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Birational Geometry

@ Birational Classification:
Try to classify varieties up to birational equivalence.

@ Minimal Model Program:
Try to find good model inside a birational equivalence class.

Goal: study birational classification theory of threefolds explicitly
by using MMP.

X: complex projective varieties with at worst (Q-factorial terminal
singularities. n = dim(X), mostly, n = 3.
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litaka Fibration

If K(X) > 0, then for m > 0 and divisible

Om: X = Ynm

is stable birationally. We call it the litaka fibration. Let F be the
general fiber. Then x(F) = 0.

Three building blocks:
@ varieties with kK = —o0;
@ varieties with k = 0;

@ varieties with kK = dim, which are varieties of general type



Litaka fibration

There exist d(X) and r(X) such that
©m is stabilized (birationally) for m > r(X) and divisible by d(X).

Question. Does there exist d(n) and r(n) such that
©m is stabilized (birationally) for m > r(n) and divisible by d(n)
for any variety X of dimension n?



Litaka fibration

[Hacon-M<Kernan '06, Takayama, Tsuji|

k(X) = dim X, then r(n) exist (and d(n) = 1).
[Fujino-Mori '00]

k(X) =1, then r(n) and d(n) exist.
[Viehweg-Zhang '07]

k(X) = 2, then r(n) and d(n) exist.



Iitaka fibration

Do we have explicit bound for threefolds?



Litaka fibration

[Kawamata, Morrison '86]

dimX =3, k(X) =0

Then r(X) <25.3%3.52.7.11.13-17-19
= lem{m|¢(m) < 20}.

[Ringler 07", D.Q. Zhang-Viehweg]
dimX =3, k(X) =2
Then r(x) < 48 and d(X) = 12.

[Chen-Chen]=[Jungkai Chen & Meng Chen]
dimX =3, k(X) =3
Then r(X) < 61.



Litaka fibration

[Kawamata, Morrison '86]

dimX =3, k(X) =0

Then r(X) <25.3%3.52.7.11.13-17-19
= lem{m|¢(m) < 20}.

[Ringler 07", D.Q. Zhang-Viehweg]
dimX =3, k(X) =2
Then r(x) < 48 and d(X) = 12.

[Chen-Chen]=[Jungkai Chen & Meng Chen]
dimX =3, k(X) =3
Then r(X) < 61.

Question 1. For threefolds of general type, what is r(3)?
It is well-known that r(3) > 27.



Litaka fibration

Threefolds with x = 1 [Fujino-Mori '00]

dimX =3, 5(X) = 1

Then exists computable r(X) and d(X).

If general fiber is abelian surface or bielliptic surafce, then
r(X) < n such that

i — bi
_2Nn+Zanm' | >0

for all b; < min{m;, N 4+ 1} with —2N + 3~ == b > 0 and
N = 2520.

If general fiber is K3 surface or Enriques, then one needs to
compute the bound with N = lem{m|¢p(m) < 22}.



Threefolds with k =1

1 —r?-1
x(m + mopKx) = x(mKx) = —2moux(Ox) + mop 5 > i

On the other hand, if g(F) = 0 then
X(m + mouKx) = x(f(m + mop) Kx) + x(R*f.(m + mou)Kx)

= x(f.(mKx) + x(R*f.(mKx) + dux(OF)
= x(mKx) + dux(OF).
Hence we have

d 1 r2—1
§=— =3 T = _2(0x).
mo 12 ri X( X)




Threefolds with k =1

F: Enriques surface. x(Of) =1, x(Ox) = 1.

1 —rf—1
> = i _ 21
0 >{clc 122 - 2}

fi
F: K3 surface. x(Of) =2, x(Ox) =0,1,2.

2

1 r:
> = — !
0 >{cle 242

-1
— 21},
ri }

§ > 1/120960.



Threefolds with k =1

[Chen-Hacon '07] If general fiber is K3 surface or Enriques surafce,
then r(X) = 362880 and d(X) = 120960.

Question 2. Is there threefolds with k = 1 and r(X) = 3628307
The singularities has index 2,3,4,7,9,16



Geography of Threefols of General Type

Question 3. What is the distribution of birational invariants?
Are there any non-trivial relation among them?
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Canonical Volume

Asymptotic Riemann-Roch formula:

Pm(X) = %m” tlot

Vol(X) := c.

If X is minimal, i.e. Kx is nef, then VoI(X) = K.



Canonical Volume

o dimX =1, Vol(X) = deg(Kx) = 2pg(X) — 2.



Canonical Volume

o dimX =1, Vol(X) = deg(Kx) = 2pg(X) — 2.
e dim X = 2. [Bogomolov-Miyaoka-Yau Inequality]

3¢ — 612 > 0.
Vol(X) < 9x(Ox) < 9pg +9.

[Noether Inequality]
Vol(X) > 2pg — 4.



Canonical Volume of Higher Dimensions

Difficulties in higher dimensions
@ Minimal models exists but contain singularities in dimension 3
or higher.

e Vol(X) > 0is an integer if dim X < 2.
Vol(X) > 0 is a rational number if dim X > 3.

@ x(Ox) could be positive or negative in higher dimensions.



Canonical Volume

X is a Gorenstein minimal 3-fold of general type. Miyaoka-Yau
Inequality yields:

Vol(X) < 72x(wx) (1)
[Meng Chen-Hacon] Suppose furthermore that pg(X) > 0, then

Vol(X) < 144p,(X). (2)
If X is non-Gorenstein, by Reid,

Vol(X) < 72x(wx) +3 3 (= ), (3)

r,
i=1 !

where / runs through Reid’s basket
B(X) = {%(17 -1, bl)|’ =1, 75}'
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Noether Inequality

What is the three dimensional analogue of Noether Inequality?

Vol(X) > 2pg(X) — 6. (4)

Kobayashi constructed examples of threefolds with pg(X) = 3k +4
and VoI(X) = 4k + 2 for k > 1.
Hence the inequality Vo/(X) > 2pg(X) — 6 fails in dimension 3.

One can only expect that Vol(X) > %3pg(X) — %.



Noether Inequality

Theorem (-, Meng Chen)

The inequality
Vol(X) > 2 p(x) - 20
= 3Pg 3
holds for all projective Gorenstein minimal 3-folds X of general

type.



Noether Inequality

Theorem (-, Meng Chen)

The inequality

4 1
VoI(X) > 3pg(X) —

holds for all projective Gorenstein minimal 3-folds X of general
type.

We can almost prove the same inequality for minimal 3-folds. The
remaining difficulty is when |Kx| induced a fibration to P! fibered
by surfaces of (1,2)-type.



Mori Fiber Spaces and Sarkisov Program

[Corti] Any two birational MFS of dimension three can be
connected by a finite sequence of Sarkisov links.

It is measured by Sarkisov degree (c, e, i), where ¢ is the canonical
threshold, c is the number of crepant divisors, > 0 € %Z + %Z.



Mori Fiber Spaces and Sarkisov Program

[Corti] Any two birational MFS of dimension three can be
connected by a finite sequence of Sarkisov links.

It is measured by Sarkisov degree (c, e, it), where c is the canonical
threshold, c is the number of crepant divisors, > 0 € %Z + %Z.
Question 4. Can we have an effective Sarkisov program in

dimension three?



Questions

It is natural to consider linear system (or pairs) explicitly in various
settings:

e (X,H) in Sarkisov program. Study canonical threshold of
(X, H).

e k(X) =3 with Vol =1/1680, H the system obtained from
©14. We need to study the pair (X, #H). Where the minimal
model of H is a surface of general type of type (1,2).

e x(X) =1 with F general fiber of litaka fibration. We consider
(X, F).



Terminal Singularities in Dimension Three

P € X is terminal, then exists a canonical cover
(PeX)— (PeX)

so that 5 y
(PeX)x(PeX)/u

for some cyclic group p, of order r.



Terminal Singularities in Dimension Three

r=1,

P € X is an isolated cDV point and Gorenstein.
O cA (xy+z"1 +ug(x,y,z,u) =0) € C*.
Q@ cD: (x*+y?z+ 2"t +ug(x,y,z,u) =0) € C*.
Q cEs: (X°+y3+ 2%+ ug(x,y,z,u) =0) € C
Q cEr: (XP+y3 +yz23 +ug(x,y,z,u) =0) € C*
Q cEs: (xX®+y3+ 2%+ ug(x,y,z,u) =0) € C~



Terminal Singularities in Dimension Three

r>1,
P € X is a quotient of a smooth or an isolated cDV point.

©

2]
o
o
o

C?’/%(aa r—a, 1) = C3/%(1a *]w b)' (I’, a) = (I’, b) =

cAlr: (xy + f(z,u) =0) € C*/L(a,r — a,1,r).

cAx/2: (XX +y? +f(z,u)=0) € (C“/%(l 0,1,0).

cAx/4: (x* +y? + f(z,u) = 0) € C*/1(1,3,1,2).

cD/2: P € X is given by (¢ = 0) C C*/3(1,1,0,1) with ¢
being one the following:

x? + yzu + y?@ + u?b + 2, a>b>2,c>3
cD/3: P € X is given as (¢ = 0) C C*/1(0,2,1,1) with ¢
being one of the following:

x? +y3+ zu(z + u);
x?+y3+ zu® + yg(z,u) + h(z,u); gem* hemb
2 +y3+ 28 +yg(z,u) + h(z,u); gecm* hecmd.

cE/2: (x* +y® + yg(z,u) + h(z,u) = 0) € C*/1(1,0,1,1).



Explicit Resolution of Singularities

Theorem

Let X be an algebraic 3-fold with at worst terminal singularities.
For any terminal singularity P € X, there exists a sequence of
birational morphisms:

TPZY:Xm—>Xm_1—>...—>X1—>X0:X,

such that Y is smooth on 7',§1(P) and, for all i, the morphism
wi: Xiy1 — X; is a divisorial contraction to a singular point
P; € X; of index rj > 1 with discrepancy 1/r;.



Ezxplicit Elimination of Indeterminacies

Suppose that |M| is a moving linear system (i.e. without fixed
part) on the given projective terminal 3-fold X with Bs|M| # 0.

(i) If there is a point P € Bs|M| N Sing(X), we take a partial
resolution Z; — X © P and consider the linear system |M;],
where M is the proper transform of M on Z;.

(ii) Inductively, we will end up with a chain of partial resolutions
Z, — ... — Z1 — X so that |M,| is free out of singularities
of Z,.

(iii) If |[Mp,| is base point free on Z,, then we stop.

(iv) If [M,| has base points, then Bs|M,| consists of smooth
points of Z,. Usual resolution of indeterminancies over
Bs|M,|: Zx — ... — Z,, which is a sequence of blow-ups.

(v) Thus we end up with a 3-fold Zj so that |Mj]| is base point
free.

ez 2 Mz oy X (5)

a explicit elimination of indeterminancies of |M|.



Ezxplicit Elimination of Indeterminacies

Corollary

Let X and X' be birational threefolds with at worst terminal
singularities and X'. There exists Z and birational morphisms
p:Z—X,q:Z— X' such that

qg:Z— X

is a explicit elimination of indeterminancies of |H x
very ample on X.

, where Hx is



Ezxplicit Elimination of Indeterminacies

Corollary

Let |[M| be a moving linear system on a terminal 3-fold X and
D € |M| be a general member. Let 11 : Zx — X be the explicit
elimination of indeterminancies. Then 2Dz, /x > Kz, /x.



Sketch of the Proof of Noether Inequlity

Let X be a projective Gorenstein minimal 3-fold of general type.
Set d := dim ¢1(X).
The following inequalities are already known:

o If d #£ 2, then

. 7
Kx = min{2pg(X) = 6, £pg(X) —2}

by [Meng Chen] and [Catanese—Chen—Zhang].

o If d =2 and X is canonically fibred by curves C of genus
g(C) > 3, then K3 > 2p,(X) — 4 by [Meng Chen].

@ It remains to consider that X is fibred by curve C of genus 2.



Write |Kx| = |[M| + F, where |M| is the moving part and F is the
fixed part. Let

wX=z— ...+ X

be the Gorenstein resolution of indeterminacies. Let D be a
general member of [M| and S := Dx-.

W Kx =p*M+ p*F =S+ Dxiyx + p*F.
Set E, = DX’/X —I—IM*F

On the surface S, set L := u*(Kx)|s. We also have S|s = aC
where a > pg(X) — 2 and C is a general fiber.

(WK% - S) = (0" Kx s §) = a(L- C) = (L~ C)(pg(X) - 2).
If (L- C) > 2, then we have already

K3 > (K% - S) = 2p5(X) — 4.



It remains to consider the case (L- C) = 1.

Denote E'|s := E|, + E};, where E{, is the vertical part and Ej, is
the horizontal part. Since (Ef,- C) = (L-C) =1, E, is an
irreducible curve.

Denote Kx//x|s := Ev + Ep similarly.



It remains to consider the case (L- C) = 1.

Denote E'|s := E|, + E};, where E{, is the vertical part and Ej, is
the horizontal part. Since (Ef,- C) = (L-C) =1, E, is an
irreducible curve.

Denote Kx//x|s := Ev + Ep similarly.

By Key Lemma, E;, = Ey and 2E{, > Ey.



Let G := Ey = EJ,.

(2u*Kx|s + Ey) - G

(W*Kx|s+ S|s +2E, + E[)- G
(w*Kx|s + Sls + Ev + En) - G
(Ks-G) > —2— G?

vl

We also have

(h"Kxls —Ey)- G =(S|s- G)+(E}y- G)
— 2(C- G) + G2
> pe(X) -2+ G2

Combining these, we get 3(u*(Kx)|s - G) > pg(X) — 4.



Let G := Ey = EJ,.

(2u*Kx|s + Ey) - G

(W*Kx|s+ S|s +2E, + E[)- G
(w*Kx|s + Sls + Ev + En) - G
(Ks-G) > —2— G?

vl

We also have
(1*Kx|s — Ey)- G =(S|s- G)+(E - G)

— 2(C- G) + G2
> pe(X) -2+ G2

Combining these, we get 3(u*(Kx)|s - G) > pg(X) — 4.

Ky =" (Kx)* > (u*(Kx)?- S)
(" (Kx)ls - Sls) + (n*(Kx)s - E']s)
( ) — 4) = 3(2pg(X) — 5).

|
o



Canonical threshold and Sarkisov degree

Suppose that P € D C X is a singular point, we can define
weighted multiplicity as following: Let 7 : Y — X be a divisorial
contraction to P. We can write Ky = 7*Kx + 7 E and

Dy =D — 2E.

b
wmp(X, D) := max{ghr 'Y - X3 P}

If P is of type cA, CA/r,cAx/2,cAx/4,cE/r, then 1/wmy(X, D)
is the canonical threshold (over P), and all divisorial contractions
are weighted blowups.

What P is of type cD/r?



Thank you for your attention!



