. In particular, if $\dim(M) = 2$, then M has no genus. (Dodziuk 1982)

Therefore
if there exists a codimension 1 cycle on a complete minimal hypersurface M in Euclidean space which does not separate M, then M is unstable.
Topological structure of minimal submanifolds

- If M is a stable minimal hypersurface in a Euclidean space, then M has only one end. (Cao-Shen-Zhu 1997)

- There is no nontrivial L^2 harmonic 1-form on a complete stable minimal hypersurface in a Euclidean space. (B. Palmer 1991)

Remark.
If a noncompact complete manifold M has no nontrivial L^2 harmonic 1-form, then any codimension 1 cycle disconnects M. In particular, if $\dim(M) = 2$, then M has no genus. (Dodziuk 1982)

Therefore
if there exists a codimension 1 cycle on a complete minimal hypersurface M in Euclidean space which does not separate M, then M is unstable.
Let M^n be an n-dimensional complete immersed minimal submanifold in \mathbb{R}^{n+p}, $n \geq 3$. If

$$\left(\int_M |A|^n dv \right)^{\frac{1}{n}} < C_1 = \sqrt{\frac{n}{n-1}} C_s^{-1},$$

then M has only one end. Here C_s is a Sobolev constant. (L. Ni 2001)

The upper bound C_1 of total scalar curvature in the above theorem can be improved. (S. 2008)
Let M^n be an n-dimensional complete immersed minimal submanifold in \mathbb{R}^{n+p}, $n \geq 3$. If

$$\left(\int_M |A|^n dv\right)^{\frac{1}{n}} < C_1 = \sqrt{\frac{n}{n-1}} C_s^{-1},$$

then M has only one end. Here C_s is a Sobolev constant. (L. Ni 2001)

The upper bound C_1 of total scalar curvature in the above theorem can be improved. (S. 2008)
Denote by \mathbb{H}^n the n-dimensional hyperbolic space of constant sectional curvature -1.

Theorem (S. 2010)

Let M be an n-dimensional complete immersed minimal submanifold in \mathbb{H}^{n+p}, $n \geq 5$. If the total scalar curvature satisfies

$$\left(\int_M |A|^n dv\right)^{\frac{1}{n}} < \frac{1}{n-1} \sqrt{n(n-4)C_s^{-1}},$$

then M has only one end.
Denote by \mathbb{H}^n the n-dimensional hyperbolic space of constant sectional curvature -1.

Theorem (S. 2010)

Let M be an n-dimensional complete immersed minimal submanifold in \mathbb{H}^{n+p}, $n \geq 5$. If the total scalar curvature satisfies

$$\left(\int_M |A|^n dv \right)^{\frac{1}{n}} < \frac{1}{n-1} \sqrt{n(n-4)C_s^{-1}},$$

then M has only one end.
Idea of proof

- Suppose not. Then there exists a nontrivial bounded harmonic function with finite total energy.
- Bochner’s formula for the harmonic function
- Ricci curvature estimate (Leung 1992)
- Multiply a nice test function φ and integrate over M.
- Sobolev inequality (Hoffman and Spruck 1974)
- First eigenvalue estimate (Cheung and Leung 2001)

$$\frac{1}{4} (n - 1)^2 \leq \lambda_1(M) = \inf_{f} \frac{\int_{M} |\nabla f|^2}{\int_{M} f^2}.$$

Such a harmonic function is constant. Contradiction!
Idea of proof

- Suppose not. Then there exists a nontrivial bounded harmonic function with finite total energy.
- Bochner’s formula for the harmonic function
- Ricci curvature estimate (Leung 1992)
- Multiply a nice test function φ and integrate over M.
- Sobolev inequality (Hoffman and Spruck 1974)
- First eigenvalue estimate (Cheung and Leung 2001)

$$\frac{1}{4} (n - 1)^2 \leq \lambda_1(M) = \inf_f \frac{\int_M |\nabla f|^2}{\int_M f^2}.$$

- Such a harmonic function is constant. Contradiction!
If we do not use the first eigenvalue estimate $\lambda_1(M) \geq \frac{(n-1)^2}{4}$, we have

Theorem (S. 2010)

Let M be an n-dimensional complete immersed minimal submanifold in \mathbb{H}^{n+p}, $n \geq 3$. Assume that $\lambda_1(M) > \frac{(n-1)^2}{n}$ and the total scalar curvature satisfies

$$
\left(\int_M |A|^n \, dv \right)^{\frac{2}{n}} < \frac{n}{n-1} C_s^{-1} \left(\frac{n}{n-1} - \frac{n-1}{\lambda_1(M)} \right).
$$

Then M must have only one end.
If we do not use the first eigenvalue estimate $\lambda_1(M) \geq \frac{(n-1)^2}{4}$, we have

Theorem (S. 2010)

Let M be an n-dimensional complete immersed minimal submanifold in \mathbb{H}^{n+p}, $n \geq 3$. Assume that $\lambda_1(M) > \frac{(n-1)^2}{n}$ and the total scalar curvature satisfies

$$
\left(\int_M |A|^n dv \right)^{\frac{2}{n}} < \frac{n}{n-1} C_s^{-1} \left(\frac{n}{n-1} - \frac{n-1}{\lambda_1(M)} \right).
$$

Then M must have only one end.
Theorem (N.T. Dung and S. 2012)

Let N be an $(n + 1)$-dimensional Riemannian manifold with sectional curvature satisfying

$$K_1 \leq K_N \leq K_2,$$

where K_1, K_2 are constants and $K_1 \leq K_2 < 0$. Let M be a complete minimal hypersurface in N. If

$$\left(\int_M |A|^n \right)^{\frac{1}{n}} \leq \frac{1}{n-1} \sqrt{\frac{n(nK_2 - 4K_1)}{K_2}} C_s^{-1}$$

for $n > 4 \frac{K_1}{K_2}$, then M has only one end. (Here C_s is the Sobolev constant.)
Higher codimensional case

Spruck (1975) proved that for an \(n \)-dimensional minimal submanifold \(M \) in \(\mathbb{R}^{n+m} \), a variational vector field \(E = \varphi \nu \), the second variation of its volume \(\text{Vol}(M_t) \) satisfies

\[
\frac{d^2 \text{Vol}(M_t)}{dt^2} \geq \int_M |\nabla \varphi|^2 - |A|^2 \varphi^2 dv,
\]

where \(\varphi \in W^{1,2}_0(M) \) and \(\nu \) is the unit normal vector field.

For an \(n \)-dimensional minimal submanifold \(M \) in \(\mathbb{H}^{n+m} \), a simple computation shows that for a variational vector field \(E = \varphi \nu \), the second variation of its volume \(\text{Vol}(M_t) \) satisfies

\[
\frac{d^2 \text{Vol}(M_t)}{dt^2} \geq \int_M |\nabla \varphi|^2 - (|A|^2 - n) \varphi^2 dv,
\]

where \(\varphi \in W^{1,2}_0(M) \) and \(\nu \) is the unit normal vector field.
Higher codimensional case

- Spruck (1975) proved that for an n-dimensional minimal submanifold M in \mathbb{R}^{n+m}, a variational vector field $E = \varphi \nu$, the second variation of its volume $\text{Vol}(M_t)$ satisfies

$$\frac{d^2 \text{Vol}(M_t)}{dt^2} \geq \int_M |\nabla \varphi|^2 - |A|^2 \varphi^2 dv,$$

where $\varphi \in W_0^{1,2}(M)$ and ν is the unit normal vector field.

- For an n-dimensional minimal submanifold M in \mathbb{H}^{n+m}, a simple computation shows that for a variational vector field $E = \varphi \nu$, the second variation of its volume $\text{Vol}(M_t)$ satisfies

$$\frac{d^2 \text{Vol}(M_t)}{dt^2} \geq \int_M |\nabla \varphi|^2 - (|A|^2 - n) \varphi^2 dv,$$

where $\varphi \in W_0^{1,2}(M)$ and ν is the unit normal vector field.
Motivated by this, we will call a minimal submanifold M in \mathbb{H}^{n+m}
super stable if for any $\varphi \in W^{1,2}_0(M)$

$$\int_M |\nabla \varphi|^2 - (|A|^2 - n)\varphi^2 \, dv \geq 0.$$

When $m = 1$, the concept of super stability is the same as the usual
definition of stability.

Wang(2003) introduced the concept of super stability to prove that
if $M^n(n \geq 3)$ is a complete super stable minimal submanifold with
finite total scalar curvature in \mathbb{R}^{n+p}, then M is an affine n-plane.
Motivated by this, we will call a minimal submanifold M in \mathbb{H}^{n+m} super stable if for any $\varphi \in \mathcal{W}^{1,2}_0(M)$

$$\int_M |\nabla \varphi|^2 - (|A|^2 - n)\varphi^2 dv \geq 0.$$

When $m = 1$, the concept of super stability is the same as the usual definition of stability.

Wang (2003) introduced the concept of super stability to prove that if $M^n (n \geq 3)$ is a complete super stable minimal submanifold with finite total scalar curvature in \mathbb{R}^{n+p}, then M is an affine n-plane.
Motivated by this, we will call a minimal submanifold M in \mathbb{H}^{n+m} super stable if for any $\varphi \in W_{0}^{1,2}(M)$

$$\int_{M} |\nabla \varphi|^2 - (|A|^2 - n)\varphi^2 dv \geq 0.$$

When $m = 1$, the concept of super stability is the same as the usual definition of stability.

Wang(2003) introduced the concept of super stability to prove that if $M^n(n \geq 3)$ is a complete super stable minimal submanifold with finite total scalar curvature in \mathbb{R}^{n+p}, then M is an affine n-plane.
Theorem (S. 2010)

Let M be a complete super stable minimal submanifold in \mathbb{H}^{n+m}. Assume that the first eigenvalue of M satisfies

$$(2n - 1)(n - 1) < \lambda_1(M).$$

Then there are no nontrivial L^2 harmonic 1-forms on M.

Corollary

Let M be a complete stable minimal hypersurface in \mathbb{H}^{n+1} satisfying that

$$(2n - 1)(n - 1) < \lambda_1(M).$$

Then there are no nontrivial L^2 harmonic 1-forms on M.
Theorem (S. 2010)

Let M be a complete super stable minimal submanifold in \mathbb{H}^{n+m}. Assume that the first eigenvalue of M satisfies

$$(2n - 1)(n - 1) < \lambda_1(M).$$

Then there are no nontrivial L^2 harmonic 1-forms on M.

Corollary

Let M be a complete stable minimal hypersurface in \mathbb{H}^{n+1} satisfying that

$$(2n - 1)(n - 1) < \lambda_1(M).$$

Then there are no nontrivial L^2 harmonic 1-forms on M.
Let M be a complete noncompact Riemannian manifold and let Ω be a compact domain in M. Let $\lambda_1(\Omega) > 0$ denote the first eigenvalue of the Dirichlet boundary value problem

$$\begin{cases}
\Delta f + \lambda f = 0 & \text{in } \Omega \\
f = 0 & \text{on } \partial \Omega
\end{cases}$$

where Δ denotes the Laplace operator on M. Then the first eigenvalue $\lambda_1(M)$ is defined by

$$
\lambda_1(M) = \inf_{\Omega} \lambda_1(\Omega),
$$

where the infimum is taken over all compact domains in M.
(Cheung and Leung)
For a complete minimal submanifold M^n in \mathbb{H}^m,

$$\frac{1}{4} (n - 1)^2 \leq \lambda_1(M).$$

Here this inequality is sharp because equality holds when M is totally geodesic by McKean's result.

(Candel)
Let Σ be a complete simply connected stable minimal surface in the 3-dimensional hyperbolic space. Then the first eigenvalue of Σ satisfies

$$\frac{1}{4} \leq \lambda_1(\Sigma) \leq \frac{4}{3}.$$
(Cheung and Leung)
For a complete minimal submanifold M^n in \mathbb{H}^m,

$$\frac{1}{4}(n - 1)^2 \leq \lambda_1(M).$$

Here this inequality is sharp because equality holds when M is totally geodesic by McKean's result.

(Candel)
Let Σ be a complete simply connected stable minimal surface in the 3-dimensional hyperbolic space. Then the first eigenvalue of Σ satisfies

$$\frac{1}{4} \leq \lambda_1(\Sigma) \leq \frac{4}{3}.$$
(Bérard-Castillon-Cavalcante 2011)
Let Σ be a complete stable minimal surface in the 3-dimensional hyperbolic space. Then

$$\frac{1}{4} \leq \lambda_1(\Sigma) \leq \frac{4}{7}.$$

(S. 2011)
Let Σ be a simply connected stable minimal surface in a 3-dimensional simply connected Riemannian manifold N^3 with sectional curvature K_N satisfying $-b^2 \leq K_N \leq -a^2 < 0$ for $0 < a \leq b$. Then the first eigenvalue of Σ satisfies

$$\frac{1}{4} a^2 \leq \lambda_1(\Sigma) \leq \frac{4}{3} b^2.$$
Theorem (S. 2011)

Let M be a complete stable minimal hypersurface in \mathbb{H}^{n+1} with $\int_M |A|^2 dv < \infty$. Then we have

$$\frac{(n - 1)^2}{4} \leq \lambda_1(M) \leq n^2.$$

It suffices to show that $\lambda_1(M) \leq n^2$ by the result of Cheung-Leung.
Theorem (S. 2011)

Let M be a complete stable minimal hypersurface in \mathbb{H}^{n+1} with $\int_M |A|^2 d\nu < \infty$. Then we have

$$\frac{(n - 1)^2}{4} \leq \lambda_1(M) \leq n^2.$$

It suffices to show that $\lambda_1(M) \leq n^2$ by the result of Cheung-Leung.
Sketch of proof

- Step 1: Use $\lambda_1(B_R)$ for a ball B_R of radius R centered at $p \in M$.

$$\lambda_1(M) \leq \lambda_1(B_R) \leq \frac{\int_{B_R} |\nabla \phi|^2}{\int_{B_R} \phi^2}$$

for any compactly supported Lipschitz function ϕ.

- Step 2: Substitute $|A|f$ for ϕ in the above inequality.

$$|A|\Delta |A| + |A|^4 + n|A|^2 \geq \frac{2}{n}|\nabla |A||^2.$$
Sketch of proof

- **Step 1**: Use $\lambda_1(B_R)$ for a ball B_R of radius R centered at $p \in M$.

\[
\lambda_1(M) \leq \lambda_1(B_R) \leq \frac{\int_{B_R} |\nabla \phi|^2}{\int_{B_R} \phi^2}
\]

for any compactly supported Lipschitz function ϕ.

- **Step 2**: Substitute $|A|f$ for ϕ in the above inequality.

- **Step 3**: Use the following Simons-type inequality due to Chern, do Carmo, and Kobayashi (1970).

\[
|A|\Delta|A| + |A|^4 + n|A|^2 \geq \frac{2}{n}||\nabla|A||^2.
\]
Sketch of proof

- Step 1: Use $\lambda_1(B_R)$ for a ball B_R of radius R centered at $p \in M$.

$$\lambda_1(M) \leq \lambda_1(B_R) \leq \frac{\int_{B_R} |\nabla \phi|^2}{\int_{B_R} \phi^2}$$

for any compactly supported Lipschitz function ϕ.

- Step 2: Substitute $|A|f$ for ϕ in the above inequality.

$$|A|\Delta|A| + |A|^4 + n|A|^2 \geq \frac{2}{n} |\nabla|A||^2.$$
Step 4: Multiply both sides by a Lipschitz function f^2 with compact support in $B_R \subset M$ and integrate over B_R.

$$\int_{B_R} f^2 |A| \Delta |A| dv + \int_{B_R} f^2 |A|^4 dv + n \int_{B_R} f^2 |A|^2 dv \geq \frac{2}{n} \int_{B_R} f^2 |\nabla|A||^2 dv$$

Step 5: Use the stability inequality. (Substitute $|A|f$ for f)

$$\int_{B_R} |\nabla(|A|f)|^2 - (|A|^2 - n)|A|^2 f^2 dv \geq 0.$$
• Step 4: Multiply both sides by a Lipschitz function f^2 with compact support in $B_R \subset \mathcal{M}$ and integrate over B_R.

$$
\int_{B_R} f^2 |A| \Delta |A| \, dv + \int_{B_R} f^2 |A|^4 \, dv + n \int_{B_R} f^2 |A|^2 \, dv \geq \frac{2}{n} \int_{B_R} f^2 \nabla |A|^2 \, dv
$$

• Step 5: Use the stability inequality. (Substitute $|A| f$ for f)

$$
\int_{B_R} \left| \nabla(|A| f) \right|^2 - (|A|^2 - n)|A|^2 f^2 \, dv \geq 0.
$$
Step 6: By the above steps and Schwarz inequality, we finally obtain

\[
\left\{1 + \frac{2n(1 + \alpha)}{\lambda_1(M)}\right\} \int_{B_R} |A|^2 |\nabla f|^2 dv \geq \left\{\frac{2}{n} - \frac{2n(1 + \frac{1}{\alpha})}{\lambda_1(M)}\right\} \int_{B_R} |\nabla|A||^2 f^2 dv.
\]

Step 7: Suppose that \(\lambda_1(M) > n^2\). Choosing \(\alpha > 0\) sufficiently large and letting \(R \to \infty\), we obtain \(\nabla|A| \equiv 0\), i.e., \(|A|\) is constant. However, since \(\int_M |A|^2 < \infty\) and the volume of \(M\) is infinite, it follows that \(|A| \equiv 0\) which means that \(M\) is a totally geodesic hyperplane. Since the first eigenvalue of totally geodesic hyperplane in \(\mathbb{H}^{n+1}\) is equal to \(\frac{(n - 1)^2}{4}\), this is a contradiction. Therefore we get \(\lambda_1(M) \leq n^2\).
Step 6: By the above steps and Schwarz inequality, we finally obtain
\[
\left\{ 1 + \frac{2n(1 + \alpha)}{\lambda_1(M)} \right\} \int_{B_R} |A|^2 |\nabla f|^2 dv \geq \left\{ \frac{2}{n} - \frac{2n(1 + \frac{1}{\alpha})}{\lambda_1(M)} \right\} \int_{B_R} |\nabla|A||^2 f^2 dv.
\]

Step 7: Suppose that $\lambda_1(M) > n^2$. Choosing $\alpha > 0$ sufficiently large and letting $R \to \infty$, we obtain $|A| \equiv 0$, i.e., $|A|$ is constant. However, since $\int_M |A|^2 < \infty$ and the volume of M is infinite, it follows that $|A| \equiv 0$ which means that M is a totally geodesic hyperplane. Since the first eigenvalue of totally geodesic hyperplane in \mathbb{H}^{n+1} is equal to $\frac{(n - 1)^2}{4}$, this is a contradiction. Therefore we get $\lambda_1(M) \leq n^2$.
Step 6: By the above steps and Schwarz inequality, we finally obtain
\[
\left\{ 1 + \frac{2n(1 + \alpha)}{\lambda_1(M)} \right\} \int_{B_R} |A|^2 |\nabla f|^2 dv \geq \left\{ \frac{2}{n} - \frac{2n(1 + \frac{1}{\alpha})}{\lambda_1(M)} \right\} \int_{B_R} |\nabla |A||^2 f^2 dv.
\]

Step 7: Suppose that \(\lambda_1(M) > n^2 \). Choosing \(\alpha > 0 \) sufficiently large and letting \(R \to \infty \), we obtain \(\nabla |A| \equiv 0 \), i.e., \(|A| \) is constant. However, since \(\int_M |A|^2 < \infty \) and the volume of \(M \) is infinite, it follows that \(|A| \equiv 0 \) which means that \(M \) is a totally geodesic hyperplane. Since the first eigenvalue of totally geodesic hyperplane in \(\mathbb{H}^{n+1} \) is equal to \(\frac{(n - 1)^2}{4} \), this is a contradiction. Therefore we get \(\lambda_1(M) \leq n^2 \).
Step 6: By the above steps and Schwarz inequality, we finally obtain
\[\left\{ 1 + \frac{2n(1 + \alpha)}{\lambda_1(M)} \right\} \int_{B_R} |A|^2 |\nabla f|^2 \, dv \geq \left\{ \frac{2}{n} - \frac{2n(1 + \frac{1}{\alpha})}{\lambda_1(M)} \right\} \int_{B_R} |\nabla |A||^2 f^2 \, dv. \]

Step 7: Suppose that \(\lambda_1(M) > n^2 \). Choosing \(\alpha > 0 \) sufficiently large and letting \(R \to \infty \), we obtain \(\nabla |A| \equiv 0 \), i.e., \(|A| \) is constant. However, since \(\int_M |A|^2 < \infty \) and the volume of \(M \) is infinite, it follows that \(|A| \equiv 0 \) which means that \(M \) is a totally geodesic hyperplane. Since the first eigenvalue of totally geodesic hyperplane in \(\mathbb{H}^{n+1} \) is equal to \(\frac{(n - 1)^2}{4} \), this is a contradiction. Therefore we get \(\lambda_1(M) \leq n^2 \).
Step 6: By the above steps and Schwarz inequality, we finally obtain

\[
\left\{ 1 + \frac{2n(1 + \alpha)}{\lambda_1(M)} \right\} \int_{B_R} |A|^2 |\nabla f|^2 dv \geq \left\{ \frac{2}{n} - \frac{2n(1 + \frac{1}{\alpha})}{\lambda_1(M)} \right\} \int_{B_R} |\nabla|A||^2 f^2 dv.
\]

Step 7: Suppose that \(\lambda_1(M) > n^2 \). Choosing \(\alpha > 0 \) sufficiently large and letting \(R \to \infty \), we obtain \(\nabla|A| \equiv 0 \), i.e., \(|A| \) is constant. However, since \(\int_M |A|^2 < \infty \) and the volume of \(M \) is infinite, it follows that \(|A| \equiv 0 \) which means that \(M \) is a totally geodesic hyperplane. Since the first eigenvalue of totally geodesic hyperplane in \(\mathbb{H}^{n+1} \) is equal to \(\frac{(n-1)^2}{4} \), this is a contradiction. Therefore we get \(\lambda_1(M) \leq n^2 \).
Vanishing theorems for L^p harmonic 1-forms

(S. 2014)

Let N be an $(n + 1)$-dimensional complete Riemannian manifold with sectional curvature satisfying that $K \leq K_N$ where $K \leq 0$ is a constant. Let M be a complete noncompact stable minimal hypersurface in N. Assume that, for $0 < p < \frac{n}{n - 1} + \sqrt{2n}$,

$$\lambda_1(M) > \frac{-2n(n - 1)^2 p^2 K}{2n - [(n - 1)p - n]^2}.$$

Then there is no nontrivial L^{2p} harmonic 1-form on M.

(Schoen and Yau 1976)
Let M be a complete noncompact stable minimal hypersurface in a Riemannian manifold with nonnegative sectional curvature. If f is a harmonic function on M with finite L^2 energy, then f is constant.

Recall that a function f on a Riemannian manifold M has finite L^p energy if $|\nabla f| \in L^p(M)$.

(S. 2014)
Let M be a complete noncompact stable minimal hypersurface in a Riemannian manifold with nonnegative sectional curvature with $\lambda_1(M) > 0$. Then there is no nontrivial harmonic function on M with finite L^p energy for $0 < p < \frac{n}{n-1} + \sqrt{2n}$.
Application

(Schoen and Yau 1976)
Let M be a complete noncompact stable minimal hypersurface in a Riemannian manifold with nonnegative sectional curvature. If f is a harmonic function on M with finite L^2 energy, then f is constant.

Recall that a function f on a Riemannian manifold M has finite L^p energy if $|\nabla f| \in L^p(M)$.

(S. 2014)
Let M be a complete noncompact stable minimal hypersurface in a Riemannian manifold with nonnegative sectional curvature with $\lambda_1(M) > 0$. Then there is no nontrivial harmonic function on M with finite L^p energy for $0 < p < \frac{n}{n-1} + \sqrt{2n}$.
(Schoen and Yau 1976)
Let M be a complete noncompact stable minimal hypersurface in a Riemannian manifold with nonnegative sectional curvature. If f is a harmonic function on M with finite L^2 energy, then f is constant.

Recall that a function f on a Riemannian manifold M has finite L^p energy if $|\nabla f| \in L^p(M)$.

(S. 2014)
Let M be a complete noncompact stable minimal hypersurface in a Riemannian manifold with nonnegative sectional curvature with $\lambda_1(M) > 0$. Then there is no nontrivial harmonic function on M with finite L^p energy for $0 < p < \frac{n}{n-1} + \sqrt{2n}$.
Thank you for your attention.