Picard, Lefschetz, Cartier, Grothendieck ...

János Kollár

Princeton University

August, 2014

・ロト ・ 中 ・ モ ト ・ モ ・ う へ つ ・

Example: Quadrics again

 $\begin{array}{l} Q_t := (x^2 + y^2 + z^2 - tw^2 = 0) \\ t \neq 0 \text{ intersecting lines } L_t, L_t' \\ \text{degenerate to same line } L_0 \text{ on } Q_0 \ (2L_0 \text{ is Cartier}) \\ \text{compute self-intersections:} \\ \text{special fiber: } \frac{1}{2}(a+b)^2 \quad \text{general fiber: } 2ab \\ \text{Note that } \frac{1}{2}(a+b)^2 - 2ab = \frac{1}{2}(a-b)^2 \geq 0. \\ \text{If } a+b \text{ is even:} \end{array}$

- $aL_t + bL'_t$ Cartier on every fiber
- globally Cartier iff $(aL_t + bL'_t)^2 = (aL_0 + bL_0)^2$

Numerical Cartier condition (weak form)

- $-f: X \to C$ is a flat, proper, pure relative dimension n
- normal fibers
- D divisor such that each $D_{\rm c}$ is Cartier and ample. Then
 - $c \mapsto (D_c^n)$ is upper semi-continuous and
 - \bigcirc D is Cartier iff the above function is locally constant.

・ロト ・ 中 ・ モ ト ・ モ ・ う へ つ ・

Corollary: Numerical criterion of stability

- $-f: X \rightarrow C$ a proper, flat, pure relative dimension n.
- fibers are (semi) log canonical with
- ample canonical class K_{X_c} .

Then

- $c \mapsto (K_{X_c}^n)$ is upper semi-continuous
- $f: X \to C$ is stable (=Q-Gorenstein) iff the above function is locally constant.

Numerical Cartier condition (strong form)

- -S reduced scheme over a field k
- $-f: X \rightarrow S$ flat, proper, pure relative dimension n
- $-S_2$ fibers
- $Z \subset X$ such that $Z \cap X_s$ has codim ≥ 2
- $-L^0$ line bundle on $X \setminus Z$
- $-L^0|_{X_s \setminus Z}$ extends to an ample line bundle L_s on X_s . Then
 - $s \mapsto (L_s^n)$ is an upper semi-continuous function on S and

・ロト ・ 中 ・ モ ト ・ モ ・ う へ つ ・

• L^0 extends to a line bundle L on X iff the above function is locally constant.

Numerical Cartier condition (strong local form)

- -S reduced scheme over a field k
- $-f: X \rightarrow S$ flat, projective, pure relative dimension n
- $-S_2$ fibers
- $-L^0$ line bundle on $X \setminus Z$
- $-L^0|_{X_s \setminus Z}$ extends to an arbitrary line bundle L_s on X_s .
- -H relatively ample on X/S

Then

- $s \mapsto (H_s^{n-2} \cdot L_s^2)$ is upper semi-continuous and
- L^0 extends to a line bundle L on X iff the above function is locally constant.

Unrelared picture

Mostly flat families of S_2 sheaves

- $-f: X \rightarrow S$ flat
- $U \subset X$ open, $Z = X \setminus U$
- F coherent on U with pure, S_2 fibers
- $-Z \cap X_s$ has codimension ≥ 2 in the support of F_s
- S_2 -extension (or HULL) : $F^H := j_*(F)$
- fiberwise S_2 extension: $(F_s)^H := (j_s) * (F|_{U_s})$

QUESTION: when is $(F^H)_s \cong (F_s)^H$?

Restriction map:

$$r_s^F: (F^H)_s \hookrightarrow (F_s)^H$$

Weak criterion for flat families of S_2 sheaves

In addition: f is projective, $\mathcal{O}_X(1)$ ample Recall: $r_s^F : (F^H)_s \hookrightarrow (F_s)^H$

Equivalent:

•
$$(F^H)_s \cong (F_s)^H$$
 for every s

• Hilbert pol. $\chi(X_s, (F_s)^H(m))$ is independent of s.

Weak flatness criterion for line bundles

In addition: f is projective, $\mathcal{O}_X(1)$ ample Equivalent:

- L^0 extends to a line bundle L on X
- Hilbert pol. $\chi(X_s, L_s(m))$ is independent of s
- all the $(L_s^i \cdot \mathcal{O}_{X_s}(1)^j \cdot Td_{n-i-j}(X_s))$ are independent of s.

 $\begin{array}{l} \text{Main Claim:} \\ \left(L_s^2 \cdot \mathcal{O}_{X_s}(1)^{n-2}\right) \text{ independent of } s \Rightarrow \\ \text{all the } \left(L_s^i \cdot \mathcal{O}_{X_s}(1)^j \cdot \mathcal{T}d_{n-i-j}(X_s)\right) \text{ are independent of } s \end{array}$

Upper semi-continuity

-C spectrum of DVR, closed point 0, generic point g. By semicontinuity

 $h^{0}(X_{0}, L_{0}) \geq h^{0}(X_{0}, L|_{X_{0}}) \geq h^{0}(X_{g}, L|_{X_{g}}) = h^{0}(X_{g}, L_{g}).$

If L_0 and L_g are ample, then applying it to L^m and using Riemann-Roch:

$$(L_0)^n = \lim \frac{h^0(X_0, L_0^{\otimes m}) \cdot n!}{m^n} \ge \lim \frac{h^0(X_g, L_g^{\otimes m}) \cdot n!}{m^n} = (L_g^n).$$

Proof in dimension 2

 $-f: X \rightarrow T$ flat, proper, dimension 2 with S_2 fibers -L (need not be ample)

$$\begin{split} \chi \big(X_t, L_t^{\otimes m} \big) &= a_t m^2 + b_t m + c_t \\ \text{cokernel of } r_0^m : L^{[\otimes m]}|_{X_0} \hookrightarrow L_0^{\otimes m} \text{ is Artinian, so} \\ a_0 m^2 + b_0 m + c_0 \geq a_g m^2 + b_g m + c_g \text{ for every } m. \\ \text{RR: } a_t &= \frac{1}{2} \big(L_t \cdot L_t \big) \text{ and } c_t = \chi \big(X_t, \mathcal{O}_{X_t} \big). \end{split}$$

Assume now that $(L_0 \cdot L_0) = (L_g \cdot L_g)$. Then $a_0 = a_g$ thus

$$b_0m + c_0 \ge b_gm + c_g$$
 for every m .

 $m \gg 1$ gives $b_0 \ge b_g$ and $m \ll -1$ gives $-b_0 \ge -b_g$. So $b_0 = b_g$ and $c_0 = c_g$ since f is flat. $\Rightarrow \chi(X_0, coker(r_0^1)) = 0$ so $coker(r_0^1) = 0$. by Nakayama lemma, L is locally free

Local form; second look

- $-f: X \rightarrow S$ flat, projective, pure dim *n* with S_2 fibers
- $-L^0$ line bundle on $X \setminus Z$
- every L_s line bundle
 - $s \mapsto (H_s^{n-2} \cdot L_s^2)$ is upper semi-continuous and
 - L^0 extends to a line bundle L on X iff the above function is locally constant.

Note: (H_s^{n-2}) takes general surface section \Rightarrow upper semi-continuity follows from 2-dim case

Claim: Codim \geq 3 singularities do not matter!

Grothendieck–Lefschetz

 $-(x \in X)$ local scheme, $x \in D \subset X$ Cartier divisor

- $-U := X \setminus \{x\}$ and $U_D := D \setminus \{x\}$
- L be a coherent, rank 1, S_2 sheaf on U
- such that $L_D := L|_{U_D} \cong \mathcal{O}_{U_D}$
- Assume that $\operatorname{depth}_{_X} \mathcal{O}_D \geq 3$

 $\Rightarrow L \cong \mathcal{O}_U.$

Proof. $0 \to L \xrightarrow{\tau} L \xrightarrow{r} L_D \cong \mathcal{O}_{U_D} \to 0$ gives

$$\begin{array}{ccccc} H^0(U,L) & \stackrel{t}{\to} & H^0(U,L) & \stackrel{r}{\to} & H^0(U_D,L_D \cong \mathcal{O}_{U_D}) & \to \\ H^1(U,L) & \stackrel{t}{\to} & H^1(U,L) & \to & H^1(U_D,L_D \cong \mathcal{O}_{U_D}). \end{array}$$

$$\begin{split} \mathsf{depth}_{x}\,\mathcal{O}_{D} &\geq 3 \Rightarrow H^{1}\big(U_{D},\mathcal{O}_{U_{D}}\big) = 0 \text{ and so} \\ &\Rightarrow t: H^{1}\big(U,L\big) {\rightarrow} H^{1}\big(U,L\big) \text{ is surjective.} \end{split}$$

dim $U \ge 4$ implies $H^1(U, L)$ has finite length $\Rightarrow t : H^1(U, L) \rightarrow H^1(U, L)$ isomorphism.

Thus $r: H^0(U, L) \rightarrow H^0(U_D, L_D)$ is surjective.

Lift back the constant 1 section to L.

Stronger Grothendieck–Lefschetz

- $-(x \in X)$ local scheme, $x \in D \subset X$ Cartier divisor
- $-U := X \setminus \{x\}$ and $U_D := D \setminus \{x\}$
- -L line bundle on U
- such that $L_D := L|_{U_D} \cong \mathcal{O}_{U_D}$
- remove assumption: depth_x $\mathcal{O}_D \geq 3$
- new assumption: depth_x $\mathcal{O}_D \geq 2$ and dim $D \geq 3$.

 $\Rightarrow L \cong \mathcal{O}_U.$

- Conjectured around 2010
- Proved for semi-log-canonical 2012 (arXiv:1211.0317)
- Bhatt de Jong: X normal over field (arXiv:1302.3189)
- General case (over a field) (arXiv:1407.5108)

Normal case in characteristic p

- $\pi: X^+ \to X$ normalization in algebraic closure of k(X)
- Hochster–Huneke: X^+ is CM
- previous proof runs on X^+ (almost)
- -L becomes trivial on some finite degree cover
- use norm map to show that $L^m \cong \mathcal{O}_U$ for some m > 0

- work a little more ...