L^2 harmonic 1-forms and first eigenvalue estimates of complete minimal submanifolds

Keomkyo Seo

Sookmyung Women's University, Korea

Seoul ICM 2014 Satellite Conference on Geometric Analysis Sungkyunkwan University

August 23, 2014

Notations

- (M^n, ∇) is said to be minimal in $(\overline{M}^{n+p}, \overline{\nabla})$ if the mean curvature vector $\overrightarrow{H} = \sum h_{ii}^{\alpha} e_{\alpha} = \sum \langle \overline{\nabla}_{e_i} e_i, e_{\alpha} \rangle e_{\alpha} = \overrightarrow{0}$.
- The length of the second fundamental form A is defined by $|A|^2 := \sum (h_{ij}^{\alpha})^2$.
- An end of a manifold *M* is a connected component of *M* \ *K* where *K* is a sufficiently large compact subset of *M*.

Question (Bernstein)

Is a minimal graph over \mathbb{R}^n a hyperplane?

- Yes, if $n \le 7$ (Fleming 1962, De Giorgi 1965, Almgren 1966, Simons 1968)
- No, if $n \ge 8$ (Bombieri-De Giorgi-Giusti 1969)

We now consider a complete minimal hypersurface which is not a graph.

Question (Bernstein)

Is a minimal graph over \mathbb{R}^n a hyperplane?

- Yes, if $n \le 7$ (Fleming 1962, De Giorgi 1965, Almgren 1966, Simons 1968)
- No, if $n \ge 8$ (Bombieri-De Giorgi-Giusti 1969)

We now consider a complete minimal hypersurface which is not a graph.

Note that a minimal graph is stable.

- A minimal submanifold *M* is said to be stable if the second variation of its volume is always nonnegative for any normal variation with compact support.
- In particular, when the codimension = 1, a minimal submanifold M in a Euclidean space is stable iff

$$\frac{d^2 \mathrm{Vol}(M_t)}{dt^2} = \int_M |\nabla \varphi|^2 - |A|^2 \varphi^2 dv \ge 0,$$

4 / 24

where $\varphi \in W_0^{1,2}(M)$.

Question

Is a complete stable minimal hypersurface M in \mathbb{R}^{n+1} hyperplane for $n \leq 7$?

This question is still open but we have the following partial results.

• Yes, if *n* = 2 (Do Carmo and Peng 1979, Fischer-Colbrie and Schoen 1980)

• Yes, if
$$\int_{M} |A|^2 dv < \infty$$
 for any *n* (Do Carmo and Peng 1980)

• Yes, if $\int_{M} |A|^{n} dv < \infty$ for any *n* (The quantity $\int_{M} |A|^{n} dv$ is called a total scalar curvature.) (Shen and Zhu 1998)

Question

Is a complete stable minimal hypersurface M in \mathbb{R}^{n+1} hyperplane for $n \leq 7$?

This question is still open but we have the following partial results.

- Yes, if *n* = 2 (Do Carmo and Peng 1979, Fischer-Colbrie and Schoen 1980)
- Yes, if $\int_{M} |A|^2 dv < \infty$ for any *n* (Do Carmo and Peng 1980)
- Yes, if $\int_{M} |A|^{n} dv < \infty$ for any *n* (The quantity $\int_{M} |A|^{n} dv$ is called a total scalar curvature.) (Shen and Zhu 1998)

- If *M* is a stable minimal hypersurface in a Euclidean space, then *M* has only one end. (Cao-Shen-Zhu 1997)
- There is no nontrivial *L*² harmonic 1-form on a complete stable minimal hypersurface in a Euclidean space. (B. Palmer 1991)

Remark.

If a noncompact complete manifold M has no nontrivial L^2 harmonic 1-form, then any codimension 1 cycle disconnects M. In particular, if $\dim(M) = 2$, then M has no genus. (Dodziuk 1982)

Therefore

- If *M* is a stable minimal hypersurface in a Euclidean space, then *M* has only one end. (Cao-Shen-Zhu 1997)
- There is no nontrivial L² harmonic 1-form on a complete stable minimal hypersurface in a Euclidean space. (B. Palmer 1991)

Remark.

If a noncompact complete manifold M has no nontrivial L^2 harmonic 1-form, then any codimension 1 cycle disconnects M. In particular, if $\dim(M) = 2$, then M has no genus. (Dodziuk 1982)

Therefore

- If *M* is a stable minimal hypersurface in a Euclidean space, then *M* has only one end. (Cao-Shen-Zhu 1997)
- There is no nontrivial L² harmonic 1-form on a complete stable minimal hypersurface in a Euclidean space. (B. Palmer 1991)

Remark.

If a noncompact complete manifold M has no nontrivial L^2 harmonic 1-form, then any codimension 1 cycle disconnects M. In particular, if dim(M) = 2, then M has no genus. (Dodziuk 1982)

Therefore

- If *M* is a stable minimal hypersurface in a Euclidean space, then *M* has only one end. (Cao-Shen-Zhu 1997)
- There is no nontrivial L² harmonic 1-form on a complete stable minimal hypersurface in a Euclidean space. (B. Palmer 1991)

Remark.

If a noncompact complete manifold M has no nontrivial L^2 harmonic 1-form, then any codimension 1 cycle disconnects M. In particular, if $\dim(M) = 2$, then M has no genus. (Dodziuk 1982)

Therefore

Let Mⁿ be an n-dimensional complete immersed minimal submanifold in ℝ^{n+p}, n ≥ 3. If

$$\left(\int_M |A|^n dv\right)^{\frac{1}{n}} < C_1 = \sqrt{\frac{n}{n-1}C_s^{-1}},$$

then M has only one end. Here C_s is a Sobolev constant. (L. Ni 2001)

• The upper bound C₁ of total scalar curvature in the above theorem can be improved. (S. 2008)

 Let Mⁿ be an n-dimensional complete immersed minimal submanifold in ℝ^{n+p}, n ≥ 3. If

$$\left(\int_M |A|^n dv\right)^{\frac{1}{n}} < C_1 = \sqrt{\frac{n}{n-1}C_s^{-1}},$$

then M has only one end. Here C_s is a Sobolev constant. (L. Ni 2001)

• The upper bound C_1 of total scalar curvature in the above theorem can be improved. (S. 2008)

Denote by \mathbb{H}^n the *n*-dimensional hyperbolic space of constant sectional curvature -1.

Theorem (S. 2010)

Let M be an n-dimensional complete immersed minimal submanifold in \mathbb{H}^{n+p} , $n \geq 5$. If the total scalar curvature satisfies

$$\left(\int_{M} |A|^{n} dv\right)^{\frac{1}{n}} < \frac{1}{n-1}\sqrt{n(n-4)C_{s}^{-1}},$$

then M has only one end.

Denote by \mathbb{H}^n the *n*-dimensional hyperbolic space of constant sectional curvature -1.

Theorem (S. 2010)

Let *M* be an *n*-dimensional complete immersed minimal submanifold in \mathbb{H}^{n+p} , $n \geq 5$. If the total scalar curvature satisfies

$$\left(\int_{M}|A|^{n}dv\right)^{\frac{1}{n}}<\frac{1}{n-1}\sqrt{n(n-4)C_{s}^{-1}},$$

イロン 不良と 不良と 一度 …

8/24

then M has only one end.

Idea of proof

- Suppose not. Then there exists a nontrivial bounded harmonic function with finite total energy.
- Bochner's formula for the harmonic function
- Ricci curvature estimate(Leung 1992)
- Multiply a nice test function φ and integrate over M.
- Sobolev inequality (Hoffman and Spruck 1974)
- First eigenvalue estimate (Cheung and Leung 2001)

$$\frac{1}{4}(n-1)^2 \leq \lambda_1(M) = \inf_f \frac{\int_M |\nabla f|^2}{\int_M f^2}.$$

• Such a harmonic function is constant. Contradiction!

Idea of proof

- Suppose not. Then there exists a nontrivial bounded harmonic function with finite total energy.
- Bochner's formula for the harmonic function
- Ricci curvature estimate(Leung 1992)
- Multiply a nice test function φ and integrate over M.
- Sobolev inequality (Hoffman and Spruck 1974)
- First eigenvalue estimate (Cheung and Leung 2001)

$$\frac{1}{4}(n-1)^2 \leq \lambda_1(M) = \inf_f \frac{\int_M |\nabla f|^2}{\int_M f^2}.$$

• Such a harmonic function is constant. Contradiction!

If we do not use the first eigenvalue estimate $\lambda_1(M) \ge \frac{(n-1)^2}{4}$, we have Theorem (S. 2010)

Let *M* be an *n*-dimensional complete immersed minimal submanifold in \mathbb{H}^{n+p} , $n \geq 3$. Assume that $\lambda_1(M) > \frac{(n-1)^2}{n}$ and the total scalar curvature satisfies

$$\Big(\int_M |A|^n dv\Big)^{\frac{2}{n}} < \frac{n}{n-1}C_s^{-1}\Big(\frac{n}{n-1}-\frac{n-1}{\lambda_1(M)}\Big).$$

Then M must have only one end.

If we do not use the first eigenvalue estimate $\lambda_1(M) \ge \frac{(n-1)^2}{4}$, we have Theorem (S. 2010)

Let M be an n-dimensional complete immersed minimal submanifold in \mathbb{H}^{n+p} , $n \geq 3$. Assume that $\lambda_1(M) > \frac{(n-1)^2}{n}$ and the total scalar curvature satisfies

$$\Big(\int_M |A|^n dv\Big)^{\frac{2}{n}} < \frac{n}{n-1} C_s^{-1} \Big(\frac{n}{n-1} - \frac{n-1}{\lambda_1(M)}\Big).$$

Then M must have only one end.

Theorem (N.T. Dung and S. 2012)

Let N be an (n + 1)-dimensional Riemannian manifold with sectional curvature satisfying

$$K_1 \leq K_N \leq K_2,$$

where K_1, K_2 are constants and $K_1 \leq K_2 < 0$. Let *M* be a complete minimal hypersurface in *N*. If

$$\left(\int_M |A|^n\right)^{rac{1}{n}} \leq rac{1}{n-1}\sqrt{rac{n(nK_2-4K_1)}{K_2}C_s^{-1}}$$

for $n > 4\frac{K_1}{K_2}$, then M has only one end. (Here C_s is the Sobolev constant.)

Higher codimensional case

 Spruck(1975) proved that for an *n*-dimensional minimal submanifold *M* in ℝ^{n+m}, a variational vector field *E* = φν, the second variation of its volume Vol(*M_t*) satisfies

$$\frac{d^2 \operatorname{Vol}(M_t)}{dt^2} \ge \int_M |\nabla \varphi|^2 - |A|^2 \varphi^2 dv,$$

where $\varphi \in W_0^{1,2}(M)$ and ν is the unit normal vector field.

For an *n*-dimensional minimal submanifold *M* in ℍ^{n+m}, a simple computation shows that for a variational vector field *E* = φν, the second variation of its volume Vol(*M_t*) satisfies

$$\frac{d^2 \operatorname{Vol}(M_t)}{dt^2} \ge \int_M |\nabla \varphi|^2 - (|A|^2 - n)\varphi^2 dv,$$

where $\varphi \in W^{1,2}_0(M)$ and ν is the unit normal vector field.

Higher codimensional case

 Spruck(1975) proved that for an *n*-dimensional minimal submanifold *M* in ℝ^{n+m}, a variational vector field *E* = φν, the second variation of its volume Vol(*M_t*) satisfies

$$\frac{d^2 \operatorname{Vol}(M_t)}{dt^2} \ge \int_M |\nabla \varphi|^2 - |A|^2 \varphi^2 dv,$$

where $\varphi \in W_0^{1,2}(M)$ and ν is the unit normal vector field.

For an *n*-dimensional minimal submanifold M in ℍ^{n+m}, a simple computation shows that for a variational vector field E = φν, the second variation of its volume Vol(M_t) satisfies

$$\frac{d^2 \operatorname{Vol}(M_t)}{dt^2} \ge \int_M |\nabla \varphi|^2 - (|A|^2 - n)\varphi^2 dv,$$

where $\varphi \in W_0^{1,2}(M)$ and ν is the unit normal vector field.

 Motivated by this, we will call a minimal submanifold M in ℍ^{n+m} super stable if for any φ ∈ W₀^{1,2}(M)

$$\int_{M} |\nabla \varphi|^2 - (|A|^2 - n)\varphi^2 dv \ge 0.$$

- When m = 1, the concept of super stability is the same as the usual definition of stability.
- Wang(2003) introduced the concept of super stability to prove that if $M^n (n \ge 3)$ is a complete super stable minimal submanifold with finite total scalar curvature in \mathbb{R}^{n+p} , then M is an affine *n*-plane.

 Motivated by this, we will call a minimal submanifold M in ℍ^{n+m} super stable if for any φ ∈ W₀^{1,2}(M)

$$\int_{M} |\nabla \varphi|^2 - (|A|^2 - n)\varphi^2 d\nu \ge 0.$$

- When m = 1, the concept of super stability is the same as the usual definition of stability.
- Wang(2003) introduced the concept of super stability to prove that if Mⁿ(n ≥ 3) is a complete super stable minimal submanifold with finite total scalar curvature in ℝ^{n+p}, then M is an affine n-plane.

 Motivated by this, we will call a minimal submanifold M in ℍ^{n+m} super stable if for any φ ∈ W₀^{1,2}(M)

$$\int_{M} |\nabla \varphi|^2 - (|A|^2 - n)\varphi^2 d\nu \ge 0.$$

- When m = 1, the concept of super stability is the same as the usual definition of stability.
- Wang(2003) introduced the concept of super stability to prove that if $M^n (n \ge 3)$ is a complete super stable minimal submanifold with finite total scalar curvature in $\mathbb{R}^{n+\rho}$, then M is an affine *n*-plane.

Theorem (S. 2010)

Let *M* be a complete super stable minimal submanifold in \mathbb{H}^{n+m} . Assume that the first eigenvalue of *M* satisfies

$$(2n-1)(n-1) < \lambda_1(M).$$

Then there are no nontrivial L^2 harmonic 1-forms on M.

Corollary

Let M be a complete stable minimal hypersurface in \mathbb{H}^{n+1} satisfying that

$$(2n-1)(n-1) < \lambda_1(M).$$

Then there are no nontrivial L^2 harmonic 1-forms on M.

Theorem (S. 2010)

Let *M* be a complete super stable minimal submanifold in \mathbb{H}^{n+m} . Assume that the first eigenvalue of *M* satisfies

$$(2n-1)(n-1) < \lambda_1(M).$$

Then there are no nontrivial L^2 harmonic 1-forms on M.

Corollary

Let *M* be a complete stable minimal hypersurface in \mathbb{H}^{n+1} satisfying that

$$(2n-1)(n-1) < \lambda_1(M).$$

Then there are no nontrivial L^2 harmonic 1-forms on M.

First eigenvalue of complete noncompact manifolds

Let M be a complete noncompact Riemannian manifold and let Ω be a compact domain in M. Let $\lambda_1(\Omega) > 0$ denote the first eigenvalue of the Dirichlet boundary value problem

$$\begin{cases} \Delta f + \lambda f = 0 & \text{in } \Omega \\ f = 0 & \text{on } \partial \Omega \end{cases}$$

where Δ denotes the Laplace operator on M. Then the first eigenvalue $\lambda_1(M)$ is defined by

$$\lambda_1(M) = \inf_{\Omega} \lambda_1(\Omega),$$

where the infimum is taken over all compact domains in M.

• (Cheung and Leung)

For a complete minimal submanifold M^n in \mathbb{H}^m ,

$$\frac{1}{4}(n-1)^2 \leq \lambda_1(M).$$

Here this inequality is sharp because equality holds when M is totally geodesic by McKean's result.

• (Candel) Let Σ be a complete simply connected stable minimal surface in the 3-dimensional hyperbolic space. Then the first eigenvalue of Σ satisfies

$$rac{1}{4} \leq \lambda_1(\Sigma) \leq rac{4}{3}.$$

• (Cheung and Leung)

For a complete minimal submanifold M^n in \mathbb{H}^m ,

$$\frac{1}{4}(n-1)^2 \leq \lambda_1(M).$$

Here this inequality is sharp because equality holds when M is totally geodesic by McKean's result.

• (Candel)

Let Σ be a complete simply connected stable minimal surface in the 3-dimensional hyperbolic space. Then the first eigenvalue of Σ satisfies

$$rac{1}{4} \leq \lambda_1(\Sigma) \leq rac{4}{3}.$$

• (Bérard-Castillon-Cavalcante 2011)

Let Σ be a complete stable minimal surface in the 3-dimensional hyperbolic space. Then

$$\frac{1}{4} \leq \lambda_1(\Sigma) \leq \frac{4}{7}.$$

• (S. 2011)

Let Σ be a simply connected stable minimal surface in a 3-dimensional simply connected Riemannian manifold N^3 with sectional curvature K_N satisfying $-b^2 \leq K_N \leq -a^2 < 0$ for $0 < a \leq b$. Then the first eigenvalue of Σ satisfies

$$\frac{1}{4}a^2 \leq \lambda_1(\Sigma) \leq \frac{4}{3}b^2.$$

・ロト ・ 同ト ・ ヨト ・ ヨト ・ りゅう

Theorem (S. 2011)

Let M be a complete stable minimal hypersurface in \mathbb{H}^{n+1} with $\int_M |A|^2 dv < \infty.$ Then we have

$$\frac{(n-1)^2}{4} \leq \lambda_1(M) \leq n^2.$$

It suffices to show that $\lambda_1(M) \leq n^2$ by the result of Cheung-Leung.

Theorem (S. 2011)

Let M be a complete stable minimal hypersurface in \mathbb{H}^{n+1} with $\int_M |A|^2 dv < \infty.$ Then we have

$$\frac{(n-1)^2}{4} \leq \lambda_1(M) \leq n^2.$$

It suffices to show that $\lambda_1(M) \leq n^2$ by the result of Cheung-Leung.

Sketch of proof

• Step1 : Use $\lambda_1(B_R)$ for a ball B_R of radius R centered at $p \in M$.

$$\lambda_1(M) \leq \lambda_1(B_R) \leq rac{\int_{B_R} |
abla \phi|^2}{\int_{B_R} \phi^2}$$

for any compactly supported Lipschitz function ϕ .

- Step2 : Substitute |A|f for ϕ in the above inequality.
- Step3 : Use the following Simons-type inequality due to Chern, do Carmo, and Kobayashi(1970).

$$|A|\Delta|A| + |A|^4 + n|A|^2 \ge \frac{2}{n}|\nabla|A||^2.$$

・ロン ・四 ・ ・ ヨン ・ ヨン … ヨ

Sketch of proof

• Step1 : Use $\lambda_1(B_R)$ for a ball B_R of radius R centered at $p \in M$.

$$\lambda_1(M) \leq \lambda_1(B_R) \leq rac{\int_{B_R} |
abla \phi|^2}{\int_{B_R} \phi^2}$$

for any compactly supported Lipschitz function ϕ .

- Step2 : Substitute |A|f for ϕ in the above inequality.
- Step3 : Use the following Simons-type inequality due to Chern, do Carmo, and Kobayashi(1970).

$$|A|\Delta|A| + |A|^4 + n|A|^2 \ge \frac{2}{n}|\nabla|A||^2.$$

(日) (四) (注) (注) (注) (二)

Sketch of proof

• Step1 : Use $\lambda_1(B_R)$ for a ball B_R of radius R centered at $p \in M$.

$$\lambda_1(M) \leq \lambda_1(B_R) \leq rac{\int_{B_R} |
abla \phi|^2}{\int_{B_R} \phi^2}$$

for any compactly supported Lipschitz function ϕ .

- Step2 : Substitute |A|f for ϕ in the above inequality.
- Step3 : Use the following Simons-type inequality due to Chern, do Carmo, and Kobayashi(1970).

$$|A|\Delta|A| + |A|^4 + n|A|^2 \ge \frac{2}{n}|\nabla|A||^2.$$

 Step4 : Multiply both sides by a Lipschitz function f² with compact support in B_R ⊂ M and integrate over B_R.

$$\int_{B_R} f^2 |A| \Delta |A| dv + \int_{B_R} f^2 |A|^4 dv + n \int_{B_R} f^2 |A|^2 dv \geq \frac{2}{n} \int_{B_R} f^2 |\nabla |A||^2 dv$$

20 / 24

• Step5 : Use the stability inequality. (Substitute |A|f for f)

$$\int_{B_R} |\nabla (|A|f)|^2 - (|A|^2 - n)|A|^2 f^2 dv \ge 0.$$

 Step4 : Multiply both sides by a Lipschitz function f² with compact support in B_R ⊂ M and integrate over B_R.

$$\int_{B_R} f^2 |A| \Delta |A| dv + \int_{B_R} f^2 |A|^4 dv + n \int_{B_R} f^2 |A|^2 dv \ge \frac{2}{n} \int_{B_R} f^2 |\nabla|A||^2 dv$$

20 / 24

• Step5 : Use the stability inequality. (Substitute |A|f for f)

$$\int_{B_R} |\nabla (|A|f)|^2 - (|A|^2 - n)|A|^2 f^2 dv \ge 0.$$

$$\left\{1+\frac{2n(1+\alpha)}{\lambda_1(M)}\right\}\int_{B_R}|A|^2|\nabla f|^2dv\geq \left\{\frac{2}{n}-\frac{2n(1+\frac{1}{\alpha})}{\lambda_1(M)}\right\}\int_{B_R}|\nabla|A||^2f^2dv.$$

Vanishing theorems for L^p harmonic 1-forms

• (S. 2014)

Let N be an (n + 1)-dimensional complete Riemannian manifold with sectional curvature satisfying that $K \leq K_N$ where $K \leq 0$ is a constant. Let M be a complete noncompact stable minimal hypersurface in N. Assume that, for 0 ,

$$\lambda_1(M) > \frac{-2n(n-1)^2 p^2 K}{2n - [(n-1)p - n]^2}$$

22 / 24

Then there is no nontrivial L^{2p} harmonic 1-form on M.

Application

• (Schoen and Yau 1976)

Let M be a complete noncompact stable minimal hypersurface in a Riemannian manifold with nonnegative sectional curvature. If f is a harmonic function on M with finite L^2 energy, then f is constant.

 Recall that a function f on a Riemannian manifold M has finite L^p energy if |∇f| ∈ L^p(M).

• (S. 2014)

Let *M* be a complete noncompact stable minimal hypersurface in a Riemannian manifold with nonnegative sectional curvature with $\lambda_1(M) > 0$. Then there is no nontrivial harmonic function on *M* with finite L^p energy for 0 .

Application

• (Schoen and Yau 1976)

Let M be a complete noncompact stable minimal hypersurface in a Riemannian manifold with nonnegative sectional curvature. If f is a harmonic function on M with finite L^2 energy, then f is constant.

- Recall that a function f on a Riemannian manifold M has finite L^p energy if |∇f| ∈ L^p(M).
- (S. 2014)

Let *M* be a complete noncompact stable minimal hypersurface in a Riemannian manifold with nonnegative sectional curvature with $\lambda_1(M) > 0$. Then there is no nontrivial harmonic function on *M* with finite L^p energy for 0 .

Application

• (Schoen and Yau 1976)

Let M be a complete noncompact stable minimal hypersurface in a Riemannian manifold with nonnegative sectional curvature. If f is a harmonic function on M with finite L^2 energy, then f is constant.

- Recall that a function f on a Riemannian manifold M has finite L^p energy if |∇f| ∈ L^p(M).
- (S. 2014)

Let *M* be a complete noncompact stable minimal hypersurface in a Riemannian manifold with nonnegative sectional curvature with $\lambda_1(M) > 0$. Then there is no nontrivial harmonic function on *M* with finite L^p energy for 0 .

Thank you for your attention.

(日) (图) (문) (문) (문)

24 / 24