Explicit Resolution of Linear Systems in Dimension Three and Applications

Jungkai Alfred Chen National Taiwan University & NCTS, Taipei Office

ICM Satellite Conference on Algebraic and Complex Geometry Aug. 8, 2014

Birational Geometry

Birational Classification:

Try to classify varieties up to birational equivalence.

Ø Minimal Model Program:

Try to find good model inside a birational equivalence class.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Birational Geometry

Birational Classification:

Try to classify varieties up to birational equivalence.

Minimal Model Program:

Try to find good model inside a birational equivalence class.

Goal: study birational classification theory of threefolds explicitly by using MMP.

Birational Geometry

Birational Classification:

Try to classify varieties up to birational equivalence.

Minimal Model Program:

Try to find good model inside a birational equivalence class.

Goal: study birational classification theory of threefolds explicitly by using MMP.

X: complex projective varieties with at worst \mathbb{Q} -factorial terminal singularities. $n = \dim(X)$, mostly, n = 3.

If $\kappa(X) \ge 0$, then for $m \gg 0$ and divisible

$$\varphi_m: X \to Y_m$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

is stable birationally.

If $\kappa(X) \ge 0$, then for $m \gg 0$ and divisible

$$\varphi_m: X \to Y_m$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

is stable birationally. We call it the litaka fibration.

If $\kappa(X) \ge 0$, then for $m \gg 0$ and divisible

$$\varphi_m: X \to Y_m$$

is stable birationally. We call it the litaka fibration. Let F be the

general fiber. Then $\kappa(F) = 0$.

If $\kappa(X) \ge 0$, then for $m \gg 0$ and divisible

$$\varphi_m: X \to Y_m$$

is stable birationally. We call it the litaka fibration. Let F be the

general fiber. Then
$$\kappa(F) = 0$$
.

Three building blocks:

- varieties with $\kappa = -\infty$;
- varieties with $\kappa = 0$;
- varieties with $\kappa = \dim$, which are varieties of general type

There exist d(X) and r(X) such that φ_m is stabilized (birationally) for $m \ge r(X)$ and divisible by d(X).

Question. Does there exist d(n) and r(n) such that φ_m is stabilized (birationally) for $m \ge r(n)$ and divisible by d(n) for any variety X of dimension n?

[Hacon-M^cKernan '06, Takayama, Tsuji] $\kappa(X) = \dim X$, then r(n) exist (and d(n) = 1). [Fujino-Mori '00] $\kappa(X) = 1$, then r(n) and d(n) exist. [Viehweg-Zhang '07] $\kappa(X) = 2$, then r(n) and d(n) exist.

Do we have explicit bound for threefolds?

[Kawamata, Morrison '86] dim X = 3, $\kappa(X) = 0$ Then $r(X) \le 2^5 \cdot 3^3 \cdot 5^2 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19$ $= lcm\{m|\phi(m) \le 20\}.$

[Ringler 07', D.Q. Zhang-Viehweg] dim X = 3, $\kappa(X) = 2$ Then $r(x) \le 48$ and d(X) = 12.

[Chen-Chen]=[Jungkai Chen & Meng Chen] dim X = 3, $\kappa(X) = 3$ Then $r(X) \le 61$.

[Kawamata, Morrison '86] dim X = 3, $\kappa(X) = 0$ Then $r(X) \le 2^5 \cdot 3^3 \cdot 5^2 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19$ $= lcm\{m|\phi(m) \le 20\}.$

[Ringler 07', D.Q. Zhang-Viehweg] dim X = 3, $\kappa(X) = 2$ Then $r(x) \le 48$ and d(X) = 12.

[Chen-Chen]=[Jungkai Chen & Meng Chen] dim X = 3, $\kappa(X) = 3$ Then $r(X) \le 61$.

Question 1. For threefolds of general type, what is r(3)? It is well-known that $r(3) \ge 27$.

<u>Threefolds with $\kappa = 1$ </u> [Fujino-Mori '00] dim X = 3, $\kappa(X) = 1$ Then exists computable r(X) and d(X). If general fiber is abelian surface or bielliptic surafce, then $r(X) \leq n$ such that

$$-2Nn + \sum \lfloor n \frac{m_i - b_i}{m_i} \rfloor > 0$$

for all $b_i < \min\{m_i, N+1\}$ with $-2N + \sum \frac{m_i - b_i}{m_i} > 0$ and N = 2520.

If general fiber is K3 surface or Enriques, then one needs to compute the bound with $N = lcm\{m|\phi(m) \le 22\}$.

Threefolds with $\kappa = 1$

$$\chi(m + m_0 \mu K_X) - \chi(m K_X) = -2m_0 \mu \chi(\mathcal{O}_X) + m_0 \mu \frac{1}{12} \sum \frac{r_i^2 - 1}{r_i}.$$

On the other hand, if q(F) = 0 then

$$\chi(m + m_0 \mu K_X) = \chi(f_*(m + m_0 \mu) K_X) + \chi(R^2 f_*(m + m_0 \mu) K_X)$$
$$= \chi(f_*(m K_X) + \chi(R^2 f_*(m K_X) + d\mu \chi(\mathcal{O}_F))$$
$$= \chi(m K_X) + d\mu \chi(\mathcal{O}_F).$$

Hence we have

$$\delta := \frac{d}{m_0} = \frac{1}{12} \sum \frac{r_i^2 - 1}{r_i} - 2\chi(\mathcal{O}_X).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Threefolds with $\kappa = 1$

F: Enriques surface. $\chi(\mathcal{O}_F) = 1$, $\chi(\mathcal{O}_X) = 1$.

$$\delta \geq \{ c | c = \frac{1}{12} \sum \frac{r_i^2 - 1}{r_i} - 2 \}.$$

F: K3 surface. $\chi(\mathcal{O}_F) = 2, \ \chi(\mathcal{O}_X) = 0, 1, 2.$

$$\delta \geq \{ c | c = \frac{1}{24} \sum \frac{r_i^2 - 1}{r_i} - 2 \}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\delta \geq 1/120960.$

[Chen-Hacon '07] If general fiber is K3 surface or Enriques surafce, then r(X) = 362880 and d(X) = 120960.

Question 2. Is there threefolds with $\kappa = 1$ and r(X) = 362880? The singularities has index 2, 3, 4, 7, 9, 16

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Geography of Threefols of General Type

Question 3. What is the distribution of birational invariants? Are there any non-trivial relation among them?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Asymptotic Riemann-Roch formula:

$$P_m(X) = \frac{c}{n!}m^n + 1.o.t$$

Vol(X) := c.

Asymptotic Riemann-Roch formula:

$$P_m(X) = \frac{c}{n!}m^n + l.o.t$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Vol(X) := c.

If X is minimal, i.e. K_X is nef, then $Vol(X) = K_X^n$.

• dim
$$X = 1$$
, $Vol(X) = deg(K_X) = 2p_g(X) - 2$.

- dim X = 1, $Vol(X) = deg(K_X) = 2p_g(X) 2$.
- dim X = 2. [Bogomolov-Miyaoka-Yau Inequality] $3c_2 - c_1^2 \ge 0$.

$$Vol(X) \leq 9\chi(\mathcal{O}_X) \leq 9p_g + 9.$$

[Noether Inequality] $Vol(X) \ge 2p_g - 4.$

Canonical Volume of Higher Dimensions

Difficulties in higher dimensions

- Minimal models exists but contain singularities in dimension 3 or higher.
- Vol(X) > 0 is an integer if dim X ≤ 2.
 Vol(X) > 0 is a rational number if dim X ≥ 3.
- $\chi(\mathcal{O}_X)$ could be positive or negative in higher dimensions.

X is a Gorenstein minimal 3-fold of general type. Miyaoka-Yau Inequality yields:

$$Vol(X) \le 72\chi(\omega_X)$$
 (1)

[Meng Chen-Hacon] Suppose furthermore that $p_g(X) > 0$, then

$$Vol(X) \le 144 p_g(X). \tag{2}$$

If X is non-Gorenstein, by Reid,

$$Vol(X) \le 72\chi(\omega_X) + 3\sum_{i=1}^{s} (r_i - \frac{1}{r_i}),$$
 (3)

where *i* runs through Reid's basket $B(X) = \{\frac{1}{r_i}(1, -1, b_i) | i = 1, \cdots, s\}.$

What is the three dimensional analogue of Noether Inequality?

(ロ)、(型)、(E)、(E)、 E) の(の)

What is the three dimensional analogue of Noether Inequality?

$$Vol(X) \ge 2p_g(X) - 6. \tag{4}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

What is the three dimensional analogue of Noether Inequality?

$$Vol(X) \ge 2p_g(X) - 6. \tag{4}$$

Kobayashi constructed examples of threefolds with $p_g(X) = 3k + 4$ and Vol(X) = 4k + 2 for $k \ge 1$. Hence the inequality $Vol(X) \ge 2p_g(X) - 6$ fails in dimension 3.

What is the three dimensional analogue of Noether Inequality?

$$Vol(X) \ge 2p_g(X) - 6. \tag{4}$$

Kobayashi constructed examples of threefolds with $p_g(X) = 3k + 4$ and Vol(X) = 4k + 2 for $k \ge 1$. Hence the inequality $Vol(X) \ge 2p_g(X) - 6$ fails in dimension 3. One can only expect that $Vol(X) \ge \frac{4}{3}p_g(X) - \frac{10}{3}$.

Theorem (-, Meng Chen)

The inequality

$$Vol(X) \geq rac{4}{3}p_g(X) - rac{10}{3}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

holds for all projective Gorenstein minimal 3-folds X of general type.

Theorem (-, Meng Chen)

The inequality

$$Vol(X) \geq rac{4}{3}p_g(X) - rac{10}{3}$$

holds for all projective Gorenstein minimal 3-folds X of general type.

We can almost prove the same inequality for minimal 3-folds. The remaining difficulty is when $|K_X|$ induced a fibration to \mathbb{P}^1 fibered by surfaces of (1,2)-type.

[Corti] Any two birational MFS of dimension three can be connected by a finite sequence of Sarkisov links. It is measured by Sarkisov degree (c, e, μ) , where c is the canonical threshold, c is the number of crepant divisors, $\mu > 0 \in \frac{1}{2}\mathbb{Z} + \frac{1}{3}\mathbb{Z}$.

(日) (同) (三) (三) (三) (○) (○)

[Corti] Any two birational MFS of dimension three can be connected by a finite sequence of Sarkisov links. It is measured by Sarkisov degree (c, e, μ) , where c is the canonical threshold, c is the number of crepant divisors, $\mu > 0 \in \frac{1}{2}\mathbb{Z} + \frac{1}{3}\mathbb{Z}$. **Question 4.** Can we have an effective Sarkisov program in

(日) (同) (三) (三) (三) (○) (○)

dimension three?

Questions

It is natural to consider linear system (or pairs) explicitly in various settings:

- (X, H) in Sarkisov program. Study canonical threshold of (X, H).
- κ(X) = 3 with Vol = 1/1680, H the system obtained from φ₁₄. We need to study the pair (X, H). Where the minimal model of H is a surface of general type of type (1, 2).
- $\kappa(X) = 1$ with F general fiber of litaka fibration. We consider (X, F).

Terminal Singularities in Dimension Three

 $P \in X$ is terminal, then exists a canonical cover

$$(ilde{P}\in ilde{X})
ightarrow (P\in X)$$

so that

$$(P \in X) \cong (\tilde{P} \in \tilde{X})/\mu_r$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

for some cyclic group μ_r of order r.

Terminal Singularities in Dimension Three

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\begin{aligned} r &= 1, \\ P \in X \text{ is an isolated cDV point and Gorenstein.} \\ \bullet & cA: (xy + z^{n+1} + ug(x, y, z, u) = 0) \in \mathbb{C}^4. \\ \bullet & cD: (x^2 + y^2 z + z^{n-1} + ug(x, y, z, u) = 0) \in \mathbb{C}^4. \\ \bullet & cE_6: (x^2 + y^3 + z^4 + ug(x, y, z, u) = 0) \in \mathbb{C}^4. \\ \bullet & cE_7: (x^2 + y^3 + yz^3 + ug(x, y, z, u) = 0) \in \mathbb{C}^4. \\ \bullet & cE_8: (x^2 + y^3 + z^5 + ug(x, y, z, u) = 0) \in \mathbb{C}^4. \end{aligned}$$

Terminal Singularities in Dimension Three

$$r > 1, P ∈ X is a quotient of a smooth or an isolated cDV point. C3/1/r(a, r − a, 1) ≅ C3/1/r(1, −1, b), (r, a) = (r, b) = 1. cA/r: (xy + f(z, u) = 0) ∈ C4/1/r(a, r − a, 1, r). cAx/2: (x2 + y2 + f(z, u) = 0) ∈ C4/1/2(1, 0, 1, 0). cAx/4: (x2 + y2 + f(z, u) = 0) ∈ C4/1/4(1, 3, 1, 2). cD/2: P ∈ X is given by (φ = 0) ⊂ C4/1/2(1, 1, 0, 1) with φ being one the following:$$

$$\begin{cases} x^{2} + yzu + y^{2a} + u^{2b} + z^{c}, & a \ge b \ge 2, c \ge 3\\ x^{2} + y^{2}z + \lambda yu^{2l+1} + f(z, u^{2}). \end{cases}$$

O cD/3: P ∈ X is given as (φ = 0) ⊂ C⁴/¹/₃(0, 2, 1, 1) with φ being one of the following:

$$\begin{cases} x^{2} + y^{3} + zu(z + u); \\ x^{2} + y^{3} + zu^{2} + yg(z, u) + h(z, u); & g \in \mathfrak{m}^{4}, h \in \mathfrak{m}^{6}; \\ x^{2} + y^{3} + z^{3} + yg(z, u) + h(z, u); & g \in \mathfrak{m}^{4}, h \in \mathfrak{m}^{6}. \end{cases}$$

$$cE/2: (x^{2} + y^{3} + yg(z, u) + h(z, u) = 0) \in \mathbb{C}^{4}_{c}/\frac{1}{2}(1, 0, 1, 1).$$

Explicit Resolution of Singularities

Theorem

Let X be an algebraic 3-fold with at worst terminal singularities. For any terminal singularity $P \in X$, there exists a sequence of birational morphisms:

$$au_P: Y = X_m \to X_{m-1} \to \ldots \to X_1 \to X_0 = X,$$

such that Y is smooth on $\tau_P^{-1}(P)$ and, for all *i*, the morphism $\pi_i : X_{i+1} \to X_i$ is a divisorial contraction to a singular point $P_i \in X_i$ of index $r_i \ge 1$ with discrepancy $1/r_i$.

Explicit Elimination of Indeterminacies

Suppose that |M| is a moving linear system (i.e. without fixed part) on the given projective terminal 3-fold X with $Bs|M| \neq \emptyset$.

- (i) If there is a point P ∈ Bs|M| ∩ Sing(X), we take a partial resolution Z₁ → X ∋ P and consider the linear system |M₁|, where M₁ is the proper transform of M on Z₁.
- (ii) Inductively, we will end up with a chain of partial resolutions $Z_n \rightarrow \ldots \rightarrow Z_1 \rightarrow X$ so that $|M_n|$ is free out of singularities of Z_n .
- (iii) If $|M_n|$ is base point free on Z_n , then we stop.
- (iv) If $|M_n|$ has base points, then $Bs|M_n|$ consists of smooth points of Z_n . Usual resolution of indeterminancies over $Bs|M_n|$: $Z_k \rightarrow \ldots \rightarrow Z_n$, which is a sequence of blow-ups.
- (v) Thus we end up with a 3-fold Z_k so that $|M_k|$ is base point free.

$$\mu\colon Z_k \xrightarrow{\tau_k} \dots \xrightarrow{\tau_{n+1}} Z_n \xrightarrow{\tau_n} \dots \xrightarrow{\tau_1} X$$
(5)

a explicit elimination of indeterminancies of |M|.

Explicit Elimination of Indeterminacies

Corollary

Let X and X' be birational threefolds with at worst terminal singularities and X'. There exists Z and birational morphisms $p: Z \to X, q: Z \to X'$ such that

$$q: Z \to X'$$

is a explicit elimination of indeterminancies of $|\mathcal{H}_X|$, where \mathcal{H}_X is very ample on X.

Explicit Elimination of Indeterminacies

Corollary

Let |M| be a moving linear system on a terminal 3-fold X and $D \in |M|$ be a general member. Let $\mu : Z_k \to X$ be the explicit elimination of indeterminancies. Then $2D_{Z_k/X} \ge K_{Z_k/X}$.

Sketch of the Proof of Noether Inequility

Let X be a projective Gorenstein minimal 3-fold of general type. Set $d := \dim \varphi_1(X)$.

The following inequalities are already known:

• If $d \neq 2$, then

$$K_X^3 \ge \min\{2p_g(X) - 6, \ \frac{7}{5}p_g(X) - 2\}$$

by [Meng Chen] and [Catanese–Chen–Zhang].

- If d = 2 and X is canonically fibred by curves C of genus $g(C) \ge 3$, then $K_X^3 \ge 2p_g(X) 4$ by [Meng Chen].
- It remains to consider that X is fibred by curve C of genus 2.

Write $|K_X| = |M| + F$, where |M| is the moving part and F is the fixed part. Let

$$\mu: X' = Z_k \to \ldots \to Z_1 \to X$$

be the Gorenstein resolution of indeterminacies. Let D be a general member of |M| and $S := D_{X'}$.

$$\mu^* K_X = \mu^* M + \mu^* F = S + D_{X'/X} + \mu^* F.$$

Set $E' := D_{X'/X} + \mu^* F$. On the surface *S*, set $L := \mu^*(K_X)|_S$. We also have $S|_S \equiv aC$ where $a \ge p_g(X) - 2$ and *C* is a general fiber.

$$(\mu^* K_X^2 \cdot S) \ge (\mu^* K_X \cdot S) \ge a(L \cdot C) \ge (L \cdot C)(p_g(X) - 2).$$

If $(L \cdot C) \geq 2$, then we have already

$$K_X^3 \ge (\mu^* K_X^2 \cdot S) \ge 2p_g(X) - 4.$$

It remains to consider the case $(L \cdot C) = 1$. Denote $E'|_S := E'_V + E'_H$, where E'_V is the vertical part and E'_H is the horizontal part. Since $(E'_H \cdot C) = (L \cdot C) = 1$, E'_H is an irreducible curve.

Denote $K_{X'/X}|_S := E_V + E_H$ similarly.

It remains to consider the case $(L \cdot C) = 1$. Denote $E'|_S := E'_V + E'_H$, where E'_V is the vertical part and E'_H is the horizontal part. Since $(E'_H \cdot C) = (L \cdot C) = 1$, E'_H is an irreducible curve.

Denote $K_{X'/X}|_S := E_V + E_H$ similarly.

By Key Lemma, $E'_H = E_H$ and $2E'_V \ge E_V$.

Let $G := E_H = E'_H$.

$$\begin{array}{rcl} (2\mu^{*}K_{X}|_{S}+E_{V}')\cdot G\\ =& (\mu^{*}K_{X}|_{S}+S|_{S}+2E_{V}'+E_{H}')\cdot G\\ \geq& (\mu^{*}K_{X}|_{S}+S|_{S}+E_{V}+E_{H})\cdot G\\ =& (K_{S}\cdot G)\geq -2-G^{2} \end{array}$$

We also have

$$\begin{aligned} (\mu^* \mathcal{K}_X|_S - \mathcal{E}'_V) \cdot \mathcal{G} &= (S|_S \cdot \mathcal{G}) + (\mathcal{E}'_H \cdot \mathcal{G}) \\ &= \mathfrak{a}(\mathcal{C} \cdot \mathcal{G}) + \mathcal{G}^2 \\ &\geq p_g(X) - 2 + \mathcal{G}^2. \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Combining these, we get $3(\mu^*(K_X)|_S \cdot G) \ge p_g(X) - 4$.

Let $G := E_H = E'_H$.

$$\begin{array}{rcl} (2\mu^{*}K_{X}|_{S}+E_{V}')\cdot G\\ =& (\mu^{*}K_{X}|_{S}+S|_{S}+2E_{V}'+E_{H}')\cdot G\\ \geq& (\mu^{*}K_{X}|_{S}+S|_{S}+E_{V}+E_{H})\cdot G\\ =& (K_{S}\cdot G)\geq -2-G^{2} \end{array}$$

We also have

$$\begin{aligned} (\mu^* K_X|_S - E'_V) \cdot G &= (S|_S \cdot G) + (E'_H \cdot G) \\ &= a(C \cdot G) + G^2 \\ &\geq p_g(X) - 2 + G^2. \end{aligned}$$

Combining these, we get $3(\mu^*(K_X)|_S \cdot G) \ge p_g(X) - 4$.

$$\begin{split} \mathcal{K}_X^3 &= \mu^*(\mathcal{K}_X)^3 \geq (\mu^*(\mathcal{K}_X)^2 \cdot \mathcal{S}) \\ &= (\mu^*(\mathcal{K}_X)|_{\mathcal{S}} \cdot \mathcal{S}|_{\mathcal{S}}) + (\mu^*(\mathcal{K}_X)|_{\mathcal{S}} \cdot \mathcal{E}'|_{\mathcal{S}}) \\ &\geq (p_g(X)-2) + \frac{1}{3}(p_g(X)-4) = \frac{2}{3}(2p_g(X)-5). \end{split}$$

Canonical threshold and Sarkisov degree

Suppose that $P \in D \subset X$ is a singular point, we can define weighted multiplicity as following: Let $\pi : Y \to X$ be a divisorial contraction to P. We can write $K_Y = \pi^* K_X + \frac{a}{r} E$ and $D_Y = \pi^* D - \frac{b}{r} E$.

$$wm_P(X,D) := \max\{\frac{b}{a}|\pi: Y \to X \ni P\}.$$

If *P* is of type cA, CA/r, cAx/2, cAx/4, cE/r, then $1/wm_p(X, D)$ is the canonical threshold (over *P*), and all divisorial contractions are weighted blowups. What *P* is of type cD/r?

(日) (同) (三) (三) (三) (○) (○)

Thank you for your attention!