Prompt Neutrino Fluxes from Charm Production in the Atmosphere

Yu Seon Jeong
Yonsei University

Work in progress with M. H. Reno, and C. S. Kim, and with A. Bhattacharya, I. Sarcevic, and R. Enberg

YongPyong-High1 2015 Joint Winter Conference
High1 Resort, Korea, January 25-31, 2015
Atmospheric Neutrino

- Cosmic rays interact with air nuclei in the atmosphere and produce hadrons.
- Hadrons subsequently decay producing neutrinos.
 \[\text{Atmospheric neutrino} \]
 \[e.g.) \quad pp \rightarrow \pi^+ + X \]
 \[\downarrow \]
 \[\pi^+ \rightarrow \mu^+ \nu_\mu \rightarrow (\bar{\nu}_\mu, \nu_e, e^+) \nu_\mu \]
- Atmospheric neutrinos are the background to astrophysical neutrinos.
Conventional Neutrino Flux

- Neutrino flux from pion and kaon decay is called the **conventional** flux.
- K, π – long-lived particles – interact before the decay
 ⇒ suppress the neutrino production at high E
Neutrino flux from the decay of the charmed hadrons is called the **prompt** flux. e.g.) D-mesons

- The charmed hadrons are short-lived particles.
- The resulting neutrino flux less depends on energy.
Cascade equations

The neutrino flux is obtained by solving the coupled cascade equations for nucleon, meson and lepton fluxes.

\[
\frac{d\phi_N}{dX} = -\frac{\phi_N}{\lambda_N} + S(NA \rightarrow NY) \quad \phi_N(E) - \text{nucleon flux}
\]

\[
\frac{d\phi_M}{dX} = S(NA \rightarrow MY) - \frac{\phi_M}{\lambda_M} - \frac{\phi_M}{\lambda_M^{\text{dec}}} + S(MA \rightarrow MY)
\]

\[
\frac{d\phi_l}{dX} = \sum_M S(M \rightarrow lY) \quad M = D^\pm, D^0, \bar{D}^0, D_s^\pm, \Lambda_c^\pm \quad \text{for prompt fluxes from charm}
\]

The function \(S \) is responsible for the generation.
Cascade equations

- generation function

\[S(k \rightarrow j) = \int_{E}^{\infty} dE_k \frac{\phi_k(E_k)}{\lambda_k(E_k)} \frac{dn(k \rightarrow j; E_k, E_j)}{dE_j} \]

\[\frac{dn(k \rightarrow j; E_k, E_j)}{dE_j} = \frac{1}{\sigma_{kA}(E_k)} \frac{d\sigma(kA \rightarrow jY, E_k, E_j)}{dE_j} \quad \text{for production} \]

\[= \frac{1}{\Gamma_k} \frac{d\Gamma(k \rightarrow jY, E_j)}{dE_j} \quad \text{for decay} \]

dn/dE – the energy distribution of the final state particle.
Z-moments

\[
S(k \rightarrow j) = Z_{k,j}(E) \frac{\phi_k(E, X)}{\lambda_k(E)}
\]

\[
Z_{kj} \equiv \int_E^\infty dE_k \frac{\phi_k(E_k, X)}{\phi_k(E_j, X)} \frac{\lambda_k(E_j)}{\lambda_k(E_k)} \frac{dn(k \rightarrow j; E_k, E_j)}{dE_j}
\]

Assumption : \(\phi_k(E, X) = E^\beta \phi_k(X)\)

\[
Z_{kj}(E) = \int_E^\infty dE_k \left(\frac{E_k}{E_j} \right)^\beta \frac{\lambda_k(E_j)}{\lambda_k(E_k)} \frac{dn(k \rightarrow j; E_k, E_j)}{dE_j}
\]

Approximate Lepton Fluxes

\[
\phi_l^{\text{low}} = Z_{Mi} \frac{Z_{NM}}{1 - Z_{NN}} \phi_N
\]

\[
\phi_l^{\text{high}} = Z_{Mi} \frac{Z_{NM}}{1 - Z_{NN}} \frac{\ln(\Lambda_M / \Lambda_N)}{1 - \Lambda_N / \Lambda_M} \frac{\epsilon_M}{E} \phi_N
\]

\[
\Lambda_i = \lambda_i / (1 - Z_{ii}) \quad i = N, M
\]

The lepton flux can be obtained by interpolating these two solutions.
• The essential input to the neutrino flux evaluation is the charm production cross section.

• The charm production cross section can be calculated
 1) in the perturbative QCD,
 2) in the dipole model,
 3) with non-perturbative “intrinsic charm” production.
Charm Production Cross Section in QCD

The cross section for charm pair production

\[\frac{d\sigma_{LO}}{dx_F} = \int \frac{dM_{c\bar{c}}^2}{(x_1 + x_2)s} \sigma_{gg\rightarrow c\bar{c}}(\hat{s})G(x_1, \mu^2)G(x_2, \mu^2) \]

\[x_{1,2} = \frac{1}{2} \left(\sqrt{x_F^2 + \frac{4M_{c\bar{c}}^2}{s}} \pm x_F \right) \]

At high energies, \(x_1 \sim x_F\) and \(x_2 \ll 1\).

E.g.) at \(E_p = 1\) PeV, \(x_2 \sim 10^{-6}\) for \(x_F \sim 1\).

\(x_2\) become smaller at higher energy.
Gluon distribution at small x

The gluon distribution increases rapidly as x becomes small.

At the high density region, gluons can be overlapped and recombined.
→ Saturation effect

K.Golec-Biernat – conf. proceeding
arXiv:0812.1523
Color Dipole Model

The virtual photon splits into a quark-antiquark pair (color dipole) before scattering on the proton.

C. Ewerz et al, JHEP03 (2011) 062

$$\sigma_{\gamma^* N} (x, Q^2) = \sum_f \int_0^1 dz \int d^2 r \left| \Psi(z, r, Q^2) \right|^2 \hat{\sigma}_{q\bar{q}N} (r, x)$$

$$\Psi(z, r, Q^2)$$ - fluctuation

$$\hat{\sigma}_{q\bar{q}N} (r, x)$$ - interaction of a dipole with a target
PP collisions in the dipole model

The differential cross section for heavy quark production from proton-proton collision

$$\frac{d\sigma}{dy}(pp \rightarrow Q\bar{Q}X) = x_1 G(x_1, \mu^2)\sigma^{gp}(x_2, \mu^2, Q^2)$$

The partonic cross section in the dipole model

$$\sigma^{gp}(x_2, \mu^2, Q^2) = \int dz d^2r \left| \Psi^Q_G(z, r) \right|^2 \sigma_{dG}(x, r)$$

$$\Psi^Q_G(z, r)$$ - splitting of gluon to dipole

$$\sigma_{dG}(x, r)$$ - interaction of q\bar{q} pair from a gluon with the target nucleon
PP collisions in the dipole model

\[\sigma_{dG}(x, r) = \frac{9}{8} \left[\sigma_d(x, zr) + \sigma_d(x, (1 - z)r) \right] - \frac{1}{8} \sigma_d(x, r) \]

\[\sigma_d(x, r) = a \left(\frac{x}{x_0} \right)^{\lambda(r)} r^{b r+c} \quad \text{for } r \leq 0.5 \text{ and } r > 1.8 \]

\[= a \left(\frac{x}{x_0} \right)^{\lambda(r)} \left(1 + r^{b} - c e^{d r^e} \right) \quad \text{for } 0.5 < r \leq 1.8 \]

\[\lambda(r) = -0.196 + 0.11r - 0.127 r^2 + 0.044 r^3 \quad (r < 1.8) \]

\[= -0.39 + 0.182 r - 0.0325 r^2 + 0.00224 r^3 \quad (r \geq 1.8) \]

<table>
<thead>
<tr>
<th>r</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>r \leq 0.5</td>
<td>5.55</td>
<td>-1.098</td>
<td>1.839</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5 < r \leq 1.8</td>
<td>2.67</td>
<td>1.454</td>
<td>0.708</td>
<td>-6.16</td>
<td>4.238</td>
</tr>
<tr>
<td>r > 1.8</td>
<td>2.12</td>
<td>-0.31</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

YSJ, C. S. Kim, M. V. Luu and M. H. Reno,
JHEP 11 (2014)025
Cosmic Ray Flux for Nucleon

Prompt Flux in Dipole Model

- New dipole cross section from the recent F2 parameterization – increases the flux by ~15%.
- The effect of CR spectrum – above 1 PeV, reduction in flux is by a factor of 3-4.
Intrinsic charm

Charm can be produced from non-perturbative fluctuation of nucleon and it goes into a charmed baryon-meson pair.

\[p \rightarrow \Lambda_c^+ + D^0 \]

\[\Rightarrow \text{Meson-Baryon Model (MBM)} \]

In the MBM, \(\Lambda_c^+ \) is produced through \(D^0 \Lambda_c^+ \) and \(\bar{D}^{*0} \Lambda_c^+ \).

T.J. Hobbs, J.T. Londergan and W. Melnitchouk, PRD 89 074008 (2014) (HLM)
Intrinsic charm production cross section

\[\frac{d\sigma_{\Lambda_c}}{dx_F} \approx \sum_{M=D, D^*} f_{\Lambda_c M}(x_F) \sigma_{tot}^{M_p} \]

\[\sigma_{tot}^{D_p} \approx \sigma_{tot}^{D^*_p} \approx 20 \pm 10 \text{ mb} \]

\(f_{\Lambda_c M} \) - splitting function

T.J. Hobbs, J.T. Londergan and W. Melnitchouk, PRD 89 074008 (2014) (HLM)
Prompt Flux – Intrinsic charm

\[E^3 \phi \left[\text{GeV}^{-2} \text{cm}^{-2} \text{s}^{-1} \text{sr}^{-1} \right] \]

Energy [GeV]

Preliminary
Conclusion

• The prompt flux with more realistic cosmic ray nucleon spectrum is reduced relative to the prompt spectrum using the broken power law. At 1 PeV, the reduction in flux is about a factor of 3.

• The dipole cross section from the F_2 parameterization by Block et al increase the flux about 15%.

• Intrinsic charm contribution based on the Hobbs et al MBM results may be important. – work in progress

• More update
 – with separate lepton flavors
 – with bottom quark contribution
 – with other models for intrinsic charm
Prompt flux: DM vs. NLO QCD

\[E^3 \phi_y [\text{GeV}^2 \text{cm}^2 \text{s}^{-1} \text{sr}^{-1}] \]

vs.

Energy [GeV]

Preliminary