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Birational Geometry

1 Birational Classification:
Try to classify varieties up to birational equivalence.

2 Minimal Model Program:
Try to find good model inside a birational equivalence class.

Goal: study birational classification theory of threefolds explicitly
by using MMP.
X : complex projective varieties with at worst Q-factorial terminal
singularities. n = dim(X ), mostly, n = 3.
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Iitaka Fibration

If κ(X ) ≥ 0, then for m� 0 and divisible

ϕm : X → Ym

is stable birationally.

We call it the Iitaka fibration. Let F be the

general fiber. Then κ(F ) = 0.

Three building blocks:

varieties with κ = −∞;

varieties with κ = 0;

varieties with κ = dim, which are varieties of general type
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Iitaka fibration

There exist d(X ) and r(X ) such that
ϕm is stabilized (birationally) for m ≥ r(X ) and divisible by d(X ).

Question. Does there exist d(n) and r(n) such that
ϕm is stabilized (birationally) for m ≥ r(n) and divisible by d(n)
for any variety X of dimension n?



Iitaka fibration

[Hacon-McKernan ’06, Takayama, Tsuji]
κ(X ) = dimX , then r(n) exist (and d(n) = 1).
[Fujino-Mori ’00]
κ(X ) = 1, then r(n) and d(n) exist.
[Viehweg-Zhang ’07]
κ(X ) = 2, then r(n) and d(n) exist.



Iitaka fibration

Do we have explicit bound for threefolds?



Iitaka fibration

[Kawamata, Morrison ’86]
dimX = 3, κ(X ) = 0
Then r(X ) ≤ 25 · 33 · 52 · 7 · 11 · 13 · 17 · 19
= lcm{m|φ(m) ≤ 20}.

[Ringler 07’, D.Q. Zhang-Viehweg]
dimX = 3, κ(X ) = 2
Then r(x) ≤ 48 and d(X ) = 12.

[Chen-Chen]=[Jungkai Chen & Meng Chen]
dimX = 3, κ(X ) = 3
Then r(X ) ≤ 61.

Question 1. For threefolds of general type, what is r(3)?
It is well-known that r(3) ≥ 27.



Iitaka fibration

[Kawamata, Morrison ’86]
dimX = 3, κ(X ) = 0
Then r(X ) ≤ 25 · 33 · 52 · 7 · 11 · 13 · 17 · 19
= lcm{m|φ(m) ≤ 20}.

[Ringler 07’, D.Q. Zhang-Viehweg]
dimX = 3, κ(X ) = 2
Then r(x) ≤ 48 and d(X ) = 12.

[Chen-Chen]=[Jungkai Chen & Meng Chen]
dimX = 3, κ(X ) = 3
Then r(X ) ≤ 61.

Question 1. For threefolds of general type, what is r(3)?
It is well-known that r(3) ≥ 27.



Iitaka fibration

Threefolds with κ = 1 [Fujino-Mori ’00]
dimX = 3, κ(X ) = 1
Then exists computable r(X ) and d(X ).
If general fiber is abelian surface or bielliptic surafce, then
r(X ) ≤ n such that

−2Nn +
∑
bnmi − bi

mi
c > 0

for all bi < min{mi ,N + 1} with −2N +
∑ mi−bi

mi
> 0 and

N = 2520.
If general fiber is K3 surface or Enriques, then one needs to
compute the bound with N = lcm{m|φ(m) ≤ 22}.



Threefolds with κ = 1

χ(m + m0µKX )− χ(mKX ) = −2m0µχ(OX ) + m0µ
1

12

∑ r2i − 1

ri
.

On the other hand, if q(F ) = 0 then

χ(m + m0µKX ) = χ(f∗(m + m0µ)KX ) + χ(R2f∗(m + m0µ)KX )

= χ(f∗(mKX ) + χ(R2f∗(mKX ) + dµχ(OF )

= χ(mKX ) + dµχ(OF ).

Hence we have

δ :=
d

m0
=

1

12

∑ r2i − 1

ri
− 2χ(OX ).



Threefolds with κ = 1

F : Enriques surface. χ(OF ) = 1, χ(OX ) = 1.

δ ≥ {c|c =
1

12

∑ r2i − 1

ri
− 2}.

F : K3 surface. χ(OF ) = 2, χ(OX ) = 0, 1, 2.

δ ≥ {c |c =
1

24

∑ r2i − 1

ri
− 2}.

δ ≥ 1/120960.



Threefolds with κ = 1

[Chen-Hacon ’07] If general fiber is K3 surface or Enriques surafce,
then r(X ) = 362880 and d(X ) = 120960.

Question 2. Is there threefolds with κ = 1 and r(X ) = 362880?
The singularities has index 2, 3, 4, 7, 9, 16



Geography of Threefols of General Type

Question 3. What is the distribution of birational invariants?
Are there any non-trivial relation among them?



Canonical Volume

Asymptotic Riemann-Roch formula:

Pm(X ) =
c

n!
mn + l .o.t

Vol(X ) := c .

If X is minimal, i.e. KX is nef, then Vol(X ) = Kn
X .
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Canonical Volume

dimX = 1, Vol(X ) = deg(KX ) = 2pg (X )− 2.

dimX = 2. [Bogomolov-Miyaoka-Yau Inequality]
3c2 − c21 ≥ 0.

Vol(X ) ≤ 9χ(OX ) ≤ 9pg + 9.

[Noether Inequality]
Vol(X ) ≥ 2pg − 4.
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Canonical Volume of Higher Dimensions

Difficulties in higher dimensions

Minimal models exists but contain singularities in dimension 3
or higher.

Vol(X ) > 0 is an integer if dimX ≤ 2.
Vol(X ) > 0 is a rational number if dimX ≥ 3.

χ(OX ) could be positive or negative in higher dimensions.



Canonical Volume

X is a Gorenstein minimal 3-fold of general type. Miyaoka-Yau
Inequality yields:

Vol(X ) ≤ 72χ(ωX ) (1)

[Meng Chen-Hacon] Suppose furthermore that pg (X ) > 0, then

Vol(X ) ≤ 144pg (X ). (2)

If X is non-Gorenstein, by Reid,

Vol(X ) ≤ 72χ(ωX ) + 3
s∑

i=1

(ri −
1

ri
), (3)

where i runs through Reid’s basket
B(X ) = { 1ri (1,−1, bi )|i = 1, · · · , s}.



Noether Inequality

What is the three dimensional analogue of Noether Inequality?

Vol(X ) ≥ 2pg (X )− 6. (4)

Kobayashi constructed examples of threefolds with pg (X ) = 3k + 4
and Vol(X ) = 4k + 2 for k ≥ 1.
Hence the inequality Vol(X ) ≥ 2pg (X )− 6 fails in dimension 3.
One can only expect that Vol(X ) ≥ 4

3pg (X )− 10
3 .
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Noether Inequality

Theorem (-, Meng Chen)

The inequality

Vol(X ) ≥ 4

3
pg (X )− 10

3

holds for all projective Gorenstein minimal 3-folds X of general
type.

We can almost prove the same inequality for minimal 3-folds. The
remaining difficulty is when |KX | induced a fibration to P1 fibered
by surfaces of (1, 2)-type.
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Mori Fiber Spaces and Sarkisov Program

[Corti] Any two birational MFS of dimension three can be
connected by a finite sequence of Sarkisov links.
It is measured by Sarkisov degree (c , e, µ), where c is the canonical
threshold, c is the number of crepant divisors, µ > 0 ∈ 1

2Z + 1
3Z.

Question 4. Can we have an effective Sarkisov program in

dimension three?
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Questions

It is natural to consider linear system (or pairs) explicitly in various
settings:

(X ,H) in Sarkisov program. Study canonical threshold of
(X ,H).

κ(X ) = 3 with Vol = 1/1680, H the system obtained from
ϕ14. We need to study the pair (X ,H). Where the minimal
model of H is a surface of general type of type (1, 2).

κ(X ) = 1 with F general fiber of Iitaka fibration. We consider
(X ,F ).



Terminal Singularities in Dimension Three

P ∈ X is terminal, then exists a canonical cover

(P̃ ∈ X̃ )→ (P ∈ X )

so that
(P ∈ X ) ∼= (P̃ ∈ X̃ )/µr

for some cyclic group µr of order r .



Terminal Singularities in Dimension Three

r = 1,
P ∈ X is an isolated cDV point and Gorenstein.

1 cA: (xy + zn+1 + ug(x , y , z , u) = 0) ∈ C4.

2 cD: (x2 + y2z + zn−1 + ug(x , y , z , u) = 0) ∈ C4.

3 cE6: (x2 + y3 + z4 + ug(x , y , z , u) = 0) ∈ C4.

4 cE7: (x2 + y3 + yz3 + ug(x , y , z , u) = 0) ∈ C4.

5 cE8: (x2 + y3 + z5 + ug(x , y , z , u) = 0) ∈ C4.



Terminal Singularities in Dimension Three
r > 1,
P ∈ X is a quotient of a smooth or an isolated cDV point.

1 C3/1r (a, r − a, 1) ∼= C3/1r (1,−1, b), (r , a) = (r , b) = 1.
2 cA/r : (xy + f (z , u) = 0) ∈ C4/1r (a, r − a, 1, r).
3 cAx/2: (x2 + y2 + f (z , u) = 0) ∈ C4/12(1, 0, 1, 0).
4 cAx/4: (x2 + y2 + f (z , u) = 0) ∈ C4/14(1, 3, 1, 2).
5 cD/2: P ∈ X is given by (ϕ = 0) ⊂ C4/12(1, 1, 0, 1) with ϕ

being one the following:{
x2 + yzu + y2a + u2b + zc , a ≥ b ≥ 2, c ≥ 3
x2 + y2z + λyu2l+1 + f (z , u2).

6 cD/3: P ∈ X is given as (ϕ = 0) ⊂ C4/13(0, 2, 1, 1) with ϕ
being one of the following:

x2 + y3 + zu(z + u);
x2 + y3 + zu2 + yg(z , u) + h(z , u); g ∈ m4, h ∈ m6;
x2 + y3 + z3 + yg(z , u) + h(z , u); g ∈ m4, h ∈ m6.

7 cE/2: (x2 + y3 + yg(z , u) + h(z , u) = 0) ∈ C4/12(1, 0, 1, 1).



Explicit Resolution of Singularities

Theorem
Let X be an algebraic 3-fold with at worst terminal singularities.
For any terminal singularity P ∈ X, there exists a sequence of
birational morphisms:

τP : Y = Xm → Xm−1 → . . .→ X1 → X0 = X ,

such that Y is smooth on τ−1P (P) and, for all i , the morphism
πi : Xi+1 → Xi is a divisorial contraction to a singular point
Pi ∈ Xi of index ri ≥ 1 with discrepancy 1/ri .



Explicit Elimination of Indeterminacies
Suppose that |M| is a moving linear system (i.e. without fixed
part) on the given projective terminal 3-fold X with Bs|M| 6= ∅.

(i) If there is a point P ∈ Bs|M| ∩ Sing(X ), we take a partial
resolution Z1 → X 3 P and consider the linear system |M1|,
where M1 is the proper transform of M on Z1.

(ii) Inductively, we will end up with a chain of partial resolutions
Zn → . . .→ Z1 → X so that |Mn| is free out of singularities
of Zn.

(iii) If |Mn| is base point free on Zn, then we stop.

(iv) If |Mn| has base points, then Bs|Mn| consists of smooth
points of Zn. Usual resolution of indeterminancies over
Bs|Mn|: Zk → . . .→ Zn, which is a sequence of blow-ups.

(v) Thus we end up with a 3-fold Zk so that |Mk | is base point
free.

µ : Zk
τk−→ . . .

τn+1−→ Zn
τn−→ . . .

τ1−→ X (5)

a explicit elimination of indeterminancies of |M|.



Explicit Elimination of Indeterminacies

Corollary

Let X and X ′ be birational threefolds with at worst terminal
singularities and X ′. There exists Z and birational morphisms
p : Z → X, q : Z → X ′ such that

q : Z → X ′

is a explicit elimination of indeterminancies of |HX |, where HX is
very ample on X .



Explicit Elimination of Indeterminacies

Corollary

Let |M| be a moving linear system on a terminal 3-fold X and
D ∈ |M| be a general member. Let µ : Zk → X be the explicit
elimination of indeterminancies. Then 2DZk/X ≥ KZk/X .



Sketch of the Proof of Noether Inequlity

Let X be a projective Gorenstein minimal 3-fold of general type.
Set d := dimϕ1(X ).
The following inequalities are already known:

If d 6= 2, then

K 3
X ≥ min{2pg (X )− 6,

7

5
pg (X )− 2}

by [Meng Chen] and [Catanese–Chen–Zhang].

If d = 2 and X is canonically fibred by curves C of genus
g(C ) ≥ 3, then K 3

X ≥ 2pg (X )− 4 by [Meng Chen].

It remains to consider that X is fibred by curve C of genus 2.



Write |KX | = |M|+ F , where |M| is the moving part and F is the
fixed part. Let

µ : X ′ = Zk → . . .→ Z1 → X

be the Gorenstein resolution of indeterminacies. Let D be a
general member of |M| and S := DX ′ .

µ∗KX = µ∗M + µ∗F = S + DX ′/X + µ∗F .

Set E ′ := DX ′/X + µ∗F .
On the surface S , set L := µ∗(KX )|S . We also have S |S ≡ aC
where a ≥ pg (X )− 2 and C is a general fiber.

(µ∗K 2
X · S) ≥ (µ∗KX ·S S) ≥ a(L · C ) ≥ (L · C )(pg (X )− 2).

If (L · C ) ≥ 2, then we have already

K 3
X ≥ (µ∗K 2

X · S) ≥ 2pg (X )− 4.



It remains to consider the case (L · C ) = 1.
Denote E ′|S := E ′V + E ′H , where E ′V is the vertical part and E ′H is
the horizontal part. Since (E ′H · C ) = (L · C ) = 1, E ′H is an
irreducible curve.
Denote KX ′/X |S := EV + EH similarly.

By Key Lemma, E ′H = EH and 2E ′V ≥ EV .
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Let G := EH = E ′H .

(2µ∗KX |S + E ′V ) · G
= (µ∗KX |S + S |S + 2E ′V + E ′H) · G
≥ (µ∗KX |S + S |S + EV + EH) · G
= (KS · G ) ≥ −2− G 2

We also have

(µ∗KX |S − E ′V ) · G = (S |S · G ) + (E ′H · G )
= a(C · G ) + G 2

≥ pg (X )− 2 + G 2.

Combining these, we get 3(µ∗(KX )|S · G ) ≥ pg (X )− 4.

K 3
X = µ∗(KX )3 ≥ (µ∗(KX )2 · S)

= (µ∗(KX )|S · S |S) + (µ∗(KX )|S · E ′|S)
≥ (pg (X )− 2) + 1

3(pg (X )− 4) = 2
3(2pg (X )− 5).
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Canonical threshold and Sarkisov degree

Suppose that P ∈ D ⊂ X is a singular point, we can define
weighted multiplicity as following: Let π : Y → X be a divisorial
contraction to P. We can write KY = π∗KX + a

r E and

DY = π∗D − b
r E .

wmP(X ,D) := max{b
a
|π : Y → X 3 P}.

If P is of type cA,CA/r , cAx/2, cAx/4, cE/r , then 1/wmp(X ,D)
is the canonical threshold (over P), and all divisorial contractions
are weighted blowups.
What P is of type cD/r?



Thank you for your attention!


