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Key observables in spectroscopic surveys:

Angular diameter distance DA
- Exploiting BAO as standard rulers which measure the angular 
diameter distance and expansion rate as a function of redshift.

Radial distance H-1

- Exploiting redshift distortions as intrinsic anisotropy to decompose 
the radial distance represented by the inverse of Hubble rate as a 
function of redshift. (Useful for Arman’s Om statistics, see his talk 
on web!)

Coherent motion GΘ
- The coherent motion, or flow, of galaxies can be statistically 
estimated from their effect on the clustering measurements of large 
redshift surveys, or through the measurement of redshift space 
distortions.

These are essential to test theoretical models explaining cosmic 
acceleration; ΛCDM, Dynamical DE, Einstein’s gravity
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BAOBOSS - Baryon Acoustic Oscillation
• Imprint of the acoustic phenomena caused by the coupling of the 

photon and gas perturbations in the early-universe (< 0.4 Myr). 
• The physical scale is well-understood, thus can be used as a 

standard ruler.
• It shows up as an enhanced overdensity with a characteristic scale 

of  ~ 150 Mpc. 

(From D. Eisenstein) (www.sdss3.org)
Monday, 20 January 14

- Imprint of the acoustic phenomena caused by the coupling of the 
photon and gas perturbations in the early-universe (< 0.4 Myr). 
- The physical scale is well-understood, thus can be used as a standard 
ruler. 
- It shows up as an enhanced overdensity with a characteristic scale of 
~ 150 Mpc. 



• How can we use BAOs to arrive at the 
dark energy equation of state?
– By analyzing matter power spectrum we 

can deduce the wavelength of the 
“wiggles” in k-space or the BAO ‘peak’ in 
configuration-space

– We’ll call this wavelength kA

• kA can be obtained through theory by the following steps:
– kA can be related to sound horizon at last scattering through

– At high redshift, affects of dark energy can be neglected, and s is 
given by

– ar and aeq are scale factors at recombination and matter radiation 
equality

– cs is sound speed (~c/√3)

BAOs to Dark Energy
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Correlation Functions
- Galaxy catalogues show rich and complex structures in the spatial 
distribution, with filaments, walls, voids, etc.

- These structures encode a lot of info on the physics and underlying 
models of cosmology.

- We want to quantify the structure of our data. How do we condense 
this information into a manageable form?

We want to evaluate:
where    is the density 
contrast

��(x)�(x + r)⇥

We call this the Two Point 
Correlation Function (2PCF) �i(r) =

ni(r)
n̄.dV

� 1

�

The estimator for this 
statistic is: �(r) =

DD � 2DR + RR

RR



σ
π

r
Bin galaxy pairs in two distances (π,σ) 
instead of the single distance between 
pairs, r.

Apart from the binning this is the same 
as doing the 2PCF.

And if there are no preferred directions 
then the correlation function will give 
perfectly circular contours in (π,σ).

observer 8

Anisotropic 2PCF

�(r) =
DD � 2DR + RR

RR
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2D clustering on large scale

BOSS CMASS DR11

690,826
 galaxies

See Minji Oh’s talk 
later for details and 

cosmological 
constraints
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FIG. 1. The measured 2D clustering correlation function ξ(σ, π) is plotted, adopting early universe priors from WMAP9 (left)
or Planck (right).

based on the passive galaxy template of [41]. The ma-
jority of CMASS galaxies are bright, central galaxies (in
the halo model framework) and are thus highly biased
(b ∼ 2) [42].
The CMASS sample [43] is defined by

z > 0.4 (3)

17.5 < icmod < 19.9

rmod − imod < 2.0

d⊥ > 0.55

ifib2 < 21.5

icmod < 19.86 + 1.6(d⊥ − 0.8)

ipsf − imod > 0.2 + 0.2(20.0− imod)

zpsf − zmod > 9.125− 0.46zmod ,

where the last two conditions provide a star-galaxy sep-
arator and d⊥ is defined as [44],

d⊥ = rmod − imod − (gmod − rmod)/8.0 . (4)

Each spectroscopically observed galaxy is weighted to
account for three distinct observational effects: redshift
failure, wfail; minimum variance, wFKP ; and angular
variation, wsys. These weights are described in more de-
tail in [45] and [46]. Firstly, galaxies that lack a redshift
due to fiber collisions or inadequate spectral information
are accounted for by reweighting the nearest galaxy by a
weight wfail = (1 +N), where N is the number of close
neighbours without an estimated redshift. Secondly, the
finite sampling of the density field leads to use of the min-
imum variance FKP prescription [47] where each galaxy

is assigned a weight according to

wi
FKP =

1

1 + ni(z)P0

, (5)

where ni(z) is the comoving number density of galaxy
population i at redshift z and one conventionally eval-
uates the weight at a constant power P0 ∼ P (k =
0.1 h/Mpc) ∼ 2 × 104 h−3 Mpc3, as in [45]. (But see
Appendix A.)
The third weight corrects for angular variations in com-

pleteness and systematics related to the angular varia-
tions in stellar density that make detection of galaxies
harder in over-crowded regions of the sky [46]. The total
weight for each galaxy is then the product of these three
weights, wtotal = wfailwFKPwsys. The random catalog
points are also weighted but they only include the mini-
mum variance FKP weight.
The CMASS galaxy sample is distributed over the

range 0.43 < z < 0.7, with an effective redshift

zeff =

∑Ngal

i wFKP,i zi
∑Ngal

i wFKP,i

, (6)

giving the value zeff = 0.57. The effective volume

Veff =
∑

(

n(zi)P0

1 + n(zi)P0

)2

∆V (zi) , (7)

where ∆V (z) is the volume of a shell at redshift z, is
Veff ∼ 2.2Gpc3.
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Linder, Oh, Okumura, Sabiu, Song (2013) arXiv:1311.5226 (DR9 paper)
Song, Sabiu, Okumura, Oh, Linder (2014) arXiv:1407.2257 (DR11 paper)

BAO 
Ring



Alcock-Paczynski Effect

z1 z2

We measure RA, Dec and Redshift for each galaxy. 
However we must choose a cosmological model to convert 
these positions into a cartesian comoving coordinate 
system.

Even without a standard ruler, we can measure the 
clustering along and perpendicular to the line of sight 
and thus constrain the combination of  DA * H

DA(z)

1/H(z)

Observer
10



Alcock-Paczynski Effect
Theoretically the  
geometric distortions of 
the AP effect can be 
modeled exactly:

11

DA, H vary peak positions 
off the BAO ring. 
 

10% variation 
in DA

10% variation 
in H

We want to avoid fitting the full shape of the 
anisotropic correlation function, as it depends on 
unknown systematic and physics, like scale 
dependent bias, etc. 

A cleaner method would be to just measure the 
shape of the BAO ring.

We can do this by looking at many thin wedges in 
this 2D projection, i.e. many directionally 
constrained 1-D correlation functions.
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Anisotropic BAO Peaks

2 Cristiano G. Sabiu, Yong-Seon Song

ter, respectively. In the particular case of a flat universe with
constant dark energy EoS, they take the forms of

H(z) = H
0

q
⌦ma�3 + (1� ⌦m)a�3(1+w),

DA(z) =
1

1 + z
r(z) =

1
1 + z

Z z

0

dz0

H(z0)
, (2)

where a = 1/(1 + z) is the cosmic scale factor, H
0

is the
present value of Hubble parameter and r(z) is the comoving
distance.

The observed distance between two galaxies r defined
assuming a fiducial or reference cosmological model, and the
observed cosine of the angle the pair makes with respect to
the los µ are given by

r2 = r2|| + r2?; µ =
r||
r

(3)

where r|| is the los separation and r? is the transverse sep-
aration. The estimate of these separations is dependent on
the assumed cosmology model.

We estimate the 2-point correlation function (2PCF)
in reshift-space and in the anisotropic s, µ-decomposition.
The correlation functions are calculated using the “Landy-
Szalay” estimator,

⇠(s, µ) =
DD(s, µ)� 2DR(s, µ) +RR(s, µ)

RR(s, µ)
, (4)

where DD is the number of galaxy–galaxy pairs, DR the
number of galaxy-random pairs, and RR is the number of
random–random pairs, all separated by a distance s ± �s
and angle µ±�µ. The pair counts are normalised since we
use 20 times as many randoms and data point to reduce shot
noise contributions to the correlation estimation.

We can model the correlation function well using,

⇠µ(s)⇥ s2 = A.s2 +B.s+ Ee�(s�D)

2/C + F, (5)

which is just a quadratic function plus a gaussian (for the
BAO peak). In our work the focus will be on constraining
the scale parameter, D, as a function of the anisotropy angle,
µ.

In Fig.1 we show the 2PCF, ⇠(s) for various µ values. In
all µ-directions the BAO feature is clearly seen. These corre-
lation functions are the average of 16 2LPT mocks CMASS
samples in the redshift range 0.43 < z < 0.7.

In Fig.2 we show the values of D obtained from fitting
the model of Eq5 to the measured ⇠ curves of Fig.1. The
fitting was done using a 20,000 chain mcmc. The fitting was
done of the range 70 < s[Mpc/h] < 150, sampled in 1 Mpc/h
bins. The errors on the measurements were assumed to be
small, 1%. The obtains errors are due to a combination of
the assumed measurement errors and the tension in from the
model with the data. The straight line plus gaussian model
may be too inflexible to obtains the desired fit thus allowing
degeneracies to widen the constraints on the parameters.

The general expression for an ellipse in polar coordi-
nates is,

r(✓) =
abp

(a cos ✓)2 + (b sin ✓)2
(6)

where a and b are the semi-major and semi-minor axes re-
spectively.

If we now fit the above elliptic equation to the data
points with errors as see in Fig.2 we can obtain constraints
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Figure 1. We plot ⇠(s) for various values of µ. The black squares

from top to bottom correspond to µ=0.9167, 0.7500, 0.5833,

0.4167, 0.2500, 0.0833, respectively. The black dashed line cor-

responds to eq.5.
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Figure 2. The obtained values of the scaling parameter, D, as a

function of los angle µ. The values and errorbars were obtained

from an mcmc analysis.

on the values of a and b which represent our scaling param-
eter along the line of sight, D// and across the line of sight,
D?. The 1- and 2-sigma constraints are represented in Fig.3.

3 BAO PEAK STRUCTURE SENSITIVITIES

The BAO ring will remain unchanged due to the overall am-
plitude shift induced by variations in galaxy bias. However
it should be checked how the peak structure is e↵ected when
we consider finger-of-god distortions, non-linear growth and,
variations in the overall shape induced by unknown h and
of course the AP e↵ect. We wish to isolate the latter ef-
fect since it encodes distance information which in turn can
inform is of the expansion history.

c� 0000 RAS, MNRAS 000, 000–000

A simple function to 
approximate the shape of 
the correlation function
We use a quadratic plus a 
gaussian, fitted over the 
range 80<r<180 Mpc

We care only about 
locating the BAO peak 
position. The centre of the 
gaussian is controlled by D.
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Simply we can fit an elliptic 
function to the obtained 
D(μ) and get a semi-major 
and minor distance defining 
an ellipse. 
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RR(s, µ)
, (4)

where DD is the number of galaxy–galaxy pairs, DR the
number of galaxy-random pairs, and RR is the number of
random–random pairs, all separated by a distance s ± �s
and angle µ±�µ. The pair counts are normalised since we
use 20 times as many randoms and data point to reduce shot
noise contributions to the correlation estimation.

We can model the correlation function well using,

⇠µ(s)⇥ s2 = A.s2 +B.s+ Ee�(s�D)

2/C + F, (5)

which is just a quadratic function plus a gaussian (for the
BAO peak). In our work the focus will be on constraining
the scale parameter, D, as a function of the anisotropy angle,
µ.

In Fig.1 we show the 2PCF, ⇠(s) for various µ values. In
all µ-directions the BAO feature is clearly seen. These corre-
lation functions are the average of 16 2LPT mocks CMASS
samples in the redshift range 0.43 < z < 0.7.

In Fig.2 we show the values of D obtained from fitting
the model of Eq5 to the measured ⇠ curves of Fig.1. The
fitting was done using a 20,000 chain mcmc. The fitting was
done of the range 70 < s[Mpc/h] < 150, sampled in 1 Mpc/h
bins. The errors on the measurements were assumed to be
small, 1%. The obtains errors are due to a combination of
the assumed measurement errors and the tension in from the
model with the data. The straight line plus gaussian model
may be too inflexible to obtains the desired fit thus allowing
degeneracies to widen the constraints on the parameters.

The general expression for an ellipse in polar coordi-
nates is,

r(✓) =
abp

(a cos ✓)2 + (b sin ✓)2
(6)

where a and b are the semi-major and semi-minor axes re-
spectively.

If we now fit the above elliptic equation to the data
points with errors as see in Fig.2 we can obtain constraints
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Figure 2. The obtained values of the scaling parameter, D, as a

function of los angle µ. The values and errorbars were obtained

from an mcmc analysis.

on the values of a and b which represent our scaling param-
eter along the line of sight, D// and across the line of sight,
D?. The 1- and 2-sigma constraints are represented in Fig.3.

3 BAO PEAK STRUCTURE SENSITIVITIES

The BAO ring will remain unchanged due to the overall am-
plitude shift induced by variations in galaxy bias. However
it should be checked how the peak structure is e↵ected when
we consider finger-of-god distortions, non-linear growth and,
variations in the overall shape induced by unknown h and
of course the AP e↵ect. We wish to isolate the latter ef-
fect since it encodes distance information which in turn can
inform is of the expansion history.
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From this we constrain the 
two distances, D// along the line 
of sight and D⊥ across the line 
of sight.
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The BAO ring will remain unchanged due to the overall am-
plitude shift induced by variations in galaxy bias. However
it should be checked how the peak structure is e↵ected when
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Next we create theoretical 
models that include different 
systematics and and 
observational effects.

In the fiducial case we obtain a 
simultaneous measurement of 
DA and H-1

Assuming 1% error on the 
clustering measurements leads 
to ~1%  error on the distances.
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3.1 Velocities

We first consider the fingers-of-god e↵ect where the galaxy
distribution is elongated in redshift space, with an axis of
elongation pointed toward the observer. It is caused by a
Doppler shift associated with the random peculiar velocities
of galaxies bound in structures such as clusters. The devi-
ation from the Hubble’s law relationship between distance
and redshift is altered, and this leads to inaccurate distance
measurements.

We now proceed to check if the FoG distortion e↵ects
the BAO peak position. In Fig.5 we show the derived dis-
tance measurements using models with various �v choices,
of 0, 2, 4, 6, 8 Mpc/h. We find no significant trend or devi-
ation with these values of �v with either D// or D? and all
measurements lie within a 1% error margin.

3.2 Non-linear

Comparing linear theory prediction with RegPT ref ref
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3.3 Hubble value

In Fig.6 we show the e↵ect of changing the hubble constant
in the primordial spectra on the derived distance measures.
However we do not include the AP distortion in this theo-
retical template. We find that variations of ±6Mpc in h do
not alter the obtained values of D// and D?.

3.4 Bias

In Fig.7 we show the e↵ect of changing the bias factor of
the theoretical 2pcf on the derived distance measures. Since
the bias a linear we should not expect a shift in the BAO
peak position however we investigate this change in the case
that our minimal model can still fit the peak position with-
out introducing any systematic variation due to inaccurate
fitting. We find that values of b = 1.2, 1.4,1.6, 1.8 all give
consistent values of D// and D?.

3.5 Alcock-Paczynski

The AP e↵ect is now included ....
In Fig.8 we
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Will certain systematic uncertainties effect our 
methodology to reliably estimate the peak location?
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4 TESTS ON SIMULATED DATA

In this section we test our methodology on simulated mock
data and check if we can recover the fiducial parameters.

4.1 Data

In order to check the validity of our overall approach, we
test it against simulations. We use the PTHALO mock galaxy
catalogs created by Manera et al. (2012), which are de-
signed to investigate the various systematics in the galaxy
sample from Data Release 11 (DR11) of the Baryon Oscil-
lation Spectroscopic Survey (BOSS) (Schlegel et al. 2009;
Eisenstein et al. 2011; Anderson et al. 2012), referred to
as the “CMASS” galaxy sample. In constructing the mock
galaxy catalogs, (Manera et al. 2012) utilized second-order
Lagrangian perturbation theory (2LPT) for the galaxy clus-
tering driven by gravity, which enables the creation of a
mock catalog much faster than running an N -body simula-
tion. The mocks catalogs constitute 600 density field realiza-
tions which span the redshift range of the observed galaxies
in our sample i.e. 0.43 < z < 0.7. Each catalog contains

⇠ 7⇥ 105 galaxies, 90% of which are central galaxies resid-
ing in dark matter halos of ⇠ 1013h�1M�.

4.2 results

5 CONCLUSIONS

We have investigated the sensitivity of the shape of the BAO
ring to various systematics. We find that the shape of the
BAO ring is invariant to non-linearities in the density field,
non-linear FoG distortions and unknown shape change in
the primordial spectra quantified using h. This invariance
allowed us to focus on measurements of the AP e↵ect and
to infer cosmological parameters pertaining to the expansion
history.

We tested this methodology using mock galaxy cata-
logues and found that we can recover the input cosmology....
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3.1 Velocities

We first consider the fingers-of-god e↵ect where the galaxy
distribution is elongated in redshift space, with an axis of
elongation pointed toward the observer. It is caused by a
Doppler shift associated with the random peculiar velocities
of galaxies bound in structures such as clusters. The devi-
ation from the Hubble’s law relationship between distance
and redshift is altered, and this leads to inaccurate distance
measurements.

We now proceed to check if the FoG distortion e↵ects
the BAO peak position. In Fig.5 we show the derived dis-
tance measurements using models with various �v choices,
of 0, 2, 4, 6, 8 Mpc/h. We find no significant trend or devi-
ation with these values of �v with either D// or D? and all
measurements lie within a 1% error margin.
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3.3 Hubble value

In Fig.6 we show the e↵ect of changing the hubble constant
in the primordial spectra on the derived distance measures.
However we do not include the AP distortion in this theo-
retical template. We find that variations of ±6Mpc in h do
not alter the obtained values of D// and D?.

3.4 Bias

In Fig.7 we show the e↵ect of changing the bias factor of
the theoretical 2pcf on the derived distance measures. Since
the bias a linear we should not expect a shift in the BAO
peak position however we investigate this change in the case
that our minimal model can still fit the peak position with-
out introducing any systematic variation due to inaccurate
fitting. We find that values of b = 1.2, 1.4,1.6, 1.8 all give
consistent values of D// and D?.

3.5 Alcock-Paczynski

The AP e↵ect is now included ....
In Fig.8 we
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We show the derived distance measurements 
using models with various σv choices, of 0, 2, 4, 
6, 8 Mpc/h. No significant trend or deviation with 
these values of σv with either D// or D⊥ and all 
measurements lie within a 1% error margin.

we show the effect of changing the bias factor on 
the derived distance measures.  We find that 
values of b = 1.2, 1.4,1.6, 1.8 all give consistent 
values of D// and D⊥.

Anisotropic BAO Peaks

We also checked the effect of shifting the overall shape of the spectrum and 
looked at Linear vs NonLinear templates.  However all give 1% level or less 
deviations on the distances. So our fitting function seems to have enough 
freedom to accommodate many unknown factors that, in the end, we don’t want 
to deal with!
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Will certain systematic uncertainties effect our 
methodology to reliably estimate the peak location?

changing little h changes the amount of dark 
matter (Om=wm/h2)  and ODE if assuming flatness. 
This then effects DA and H-1 
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4 TESTS ON SIMULATED DATA

In this section we test our methodology on simulated mock
data and check if we can recover the fiducial parameters.

4.1 Data

In order to check the validity of our overall approach, we
test it against simulations. We use the PTHALO mock galaxy
catalogs created by Manera et al. (2012), which are de-
signed to investigate the various systematics in the galaxy
sample from Data Release 11 (DR11) of the Baryon Oscil-
lation Spectroscopic Survey (BOSS) (Schlegel et al. 2009;
Eisenstein et al. 2011; Anderson et al. 2012), referred to
as the “CMASS” galaxy sample. In constructing the mock
galaxy catalogs, (Manera et al. 2012) utilized second-order
Lagrangian perturbation theory (2LPT) for the galaxy clus-
tering driven by gravity, which enables the creation of a
mock catalog much faster than running an N -body simula-
tion. The mocks catalogs constitute 600 density field realiza-
tions which span the redshift range of the observed galaxies
in our sample i.e. 0.43 < z < 0.7. Each catalog contains

⇠ 7⇥ 105 galaxies, 90% of which are central galaxies resid-
ing in dark matter halos of ⇠ 1013h�1M�.

4.2 results

5 CONCLUSIONS

We have investigated the sensitivity of the shape of the BAO
ring to various systematics. We find that the shape of the
BAO ring is invariant to non-linearities in the density field,
non-linear FoG distortions and unknown shape change in
the primordial spectra quantified using h. This invariance
allowed us to focus on measurements of the AP e↵ect and
to infer cosmological parameters pertaining to the expansion
history.

We tested this methodology using mock galaxy cata-
logues and found that we can recover the input cosmology....
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The Alcock-Paczynski 
geometrical distortions 
are large compared to the 
systematic variations we 
found previously.

We are currently working 
on this method to give us 
tight and unbiased 
constraints on DA and H-1

Anisotropic BAO Peaks
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Clustering Shells
Even without a standard ruler, we can measure the clustering 
along and perpendicular to the line of sight and thus constrain the 
combination of  DA and H-1

In this statistical analysis we aim to constrain the AP effect.
Rather than using the BAO peak position, we use the integrated 
clustering signal in different directions.

Pictorially what happens to cosmological positions if translated 
using an incorrect cosmological model.
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To probe the anisotropy, ξ is measured at different di-
rections, and integrated over the interval ∆s = smax − smin.
We evaluate,

ξ∆s(µ) ≡

∫ smax

smin

ξ(s, µ) ds. (5)

We limit the integral at both small and large scales. At small
scales the shape of ξ∆s(µ) is seriously distorted by the FoG
effect, and the distortion is more significant at lower redshift
where structure undergoes more non-linear growth. This in-
troduces redshift evolution in ξ∆s(µ) which is rather diffi-
cult to model. At large scales the measurement is dominated
by noise due to poor statistics. In our analysis, we choose
smin = 6 Mpc/h and smax = 50 Mpc/h, which we found to
provide consistent and unbiased results.

As an example Figure 2 shows how the 2pCF is affected
by AP and volume effects in the Ωm = 0.41, w = −1.3
cosmology. In choosing incorrect cosmological parameters,
we expect the 2pCF to be influenced in three ways. First,
as a result of the AP effect, structures appear compressed
in the radial direction. This induces a nonuniform variation
in ξ∆s(µ) as a function of angle. Second, as a result of the
volume effect, the size of structures are shrunk. For example,
a structures whose original size is s0 = 50 Mpc/h will shows
up with a size s1 < 50 Mpc/h. As a result, the amplitude
of ξ∆s(µ) changes. Finally, as another consequence of the
volume effect, in the wrong cosmology structures on larger
scales enter the statistics. For example, halos within the blue
solid box are not considered in the correct cosmology, but
they are taken into consideration in the wrong cosmology, as
shown by the black dashed box. This also results in a change
in the amplitude of ξ∆s(µ) since the binning in s, µ-space
will be inconsistent between different cosmological models.
The combined effects of choosing an incorrect cosmology on
shear and volume have been noted by Park & Kim (2010),
who used the volume effects measured by the genus statistic
to constrain the expansion history of the universe.

5 RESULT

Figure 3 shows the ξ∆s measured from HR3 mock surveys,
adopting the correct cosmology (left), the Ωm = 0.11, w =
−0.7 cosmology (middle), and the Ωm = 0.41, w = −1.3
cosmology (right). To study the redshift evolution, we divide
the redshift range z = 0− 1.5 into five equal-width redshift
bins 1. To measure anisotropy, we further divide the full
angular range µ = 0 − 1 is into 10 equal-width bins. So we
have

ξ∆s(zi, µj) ≡ ξ∆s in the i − th redshift bin, j − th µ bin(6)

where i = 1, 2, ..., 5, j = 1, 2, ...10. Measurements with-
out/with considering RSD effect are plotted in solid/dashed
lines, respectively.

The result for the correct cosmology is plotted in the
upper left panel of Figure 3. In the absence of RSD, we ob-
tain flat curves of ξ∆s(µ) in all redshift bins, with the am-
plitude slightly different from one redshift bin to another.

1 We do not show the result of the first redshift bin, which is
noisy due to poor statistics.

This difference can arise from two sources; (a) The growth
of clustering with the decreasing of redshift (b) The redshift
evolution of the bias of halos having the same comoving den-
sity. The result is significantly changed when we include the
RSD effect. Near the LOS direction (µ → 1), structures are
compressed due to the Kaiser effect, so the value of ξ∆s(µ)
is smaller compared with measurements near the tangential
direction2. But it should be noted that the shape of ξ∆s(µ)
is nearly the same at all redshifts, indicating the small red-
shift dependence of the RSD effect. It is this observation that
makes our method both feasible and statistically powerful.
Even though the 2pCF becomes very anisotropic in redshift
space, the anisotropy due to RSD does not change much as
a function of redshift and its redshift-dependence is dom-
inated by the geometric effects introduced by the adopted
cosmology.

The results of the Ωm = 0.11, w = −0.7 and Ωm = 0.41,
w = −1.3 cosmologies are plotted in the middle and right
panels, respectively. We can see that ξ∆s is significantly al-
tered by the volume and AP effects. In the Ωm = 0.41,
w = −1.3 cosmology, the shrinkage of comoving volume sup-
presses the amplitude of ξ∆s(µ), and the LOS shape com-
pression of structures results in a suppression of amplitude
in the LOS direction compared with the tangential. Both
effects become increasingly more significant at higher red-
shift. Similarly, in the Ωm = 0.11, w = −0.7 cosmology, we
see an enhancement of amplitude and relative enhancement
in the LOS direction, and these effects are more significant
at earlier times.

In real observational data the redshift evolution of the
bias of observed galaxies is difficult to model. Thus to miti-
gate this systematic uncertainty we wish to rely on the shape
of ξ∆s(µ), rather than its amplitude. In the lower panel of
Figure 3, we show the normalized ξ∆s(µ) in each redshift
bin, defined as

ξ̂∆s(µ) ≡
ξ∆s(µ)

∫ 1

0
ξ∆s(µ) dµ

. (7)

In the correct cosmology ξ̄∆s at different redshifts are iden-
tical to each other, while in the wrong cosmologies we see
clear redshift evolution.

Overall, the effect of RSD on the 2pCF is large but its
redshift dependence is small. Even with RSD, we can still
correctly determine the true cosmology by using the relative
change of ξ∆s with redshift. Based on this fact, we define our
χ2 as follows

χ2 ≡

4
∑

i=1

10
∑

j=1

[ξ̂∆s(zi, µj)− ξ̂∆s(z5, µj)]
2

σ2
ξ̂∆s(zi,µj)

+ σ2
ξ̂∆s(z5,µj)

. (8)

The 2pCF measured in the 1-4 redshift bins are compared
(or normalized) to the measurement in the last redshift bin.
This χ2 will prefer minimal shape change over the redshift
range, with little of no weight given to the amplitude of the
clustering statistic.

Similar to Li et al. (2014), we further correct the resid-
ual RSD effect, i.e., the following quantity is computed in
the correct cosmology and subtracted from our results,

2 The FoG effect will enhance ξ∆s(µ) in the LOS direction. It
does not significantly show up in our figures since we impose the
cut smin = 6 Mpc/h.
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Figure 1. The redshift dependence of AP and volume effect in two wrongly assumed cosmologies Ωm = 0.41, w = −1.3 and Ωm = 0.11,
w = −0.7, assuming a true cosmology of Ωm = 0.26, w = −1. Upper panel shows the apparent distortion of four perfect squares. The
apparently distorted shapes are plotted in red solid lines. The underlying true shapes are plotted in blue dashed lines. Lower panel shows
the evolution of Equations (1) and (2). In our mock surveys we split the samples at z = 0.3, 0.6, 0.9 and 1.2, as marked by the vertical
lines.

separation. Then the Physically Self Bound (PSB) subha-
los that are gravitationally self-bound and tidally stable are
identified (Kim & Park 2006).

An all-sky, very deep light cone survey reaching redshift
z = 4.3 was made by placing an observer located at the cen-
ter of the box. The co-moving positions and velocities of all
CDM particles are saved as they cross the past light cone
and PSB subhalos are identified from this particle data. To
match the observations of recent LRG surveys (Choi et al.
2010; Gott et al. 2009, 2008), a volume-limited sample of ha-
los with constant number density of 3×10−4(h−1Mpc)−3 are
selected by imposing a minimum halo mass limit and red-
shift range. The light cone survey sample consists of subha-
los at different redshifts, and thus their redshift dependence
on velocities and evolution of clustering are automatically
included. The peculiar velocity of the sub halo is set to that
of the most-bound particle in that subhalo.

We divide the whole-sky survey sample into eight equal
sky area subsamples and impose the redshift range z =
0 − 1.5. This mock data will be relevant for future galaxy
spectroscopic surveys (e.g. DESI Levi et al. 2013).

4 METHODOLOGY

We probe the effects discussed in §2 using the 2pCF. The
2pCF is a mature statistic in cosmology and its optimal
estimation considers minimal variance while dealing with
complicated masks and selection functions. The most com-
monly adopted formulation is that of the Landy-Szalay es-
timator (Landy & Szalay 1993),

ξ(s, µ) =
DD − 2DR +RR

RR
, (4)

where DD is the number of galaxy–galaxy pairs, DR the
number of galaxy-random pairs, and RR is the number of
random–random pairs, all separated by a distance defined
by s ± ∆s and µ ± ∆µ, where s is the distance between
the pair and µ = cos(θ), with θ being the angle between
the line joining the pair of points and the LOS direction.
This statistic therefore captures the radial anisotropy of the
clustering signal.

The random point catalogue constitutes an unclustered
but observationally representative sample of our mock sur-
veys. To reduce the statistical variance of the estimator we
use ∼15 times as many randoms as we have galaxies.

c© 2002 RAS, MNRAS 000, 1–8

For Om=0.41, 
w=-1.3, we see a 
stretch of the 
shape in the LOS 
direction and 
magnification of 
the volume

For Om=0.11, 
w=-0.7, we see a 
LOS shape 
compression and 
volume shrinkage.
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Clustering Shells
The integrated clustering 
strength as a function of angle 
at varies redshifts.

In the no RSD case in the 
correct cosmology the 
curves are flat. In the wrong 
cosmologies they are 
distorted. 

With RSDs we see much 
more variation in shape and 
amplitude.

If we normalise the curves, 
then we remove amplitude 
information and minimise the 
volume effect thus focusing 
on a pure AP measurement. 
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Figure 3. The 2pCF measured in four redshift bins, in the correct cosmology (left) and two wrongly assumed cosmologies (middle:
Ωm = 0.11, w = −0.7; right: Ωm = 0.41, w = −1.3). The clustering signal is measure as a function of 1 − µ ,where µ = cos(θ) and θ
is the angle between the LOS and the vector joining the pair of galaxies. Dashed and solid lines show the results with and without the
RSD effect, respectively. Upper panel: In the wrongly assumed cosmologies, we observe a clear change in the amplitudes and shapes of
ξ due to the volume and AP effect. Additionally, due to the redshift dependence of volume and AP effect, the amplitudes and shapes in
the four redshift bins are different from each other. Lower panel: The same as the upper panel, except that the amplitudes of curves are
normalized to 1.

constraints become much tighter, with δΩm ∼ 0.007 and
δw ∼ 0.035. Also, the direction of degeneracy changes and
is very different from mainstream techniques of CMB, SNIa
and BAO, meaning that combining our method with these
techniques can significantly improve the constraint. To im-
plement it in real observational cases, it is necessary to
model the evolution of the clustering amplitude for the ob-
served galaxies.

6 CONCLUSION

We have presented a new anisotropic clustering statistic that
can probe the cosmic expansion history, while making mini-
mal assumptions about the underlying cosmological model.
We measure the integrated 2pCF, ξ∆s(µ) ≡

∫ smax

smin
ξ(s, µ)ds,

as a function of direction µ. The amplitude of ξ∆s(µ) is af-
fected by the volume effect, and the shape is affected by
the AP effect. Due to the redshift dependence of the volume
and AP effects, in wrongly adopted cosmologies there are
redshift evolutions of the amplitude and shape. The RSD

c© 2002 RAS, MNRAS 000, 1–8

Using mock many catalogues drawn from the 
Horizon Run simulations (from Juhan Kim, KIAS)



19

Clustering Shells

The clustering shells provide a similar constraints to those obtained 
from standard BAO analysis.

The volume effect, which causes redshift evolution in the amplitude of 
2pCF, leads to very tight constraint on cosmological parameters. But it 
suffers from systematic effects of growth of clustering and the 
variation of galaxy sample with redshift.

Cosmological Constraints from the Redshift Dependence of AP and Volume Effects 7

Figure 4. Left: Expected cosmological constraints from a 1/8-sky, z < 1.5 survey with a constant galaxy number density of n̄ = 3×10−4 .
We achieve unbiased constraints with δw ∼ 0.1 and δΩm ∼ 0.03 by comparing the shapes of ξ∆s(µ) measured in different redshift bins.
The gray contours denote 1, 2, 3σ. Right: Here we use the unnormalized ξ∆s(µ), which is sensitive to the volume change and thus provides
much tighter constraints. Although to use this in practice would mean overcoming some observational systematic uncertainties like galaxy
evolution and selection bias.

effect due to galaxy peculiar velocities, although having a
strong effect on ξ∆s(µ), does not exhibit significant redshift
evolution. Thus by focusing on the redshift dependence of
ξ∆s(µ), we are able to derive accurate and unbiased esti-
mates of cosmological parameters in spite of contamination
induced by RSD.

The concept of this paper is similar to Li et al. (2014),
where the redshift dependence of the AP effect is mea-
sured from the anisotropy in the galaxy density gradient
field. However, in this paper we choose a different statistical
method, i.e. the 2pCF. They differ from each other in several
aspects. 1) Using the 2pCF method it is more convenient to
choose the scales we investigate. 2) The advantage of the
density gradient field method is that, it allows us to utilize
the information on small scales of ∼10 Mpc/h (depending
on the scale of smoothing). 3) In the 2pCF method we are
able to probe the volume effect, which is not possible for the
galaxy density field method. 4) The 2pCF is a mature statis-
tic in cosmology and its optimal estimation and statistical
properties are well understood.

The volume effect, which causes redshift evolution in the
amplitude of 2pCF, leads to very tight constraint on cosmo-
logical parameters. But it suffers from systematic effects of
growth of clustering and the variation of galaxy sample with
redshift. It would be great if one can reliably model these
two effects and utilize the volume effect. In case that the
systematic effect can not be correctly modelled, one can fo-
cus on the AP effect by normalizing the amplitude of ξ∆s(µ)
and just investigating the redshift evolution of the shape.

When dealing with real observational data, it will be im-
portant to accurately model the galaxy clustering to remove
the residual RSD effects on the 2pCF. It will also require
the handling of various observation effects such as survey
geometry, fiber collisions, etc. We will report the results of
such investigations in forthcoming studies.
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which leads to apparent anisotropy even if the adopted cos-
mology is correct (Ballinger Peacock & Heavens 1996). In Li
et al. (2014) we proposed a new method utilizing the red-
shift dependence of AP effect to overcome the RSD problem,
which uses the isotropy of the galaxy density gradient field.
We found that the redshift dependence of the anisotropy
created by RSD is much less significant compared with the
anisotropy caused by AP. Thus we measured the redshift de-
pendence of the galaxy density gradient field, which is less
affected by RSD, but still sensitive to cosmological parame-
ters.

The two-point correlation analysis is the most widely
used method to study the large scale clusterings of galax-
ies. So, in this paper we revisit the topic of Li et al. (2014)
using the galaxy two-point correlation function (2pCF). By
investigating the redshift dependence of anisotropic galaxy
clustering we can measure the AP effect despite of contam-
ination from RSD. Moreover, if the redshift evolution of
galaxy bias can be reliably modelled, then we can measure
the redshift evolution of volume effect from the amplitude
of 2pCF. The change of the comoving volume size is another
consequence of a wrongly adopted cosmology, which has mo-
tivated methods constraining cosmological parameters from
number counting of galaxy clusters (Press & Shechter 1974;
Viana & Liddle 1996) and topology (Park & Kim 2010).

The outline of this paper proceeds as follows. In §2 we
briefly review the nature and consequences of the AP effect
and volume changes when performing coordinate transforms
in a cosmological context. In §3 we describe the N-body
simulations and mock galaxy catalogues that are used to
test our methodology. In §4 we will describe our new analysis
method for quantifying the anisotropic clustering as well as
proposing a way to deal with the RSD that are convolved
with the AP distortion. Here we will also present results of
our optimised estimator. We conclude in §5.

2 THE AP AND VOLUME EFFECT DUE TO

WRONGLY ASSUMED COSMOLOGICAL

PARAMETERS

The AP and volume effect due to wrongly assumed cosmo-
logical parameters are shown in the upper panel of Figure
1. Suppose that the true cosmology is a flat ΛCDM with
present density parameter Ωm = 0.26 and standard dark
energy equation of state (EoS) w = −1. If we were to dis-
tribute four perfect squares at various distances from 500
Mpc/h to 3,000 Mpc/h, and an observer were to measure
their redshifts and compute their positions and shapes us-
ing redshift-distance relations of two incorrect cosmologies:

(i) Ωm = 0.41, w = −1.3,
(ii) Ωm = 0.11, w = −0.7,

the shapes of the squares appear distorted (AP effect), and
their volumes are changed (volume effect). In the cosmolog-
ical model (ii) with Ωm = 0.11, w = −0.7, we see a stretch
of the shape in the LOS direction (hereafter “LOS shape
stretch”) and magnification of the volume (hereafter “vol-
ume magnification”), while in the model with Ωm = 0.41,
w = −1.3, we see opposite effects, with LOS shape compres-
sion and volume shrinkage.

The degree of LOS shape stretch and volume magnifi-
cation can be described by the following quantities

[∆r‖/∆r⊥]wrong

[∆r‖/∆r⊥]true
=

[DA(z)H(z)]true
[DA(z)H(z)]wrong

, (1)

Volumewrong

Volumetrue
=

[DA(z)2/H(z)]wrong

[DA(z)2/H(z)]true
, (2)

where ∆r‖, ∆r⊥ are the angular and radial sizes of the ob-
jects, and “true” and “wrong” denote the values of quanti-
ties in the true cosmology and wrongly assumed cosmology.
DA and H are the angular diameter distance and Hubble
parameter, respectively. In the particular case of a flat uni-
verse with constant dark energy EoS, they take the forms
of

H(z) = H0

√

Ωma−3 + (1− Ωm)a−3(1+w),

DA(z) =
1

1 + z
r(z) =

1
1 + z

∫ z

0

dz′

H(z′)
, (3)

where a = 1/(1 + z) is the cosmic scale factor, H0 is the
present value of Hubble parameter and r(z) is the comoving
distance.

In the lower panel of Figure 1, we plot the degree of
LOS shape stretch and volume magnification as functions
of redshift. In cosmology (i), both quantities have value
less than 1, indicating LOS shape compression and volume
shrink. The effect in cosmology (ii) is slightly more subtle.
At low redshift, the effect of dark energy is important, and
there is LOS shape compression and volume reduction due
to the quintessence like dark energy EoS. However, at higher
redshift the role of dark matter is more important, and we
see LOS shape stretch and volume magnification due to the
small Ωm.

More importantly, Figure 1 highlights the redshift de-
pendence of the AP and volume effects. For example, in the
cosmology with Ωm = 0.41, w = −1.3, both the LOS shape
stretch and volume magnification become more significant
with increasing redshift. In the cosmology with Ωm = 0.11,
w = −0.7, not only do the magnitudes of the effects evolve
with redshift, but there is also a turnover from LOS shape
compression and volume shrink at lower redshift to LOS
shape stretch and volume magnification at higher redshift.

3 DATA

We test the methodology using mock surveys constructed
from one of the Horizon Run simulations, HR3. HR3 are a
suite of large volume N-body simulations that have resolu-
tions and volumes capable of reproducing the observational
statistics of many current major redshift surveys like SDSS
BOSS etc (Park et al. 2005; Kim et al. 2009, 2011). HR3
adopts a flat-space ΛCDM cosmology with the WMAP 5
year parameters Ωm = 0.26, H0 = 72km/s/Mpc, ns = 0.96
and σ8 = 0.79 (Komatsu et al. 2011). The simulation was
made in a cube of volume (10.815 h−1Gpc)3 using 71203

particles with particle mass of 1.25 × 1011h−1M% .
The simulations were integrated from z = 27 and

reached z = 0 after making Nstep = 600 timesteps. Dark
matter halos were identified using the Friend-of-Friend algo-
rithm with the linking length of 0.2 times the mean particle

c© 2002 RAS, MNRAS 000, 1–8
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et al. (2014) we proposed a new method utilizing the red-
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created by RSD is much less significant compared with the
anisotropy caused by AP. Thus we measured the redshift de-
pendence of the galaxy density gradient field, which is less
affected by RSD, but still sensitive to cosmological parame-
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The two-point correlation analysis is the most widely
used method to study the large scale clusterings of galax-
ies. So, in this paper we revisit the topic of Li et al. (2014)
using the galaxy two-point correlation function (2pCF). By
investigating the redshift dependence of anisotropic galaxy
clustering we can measure the AP effect despite of contam-
ination from RSD. Moreover, if the redshift evolution of
galaxy bias can be reliably modelled, then we can measure
the redshift evolution of volume effect from the amplitude
of 2pCF. The change of the comoving volume size is another
consequence of a wrongly adopted cosmology, which has mo-
tivated methods constraining cosmological parameters from
number counting of galaxy clusters (Press & Shechter 1974;
Viana & Liddle 1996) and topology (Park & Kim 2010).

The outline of this paper proceeds as follows. In §2 we
briefly review the nature and consequences of the AP effect
and volume changes when performing coordinate transforms
in a cosmological context. In §3 we describe the N-body
simulations and mock galaxy catalogues that are used to
test our methodology. In §4 we will describe our new analysis
method for quantifying the anisotropic clustering as well as
proposing a way to deal with the RSD that are convolved
with the AP distortion. Here we will also present results of
our optimised estimator. We conclude in §5.

2 THE AP AND VOLUME EFFECT DUE TO

WRONGLY ASSUMED COSMOLOGICAL

PARAMETERS

The AP and volume effect due to wrongly assumed cosmo-
logical parameters are shown in the upper panel of Figure
1. Suppose that the true cosmology is a flat ΛCDM with
present density parameter Ωm = 0.26 and standard dark
energy equation of state (EoS) w = −1. If we were to dis-
tribute four perfect squares at various distances from 500
Mpc/h to 3,000 Mpc/h, and an observer were to measure
their redshifts and compute their positions and shapes us-
ing redshift-distance relations of two incorrect cosmologies:

(i) Ωm = 0.41, w = −1.3,
(ii) Ωm = 0.11, w = −0.7,

the shapes of the squares appear distorted (AP effect), and
their volumes are changed (volume effect). In the cosmolog-
ical model (ii) with Ωm = 0.11, w = −0.7, we see a stretch
of the shape in the LOS direction (hereafter “LOS shape
stretch”) and magnification of the volume (hereafter “vol-
ume magnification”), while in the model with Ωm = 0.41,
w = −1.3, we see opposite effects, with LOS shape compres-
sion and volume shrinkage.

The degree of LOS shape stretch and volume magnifi-
cation can be described by the following quantities

[∆r‖/∆r⊥]wrong

[∆r‖/∆r⊥]true
=

[DA(z)H(z)]true
[DA(z)H(z)]wrong

, (1)

Volumewrong

Volumetrue
=

[DA(z)2/H(z)]wrong

[DA(z)2/H(z)]true
, (2)

where ∆r‖, ∆r⊥ are the angular and radial sizes of the ob-
jects, and “true” and “wrong” denote the values of quanti-
ties in the true cosmology and wrongly assumed cosmology.
DA and H are the angular diameter distance and Hubble
parameter, respectively. In the particular case of a flat uni-
verse with constant dark energy EoS, they take the forms
of

H(z) = H0

√

Ωma−3 + (1− Ωm)a−3(1+w),

DA(z) =
1

1 + z
r(z) =

1
1 + z

∫ z

0

dz′

H(z′)
, (3)

where a = 1/(1 + z) is the cosmic scale factor, H0 is the
present value of Hubble parameter and r(z) is the comoving
distance.

In the lower panel of Figure 1, we plot the degree of
LOS shape stretch and volume magnification as functions
of redshift. In cosmology (i), both quantities have value
less than 1, indicating LOS shape compression and volume
shrink. The effect in cosmology (ii) is slightly more subtle.
At low redshift, the effect of dark energy is important, and
there is LOS shape compression and volume reduction due
to the quintessence like dark energy EoS. However, at higher
redshift the role of dark matter is more important, and we
see LOS shape stretch and volume magnification due to the
small Ωm.

More importantly, Figure 1 highlights the redshift de-
pendence of the AP and volume effects. For example, in the
cosmology with Ωm = 0.41, w = −1.3, both the LOS shape
stretch and volume magnification become more significant
with increasing redshift. In the cosmology with Ωm = 0.11,
w = −0.7, not only do the magnitudes of the effects evolve
with redshift, but there is also a turnover from LOS shape
compression and volume shrink at lower redshift to LOS
shape stretch and volume magnification at higher redshift.

3 DATA

We test the methodology using mock surveys constructed
from one of the Horizon Run simulations, HR3. HR3 are a
suite of large volume N-body simulations that have resolu-
tions and volumes capable of reproducing the observational
statistics of many current major redshift surveys like SDSS
BOSS etc (Park et al. 2005; Kim et al. 2009, 2011). HR3
adopts a flat-space ΛCDM cosmology with the WMAP 5
year parameters Ωm = 0.26, H0 = 72km/s/Mpc, ns = 0.96
and σ8 = 0.79 (Komatsu et al. 2011). The simulation was
made in a cube of volume (10.815 h−1Gpc)3 using 71203

particles with particle mass of 1.25 × 1011h−1M% .
The simulations were integrated from z = 27 and

reached z = 0 after making Nstep = 600 timesteps. Dark
matter halos were identified using the Friend-of-Friend algo-
rithm with the linking length of 0.2 times the mean particle
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We construct a likelihood function by requiring that the shape change 
as a function of redshift is minimized. Of course there is a redshift 
evolution of the clustering, however this is modeled to first-order 
using N-body simulations.



Conclusions

Davis etal 2011

- we have shown that the anisotropic BAO peak positions are 
unaffected by the systematics we consider, namely bias, FoG, 
non-linear templates.

- this method therefore provides an unbiased constraints on 
DA(z) and H-1(z). 

- we are working now on the constraining power of this method 
considering current and future data from SDSS BOSS -> DESI.

- The anisotropic ‘clustering shells’ provide unbiased and tight 
constraints on w and Om, considering flat LCDM model. 

- However more generally this methodology can be used to 
track the expansion history.
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