
Interstellar

Makers of the movie “Interstellar” boasted how much they tried to be faithful to
physics of gravity. One interesting part of the plot is centered on the Miller planet
entirely covered by ocean, orbiting just outside of a giant black hole called “Gargan-
tua.” Those who visited its surface, in a small landing ship, finds upon their return to
the mother ship that 23 earth-years has passed during their few hour of absence due
to the time-dilating effect of gravity. Some journalists criticized the movie for not
making much sense, referring to “extremely strong gravitational force, necessary for
the extreme time dilation.” Give your own scientific opinions, physics-wise, on this
part of movie that apparently caught attention of a lot of movie-goers. To do this,
consider the following:

1) Motion of an object of mass m around a non-rotating black hole of mass M
(Gargantua is supposed to be a fast-rotating black hole but, here, for simplicity we
will assume otherwise) follows Lagrange equation of motion with the action

−mc2
∫
ds

√(
1− 2GM

c2r

)
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c is the speed of light and G is the Newton’s gravitational constant. s is an arbi-
trary parametrization of the motion, t(s), r(s), . . ., with respect to which the “time”
derivative as in ṫ, ṙ, . . . is taken. You may wish to confine your attention to r > rH ≡
2GM/c2, below which things become really weird. The name “Gargantua” refers to
the movie fact that the black hole is so heavy that rH is extremely large, about a
billion kilometers.

2) Equivalently, one may choose to fix the “time” parameter s to be of special type,
upon which one is allowed to solve for Lagrange equation of
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instead. This should be a little easier to handle.

Note that there are two sets of symmetries: the time translation t→ t+const and
the spatial rotation. These two implies their conjugate momenta are conserved, which
are, respectively the relativistic versions of the energy and the angular momentum.
These two symmetries reduces the dynamics to a radial one, much as in the Newtonian
Kepler problem. Note that the Hamiltonian of this second Lagrangian is yet another
conserved quantity, which you set equal to any number. Changing this number is
equivalent to multiplying s by a number, and does not affect shape of orbits at all.
This way, you end up with a first order differential equation, again as in the Newtonian
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Kepler problem. With these, classify possible orbits of the planet, which should be
similar to Kepler ones when r � rH but qualitatively different when 1 < r/rH < 10
or so. What is the smallest possible circular orbit, for example?

3) The time lapse felt by different observers are different, depending on position and
on velocity. When a far away observer feels time lapse of δt, the person moving near
black hole feels, instead, a smaller time lapse of
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Now, you are in position to address physics of the Miller planet and the plot around
it. What is the maximum possible time-dilation can you imagine for a reasonable, in
the context of the movie, orbit of the planet around Gargantua?

4) More questions: Was the criticism by journalists mentioned above valid? Why did
the producers choose a very large black hole, do you think? What other serious flaws
can you find with this part of movie, physics-wise?
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