# The Higher Spin Square

Rajesh Gopakumar

ICTS-TIFR Bangalore, India

KIAS-YITP Workshop Seoul, S. Korea, 18th Sept., 2015

(B)

| Plan of the Talk                                                                                 | Motivation                                                                                   | Symm Product CFT                                                                         |                                     |                |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------|----------------|
|                                                                                                  |                                                                                              |                                                                                          |                                     |                |
| Based on                                                                                         |                                                                                              |                                                                                          |                                     |                |
| <ul> <li>M. R. (<br/>"Highe</li> <li>M. R. (<br/>"String</li> <li>M. R. (<br/>In Prog</li> </ul> | Gaberdiel an<br>er Spins and<br>Gaberdiel an<br>gy Symmetrie<br>Gaberdiel an<br>gress/To App | d R. G.<br><i>Strings</i> ", arXiv:14<br>d R. G.<br>es and the Higher<br>d R. G.<br>pear | 06.6103<br><i>Spin Square</i> ", ar | Xiv:1501.07236 |

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

## Plan of the Talk

#### • Brief Motivation

The search for a maximally unbroken symmetric phase of string theory.

#### • The Symmetric Product CFT

The partition function, conserved currents and their single particle generators.

#### • Simpler Case: Single Boson Symmetric Product Its horizontal and vertical algebras.

- The Higher Spin Square Its minimal representation; the Clifford Algebra Square; Twisted Sectors
- Outlook

- 一司

- Why is the structure of String Theory so rigid? Unique?
- Perhaps due to a large underlying invariance which is mostly unmanifest (Gross, Witten, Moore, Sagnotti etc.).
- In flat space, only YM gauge symmetry and diffeos manifest.
- But, if we consider  $\alpha' E^2 \to \infty$  limit, there seem to be relations between amplitudes of different string levels.
- Thus suggests tensionless limit of string theory is a good place to look for unbroken symmetry.
- In flat space, this limit cannot be taken uniformly on the whole theory because of absence of any other dimensionless parameter.
- What about other backgrounds?

- Why is the structure of String Theory so rigid? Unique?
- Perhaps due to a large underlying invariance which is mostly unmanifest (Gross, Witten, Moore, Sagnotti etc.).
- In flat space, only YM gauge symmetry and diffeos manifest.
- But, if we consider  $\alpha' E^2 \to \infty$  limit, there seem to be relations between amplitudes of different string levels.
- Thus suggests tensionless limit of string theory is a good place to look for unbroken symmetry.
- In flat space, this limit cannot be taken uniformly on the whole theory because of absence of any other dimensionless parameter.
- What about other backgrounds?

- Why is the structure of String Theory so rigid? Unique?
- Perhaps due to a large underlying invariance which is mostly unmanifest (Gross, Witten, Moore, Sagnotti etc.).
- In flat space, only YM gauge symmetry and diffeos manifest.
- But, if we consider  $\alpha' E^2 \to \infty$  limit, there seem to be relations between amplitudes of different string levels.
- Thus suggests tensionless limit of string theory is a good place to look for unbroken symmetry.
- In flat space, this limit cannot be taken uniformly on the whole theory because of absence of any other dimensionless parameter.
- What about other backgrounds?

- Why is the structure of String Theory so rigid? Unique?
- Perhaps due to a large underlying invariance which is mostly unmanifest (Gross, Witten, Moore, Sagnotti etc.).
- In flat space, only YM gauge symmetry and diffeos manifest.
- But, if we consider  $\alpha' E^2 \to \infty$  limit, there seem to be relations between amplitudes of different string levels.
- Thus suggests tensionless limit of string theory is a good place to look for unbroken symmetry.
- In flat space, this limit cannot be taken uniformly on the whole theory because of absence of any other dimensionless parameter.
- What about other backgrounds?

- Why is the structure of String Theory so rigid? Unique?
- Perhaps due to a large underlying invariance which is mostly unmanifest (Gross, Witten, Moore, Sagnotti etc.).
- In flat space, only YM gauge symmetry and diffeos manifest.
- But, if we consider  $\alpha' E^2 \to \infty$  limit, there seem to be relations between amplitudes of different string levels.
- Thus suggests tensionless limit of string theory is a good place to look for unbroken symmetry.
- In flat space, this limit cannot be taken uniformly on the whole theory because of absence of any other dimensionless parameter.
- What about other backgrounds?

- Why is the structure of String Theory so rigid? Unique?
- Perhaps due to a large underlying invariance which is mostly unmanifest (Gross, Witten, Moore, Sagnotti etc.).
- In flat space, only YM gauge symmetry and diffeos manifest.
- But, if we consider  $\alpha' E^2 \to \infty$  limit, there seem to be relations between amplitudes of different string levels.
- Thus suggests tensionless limit of string theory is a good place to look for unbroken symmetry.
- In flat space, this limit cannot be taken uniformly on the whole theory because of absence of any other dimensionless parameter.

#### • What about other backgrounds?

Rajesh Gopakumar (ICTS)

- Why is the structure of String Theory so rigid? Unique?
- Perhaps due to a large underlying invariance which is mostly unmanifest (Gross, Witten, Moore, Sagnotti etc.).
- In flat space, only YM gauge symmetry and diffeos manifest.
- But, if we consider  $\alpha' E^2 \to \infty$  limit, there seem to be relations between amplitudes of different string levels.
- Thus suggests tensionless limit of string theory is a good place to look for unbroken symmetry.
- In flat space, this limit cannot be taken uniformly on the whole theory because of absence of any other dimensionless parameter.
- What about other backgrounds?

- Holography tells us that the tensionless limit of Strings on  $AdS \leftrightarrow$ free CFTs ( $\lambda \propto \frac{R_{AdS}^2}{\alpha'} \rightarrow 0$ ). (Sundborg, Witten)
- Free Yang-mills theory has a single tower of higher spin conserved currents (bilinear in the fields) dual to Vasiliev H-spin gauge fields.
- In fact, Vasiliev theory an example of structure quite determined by underlying gauge invariance.
- Can there be more unbroken symmetries (amongst AdS vacua)?
- Yes. In *AdS*<sub>3</sub>.
- The dual free CFTs have a large number of conserved currents not just bilinears. Exponentially larger unbroken symmetry algebra.
- Can these constrain the theory away from the symmetric point?

### Why AdS<sub>3</sub> is Special

- Holography tells us that the tensionless limit of Strings on  $AdS \leftrightarrow$ free CFTs ( $\lambda \propto \frac{R_{AdS}^2}{\alpha'} \rightarrow 0$ ). (Sundborg, Witten)
- Free Yang-mills theory has a single tower of higher spin conserved currents (bilinear in the fields) dual to Vasiliev H-spin gauge fields.
- In fact, Vasiliev theory an example of structure quite determined by underlying gauge invariance.
- Can there be more unbroken symmetries (amongst AdS vacua)?

• Yes. In *AdS*<sub>3</sub>.

- The dual free CFTs have a large number of conserved currents not just bilinears. Exponentially larger unbroken symmetry algebra.
- Can these constrain the theory away from the symmetric point?

- Holography tells us that the tensionless limit of Strings on  $AdS \leftrightarrow$ free CFTs ( $\lambda \propto \frac{R_{AdS}^2}{\alpha'} \rightarrow 0$ ). (Sundborg, Witten)
- Free Yang-mills theory has a single tower of higher spin conserved currents (bilinear in the fields) dual to Vasiliev H-spin gauge fields.
- In fact, Vasiliev theory an example of structure quite determined by underlying gauge invariance.
- Can there be more unbroken symmetries (amongst AdS vacua)?
- Yes. In *AdS*<sub>3</sub>.
- The dual free CFTs have a large number of conserved currents not just bilinears. Exponentially larger unbroken symmetry algebra.
- Can these constrain the theory away from the symmetric point?

### Why AdS<sub>3</sub> is Special

- Holography tells us that the tensionless limit of Strings on  $AdS \leftrightarrow$ free CFTs ( $\lambda \propto \frac{R_{AdS}^2}{\alpha'} \rightarrow 0$ ). (Sundborg, Witten)
- Free Yang-mills theory has a single tower of higher spin conserved currents (bilinear in the fields) dual to Vasiliev H-spin gauge fields.
- In fact, Vasiliev theory an example of structure quite determined by underlying gauge invariance.
- Can there be more unbroken symmetries (amongst AdS vacua)?

#### • Yes. In *AdS*<sub>3</sub>.

- The dual free CFTs have a large number of conserved currents not just bilinears. Exponentially larger unbroken symmetry algebra.
- Can these constrain the theory away from the symmetric point?

- Holography tells us that the tensionless limit of Strings on  $AdS \leftrightarrow$ free CFTs ( $\lambda \propto \frac{R_{AdS}^2}{\alpha'} \rightarrow 0$ ). (Sundborg, Witten)
- Free Yang-mills theory has a single tower of higher spin conserved currents (bilinear in the fields) dual to Vasiliev H-spin gauge fields.
- In fact, Vasiliev theory an example of structure quite determined by underlying gauge invariance.
- Can there be more unbroken symmetries (amongst AdS vacua)?
- Yes. In AdS<sub>3</sub>.
- The dual free CFTs have a large number of conserved currents not just bilinears. Exponentially larger unbroken symmetry algebra.
- Can these constrain the theory away from the symmetric point?

- Holography tells us that the tensionless limit of Strings on  $AdS \leftrightarrow$ free CFTs ( $\lambda \propto \frac{R_{AdS}^2}{\alpha'} \rightarrow 0$ ). (Sundborg, Witten)
- Free Yang-mills theory has a single tower of higher spin conserved currents (bilinear in the fields) dual to Vasiliev H-spin gauge fields.
- In fact, Vasiliev theory an example of structure quite determined by underlying gauge invariance.
- Can there be more unbroken symmetries (amongst AdS vacua)?
- Yes. In AdS<sub>3</sub>.
- The dual free CFTs have a large number of conserved currents not just bilinears. Exponentially larger unbroken symmetry algebra.
- Can these constrain the theory away from the symmetric point?

- Holography tells us that the tensionless limit of Strings on  $AdS \leftrightarrow$ free CFTs ( $\lambda \propto \frac{R_{AdS}^2}{\alpha'} \rightarrow 0$ ). (Sundborg, Witten)
- Free Yang-mills theory has a single tower of higher spin conserved currents (bilinear in the fields) dual to Vasiliev H-spin gauge fields.
- In fact, Vasiliev theory an example of structure quite determined by underlying gauge invariance.
- Can there be more unbroken symmetries (amongst AdS vacua)?
- Yes. In AdS<sub>3</sub>.
- The dual free CFTs have a large number of conserved currents not just bilinears. Exponentially larger unbroken symmetry algebra.
- Can these constrain the theory away from the symmetric point?

|                                           | Motivation                      |                                                                                   |                                                          |                               |  |
|-------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------|--|
|                                           |                                 |                                                                                   |                                                          |                               |  |
| The Punch                                 | nline                           |                                                                                   |                                                          |                               |  |
| • Vasiliev<br>$AdS_3 \times$<br>effective | HS symmetry $S^3 \times T^4$ in | try organises the $\iota$<br>terms of a Higher<br>d by two $\mathcal{W}_{22}$ sym | inbroken symmet<br>r Spin Square. T<br>metries in that a | ry algebra of<br>he square is |  |

are expressed in terms of these two higher spin commutators.



- String theory on  $AdS_3 \times S^3 \times T^4$  believed to be on the moduli space of the orbifold CFT  $(T^4)^N/S_N$  (at large N).
- Partition function known explicitly (DMVV). If  $Z(X) = \sum_{h,\bar{h}} c(h,\bar{h})q^h\bar{q}^{\bar{h}}$ , then

$$\sum_{N\geq 0} p^N Z(X^N/S_N) = \prod_{n>0} \prod_{h,ar{h}} (1-p^n q^h ar{q}^{ar{h}})^{-c(h,ar{h})}$$

- This is essentially a formula of taking multiparticles. In particular, applies to the chiral sector ( $\bar{h} = 0$ ) of conserved currents.
- Thus single particle conserved current generators of  $X^N/S_N$  are in 1-1 association with the chiral algebra of X.
- The correspondence is  $J^{(s)} \leftrightarrow \frac{1}{\sqrt{N}} \sum_{i=1}^{N} J_i^{(s)}$ .

イロト イヨト イヨト イヨト

- String theory on  $AdS_3 \times S^3 \times T^4$  believed to be on the moduli space of the orbifold CFT  $(T^4)^N/S_N$  (at large N).
- Partition function known explicitly (DMVV). If  $Z(X) = \sum_{h,\bar{h}} c(h,\bar{h})q^h \bar{q}^{\bar{h}}$ , then

$$\sum_{N\geq 0}p^NZ(X^N/S_N)=\prod_{n>0}\prod_{h,ar{h}}(1-p^nq^har{q}^{ar{h}})^{-c(h,ar{h})}.$$

- This is essentially a formula of taking multiparticles. In particular, applies to the chiral sector ( $\bar{h} = 0$ ) of conserved currents.
- Thus single particle conserved current generators of  $X^N/S_N$  are in 1-1 association with the chiral algebra of X.
- The correspondence is  $J^{(s)} \leftrightarrow \frac{1}{\sqrt{N}} \sum_{i=1}^{N} J_i^{(s)}$ .

- String theory on  $AdS_3 \times S^3 \times T^4$  believed to be on the moduli space of the orbifold CFT  $(T^4)^N/S_N$  (at large N).
- Partition function known explicitly (DMVV). If  $Z(X) = \sum_{h,\bar{h}} c(h,\bar{h})q^h \bar{q}^{\bar{h}}$ , then

$$\sum_{N\geq 0}p^N Z(X^N/S_N) = \prod_{n>0}\prod_{h,ar{h}}(1-p^nq^har{q}^{ar{h}})^{-c(h,ar{h})}.$$

- This is essentially a formula of taking multiparticles. In particular, applies to the chiral sector ( $\bar{h} = 0$ ) of conserved currents.
- Thus single particle conserved current generators of  $X^N/S_N$  are in 1-1 association with the chiral algebra of X.
- The correspondence is  $J^{(s)} \leftrightarrow \frac{1}{\sqrt{N}} \sum_{i=1}^{N} J_i^{(s)}$ .

- String theory on  $AdS_3 \times S^3 \times T^4$  believed to be on the moduli space of the orbifold CFT  $(T^4)^N/S_N$  (at large N).
- Partition function known explicitly (DMVV). If  $Z(X) = \sum_{h,\bar{h}} c(h,\bar{h})q^h \bar{q}^{\bar{h}}$ , then

$$\sum_{N\geq 0}p^N Z(X^N/S_N) = \prod_{n>0}\prod_{h,ar{h}}(1-p^nq^har{q}^{ar{h}})^{-c(h,ar{h})}.$$

- This is essentially a formula of taking multiparticles. In particular, applies to the chiral sector  $(\bar{h} = 0)$  of conserved currents.
- Thus single particle conserved current generators of  $X^N/S_N$  are in 1-1 association with the chiral algebra of X.
- The correspondence is  $J^{(s)} \leftrightarrow \frac{1}{\sqrt{N}} \sum_{i=1}^{N} J_i^{(s)}$ .

- String theory on  $AdS_3 \times S^3 \times T^4$  believed to be on the moduli space of the orbifold CFT  $(T^4)^N/S_N$  (at large N).
- Partition function known explicitly (DMVV). If  $Z(X) = \sum_{h,\bar{h}} c(h,\bar{h})q^h \bar{q}^{\bar{h}}$ , then

$$\sum_{N\geq 0}p^N Z(X^N/S_N) = \prod_{n>0}\prod_{h,ar{h}}(1-p^nq^har{q}^{ar{h}})^{-c(h,ar{h})}.$$

- This is essentially a formula of taking multiparticles. In particular, applies to the chiral sector  $(\bar{h} = 0)$  of conserved currents.
- Thus single particle conserved current generators of  $X^N/S_N$  are in 1-1 association with the chiral algebra of X.
- The correspondence is  $J^{(s)} \leftrightarrow \frac{1}{\sqrt{N}} \sum_{i=1}^{N} J_i^{(s)}$ .

イロト イポト イヨト イヨト

- For  $(T^4)^N/S_N$  there is an 1-1 correspondence with the chiral algebra of (supersymmetric)  $T^4$  i.e. four free bosons and four free fermions.
- Note that at large N the generators are all independent. Thus  $\sum_{i=1}^{N} (\partial \phi_i)^2$  is independent generator compared to  $\sum_{i=1}^{N} (\partial \phi_i)^4$ .
- Generating function of single particle chiral algebra of the symmetric product thus

$$\prod_{n=1} \frac{(1+yq^{n-\frac{1}{2}})^2(1+y^{-1}q^{n-\frac{1}{2}})^2}{(1-q^n)^4}$$

- Thus the number of currents at any given spin (or dimension) and thus massless gauge fields in the dual  $AdS_3$  grows exponentially (Cardy growth).
- Can we usefully view these stringy symmetries through the lens of higher spin symmetry?

- For  $(T^4)^N/S_N$  there is an 1-1 correspondence with the chiral algebra of (supersymmetric)  $T^4$  i.e. four free bosons and four free fermions.
- Note that at large N the generators are all independent. Thus  $\sum_{i=1}^{N} (\partial \phi_i)^2$  is independent generator compared to  $\sum_{i=1}^{N} (\partial \phi_i)^4$ .
- Generating function of single particle chiral algebra of the symmetric product thus

$$\prod_{n=1} \frac{(1+yq^{n-\frac{1}{2}})^2(1+y^{-1}q^{n-\frac{1}{2}})^2}{(1-q^n)^4}$$

- Thus the number of currents at any given spin (or dimension) and thus massless gauge fields in the dual  $AdS_3$  grows exponentially (Cardy growth).
- Can we usefully view these stringy symmetries through the lens of higher spin symmetry?

- For  $(T^4)^N/S_N$  there is an 1-1 correspondence with the chiral algebra of (supersymmetric)  $T^4$  i.e. four free bosons and four free fermions.
- Note that at large N the generators are all independent. Thus  $\sum_{i=1}^{N} (\partial \phi_i)^2$  is independent generator compared to  $\sum_{i=1}^{N} (\partial \phi_i)^4$ .
- Generating function of single particle chiral algebra of the symmetric product thus

$$\prod_{n=1} \frac{(1+yq^{n-\frac{1}{2}})^2(1+y^{-1}q^{n-\frac{1}{2}})^2}{(1-q^n)^4}$$

- Thus the number of currents at any given spin (or dimension) and thus massless gauge fields in the dual  $AdS_3$  grows exponentially (Cardy growth).
- Can we usefully view these stringy symmetries through the lens of higher spin symmetry?

- For  $(T^4)^N/S_N$  there is an 1-1 correspondence with the chiral algebra of (supersymmetric)  $T^4$  i.e. four free bosons and four free fermions.
- Note that at large N the generators are all independent. Thus  $\sum_{i=1}^{N} (\partial \phi_i)^2$  is independent generator compared to  $\sum_{i=1}^{N} (\partial \phi_i)^4$ .
- Generating function of single particle chiral algebra of the symmetric product thus

$$\prod_{n=1} \frac{(1+yq^{n-\frac{1}{2}})^2(1+y^{-1}q^{n-\frac{1}{2}})^2}{(1-q^n)^4}$$

- Thus the number of currents at any given spin (or dimension) and thus massless gauge fields in the dual  $AdS_3$  grows exponentially (Cardy growth).
- Can we usefully view these stringy symmetries through the lens of higher spin symmetry?

- For  $(T^4)^N/S_N$  there is an 1-1 correspondence with the chiral algebra of (supersymmetric)  $T^4$  i.e. four free bosons and four free fermions.
- Note that at large N the generators are all independent. Thus  $\sum_{i=1}^{N} (\partial \phi_i)^2$  is independent generator compared to  $\sum_{i=1}^{N} (\partial \phi_i)^4$ .
- Generating function of single particle chiral algebra of the symmetric product thus

$$\prod_{n=1} \frac{(1+yq^{n-\frac{1}{2}})^2(1+y^{-1}q^{n-\frac{1}{2}})^2}{(1-q^n)^4}$$

- Thus the number of currents at any given spin (or dimension) and thus massless gauge fields in the dual  $AdS_3$  grows exponentially (Cardy growth).
- Can we usefully view these stringy symmetries through the lens of higher spin symmetry?

## Simplifying the Algebra

- To strip off all the decorations of  $\mathcal{N} = 4$  SUSY and see the bare bones of the symmetry algebra, we restrict to the case of the symmetric product of a single real boson.
- Thus single particle generators in correspondence with chiral algebra of a single boson with generating function ∏<sup>∞</sup><sub>n=1</sub> 1 (1-a<sup>n</sup>).
- Built from monomials  $\prod_{i} (\partial^{j} \phi)^{k_{i}}$ .
- The bilinears  $\sum_{j=1}^{s-1} c_j(\partial^j \phi)(\partial^{s-j} \phi)$  correspond to  $\mathcal{W}_{\infty}[\lambda = 1]$  symmetry generators.

イロト 不得下 イヨト イヨト 二日

## Vertical $\mathcal{W}_{\infty}$ Algebra

The others fall into representations of this W<sub>∞</sub>[λ = 1]. The terms with n φ's transform in the representation Λ<sub>+</sub> = [0<sup>n−1</sup>, 1, 0...0].

$$\prod_{k=1}^{\infty} \frac{1}{(1-q^k)} = 1 + \sum_{n=1}^{\infty} \frac{q^n}{\prod_{j=1}^n (1-q^j)}$$



10 / 16

## Horizontal $\mathcal{W}_\infty$ Algebra

- The novel observation is that we can alternatively organise the generators in a horizontal way starting with the top row.
- By fermionisation, the top row are bilinears of fermions which generates a different higher spin symmetry  $W_{1+\infty}[\lambda = 0]$ .



## Horizontal $\mathcal{W}_{\infty}$ Algebra

- The novel observation is that we can alternatively organise the generators in a horizontal way starting with the top row.
- By fermionisation, the top row are bilinears of fermions which generates a different higher spin symmetry  $W_{1+\infty}[\lambda = 0]$ .



10 / 16

## Horizontal $\mathcal{W}_{\infty}$ Algebra (Contd.)

#### Another Decomposition

- The other rows are different representations of the horizontal  $\mathcal{W}_{1+\infty}[0]$  algebra.
- They are labelled as  $\Lambda_+ = 0$  and  $\Lambda_- = [m, 0 \dots 0, m]$ .

• This is a different decomposition

$$\prod_{k=1}^{\infty} \frac{1}{(1-q^k)} = 1 + \sum_{m=1}^{\infty} \frac{q^{\frac{m^2}{2}}}{\prod_{j=1}^m (1-q^j)^2}$$

A B F A B F

## Horizontal $\mathcal{W}_{\infty}$ Algebra (Contd.)

#### Another Decomposition

- The other rows are different representations of the horizontal  $\mathcal{W}_{1+\infty}[0]$  algebra.
- They are labelled as  $\Lambda_+ = 0$  and  $\Lambda_- = [m, 0 \dots 0, m]$ .

• This is a different decomposition

$$\prod_{k=1}^{\infty}rac{1}{(1-q^k)}=1+\sum_{m=1}^{\infty}rac{q^{rac{m^2}{2}}}{\prod_{j=1}^m(1-q^j)^2}$$

( )

## Horizontal $\mathcal{W}_{\infty}$ Algebra (Contd.)

#### Another Decomposition

- The other rows are different representations of the horizontal  $\mathcal{W}_{1+\infty}[0]$  algebra.
- They are labelled as  $\Lambda_+ = 0$  and  $\Lambda_- = [m, 0 \dots 0, m]$ .
- This is a different decomposition

$$\prod_{k=1}^\infty rac{1}{(1-q^k)} = 1 + \sum_{m=1}^\infty rac{q^{rac{m^2}{2}}}{\prod_{j=1}^m (1-q^j)^2}.$$

( )

## The Higher Spin Square

• The vertical and horizontal algebra together generate the structure of a higher spin square. Characterises all commutators of the stringy algebra in terms of higher spin commutators.



|  |  | The Higher Spin Square |
|--|--|------------------------|
|  |  |                        |

- The stringy algebra is, however, not a tensor product in any sense of the underlying higher spin algebras.
- It is exponentially larger in size than either the horizontal or vertical  $\mathcal{W}_\infty$  algebras.
- This can be illustrated in a very similar toy example a Clifford square. Consider the SO(2d) clifford algebra  $\{\gamma^i, \gamma^j\} = 2\delta^{ij}$ .
- Bilinears  $\gamma^{[i}\gamma^{j]}$  are generators of SO(2d).
- Other products with  $n \leq 2d \gamma$ 's i.e  $\gamma^{[i_1} \dots \gamma^{i_n]}$  transform in the *n*th antisymmetric representation of the SO(2d). Each forms a column.
- But because of the clifford multiplication, there is an algebra across columns as well. In fact, the set of all these gamma matrices and their products generates SU(2<sup>d</sup>).
- Exponentially larger rank than SO(2d).

イロト イヨト イヨト イヨト

|  |  | The Higher Spin Square |
|--|--|------------------------|
|  |  |                        |

- The stringy algebra is, however, not a tensor product in any sense of the underlying higher spin algebras.
- It is exponentially larger in size than either the horizontal or vertical  $\mathcal{W}_\infty$  algebras.
- This can be illustrated in a very similar toy example a Clifford square. Consider the SO(2d) clifford algebra  $\{\gamma^i, \gamma^j\} = 2\delta^{ij}$ .
- Bilinears  $\gamma^{[i}\gamma^{j]}$  are generators of SO(2d).
- Other products with  $n \leq 2d \gamma$ 's i.e  $\gamma^{[i_1} \dots \gamma^{i_n]}$  transform in the *n*th antisymmetric representation of the SO(2d). Each forms a column.
- But because of the clifford multiplication, there is an algebra across columns as well. In fact, the set of all these gamma matrices and their products generates SU(2<sup>d</sup>).
- Exponentially larger rank than SO(2d).

|  |  | The Higher Spin Square |
|--|--|------------------------|
|  |  |                        |

- The stringy algebra is, however, not a tensor product in any sense of the underlying higher spin algebras.
- It is exponentially larger in size than either the horizontal or vertical  $\mathcal{W}_\infty$  algebras.
- This can be illustrated in a very similar toy example a Clifford square. Consider the SO(2d) clifford algebra {γ<sup>i</sup>, γ<sup>j</sup>} = 2δ<sup>ij</sup>.
- Bilinears  $\gamma^{[i}\gamma^{j]}$  are generators of SO(2d).
- Other products with  $n \leq 2d \gamma$ 's i.e  $\gamma^{[i_1} \dots \gamma^{i_n]}$  transform in the *n*th antisymmetric representation of the SO(2d). Each forms a column.
- But because of the clifford multiplication, there is an algebra across columns as well. In fact, the set of all these gamma matrices and their products generates SU(2<sup>d</sup>).
- Exponentially larger rank than SO(2d).

|  |  | The Higher Spin Square |
|--|--|------------------------|
|  |  |                        |

- The stringy algebra is, however, not a tensor product in any sense of the underlying higher spin algebras.
- It is exponentially larger in size than either the horizontal or vertical  $\mathcal{W}_\infty$  algebras.
- This can be illustrated in a very similar toy example a Clifford square. Consider the SO(2d) clifford algebra  $\{\gamma^i, \gamma^j\} = 2\delta^{ij}$ .
- Bilinears  $\gamma^{[i}\gamma^{j]}$  are generators of SO(2d).
- Other products with  $n \leq 2d \gamma$ 's i.e  $\gamma^{[i_1} \dots \gamma^{i_n]}$  transform in the *n*th antisymmetric representation of the SO(2d). Each forms a column.
- But because of the clifford multiplication, there is an algebra across columns as well. In fact, the set of all these gamma matrices and their products generates SU(2<sup>d</sup>).
- Exponentially larger rank than SO(2d).

|  |  | The Higher Spin Square |
|--|--|------------------------|
|  |  |                        |

- The stringy algebra is, however, not a tensor product in any sense of the underlying higher spin algebras.
- It is exponentially larger in size than either the horizontal or vertical  $\mathcal{W}_\infty$  algebras.
- This can be illustrated in a very similar toy example a Clifford square. Consider the SO(2d) clifford algebra  $\{\gamma^i, \gamma^j\} = 2\delta^{ij}$ .
- Bilinears  $\gamma^{[i}\gamma^{j]}$  are generators of SO(2d).
- Other products with  $n \leq 2d \gamma$ 's i.e  $\gamma^{[i_i} \dots \gamma^{i_n]}$  transform in the *n*th antisymmetric representation of the SO(2d). Each forms a column.
- But because of the clifford multiplication, there is an algebra across columns as well. In fact, the set of all these gamma matrices and their products generates SU(2<sup>d</sup>).
- Exponentially larger rank than SO(2d).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

|  |  | The Higher Spin Square |
|--|--|------------------------|
|  |  |                        |

- The stringy algebra is, however, not a tensor product in any sense of the underlying higher spin algebras.
- It is exponentially larger in size than either the horizontal or vertical  $\mathcal{W}_\infty$  algebras.
- This can be illustrated in a very similar toy example a Clifford square. Consider the SO(2d) clifford algebra  $\{\gamma^i, \gamma^j\} = 2\delta^{ij}$ .
- Bilinears  $\gamma^{[i}\gamma^{j]}$  are generators of SO(2d).
- Other products with  $n \leq 2d \gamma$ 's i.e  $\gamma^{[i_i} \dots \gamma^{i_n]}$  transform in the *n*th antisymmetric representation of the SO(2d). Each forms a column.
- But because of the clifford multiplication, there is an algebra across columns as well. In fact, the set of all these gamma matrices and their products generates  $SU(2^d)$ .
- Exponentially larger rank than SO(2d).

|  |  | The Higher Spin Square |
|--|--|------------------------|
|  |  |                        |

- The stringy algebra is, however, not a tensor product in any sense of the underlying higher spin algebras.
- It is exponentially larger in size than either the horizontal or vertical  $\mathcal{W}_\infty$  algebras.
- This can be illustrated in a very similar toy example a Clifford square. Consider the SO(2d) clifford algebra  $\{\gamma^i, \gamma^j\} = 2\delta^{ij}$ .
- Bilinears  $\gamma^{[i}\gamma^{j]}$  are generators of SO(2d).
- Other products with  $n \leq 2d \gamma$ 's i.e  $\gamma^{[i_i} \dots \gamma^{i_n]}$  transform in the *n*th antisymmetric representation of the SO(2d). Each forms a column.
- But because of the clifford multiplication, there is an algebra across columns as well. In fact, the set of all these gamma matrices and their products generates  $SU(2^d)$ .
- Exponentially larger rank than SO(2d).

- How can we exploit this structure of the Higher Spin Square?
- View the (non-chiral) spectrum through the lens of higher spin.
- The full untwisted sector given by

$$q^{\frac{N}{4}} \bar{q}^{\frac{N}{4}} Z_{\mathrm{U}}(q, y, \bar{q}, \bar{y}) = \prod_{r, \bar{r}=0}^{\prime} \prod_{l, \bar{l} \in \mathbb{Z}} \left( 1 - (-1)^{2r+2\bar{r}} q^{r} y^{l} \bar{q}^{\bar{r}} \bar{y}^{\bar{l}} \right)^{-d(r, l)d(\bar{r}, \bar{l})}$$

where 
$$\prod_{n=1}^{\infty} \frac{\left(1-yq^{n-1/2}\right)^2 \left(1-y^{-1}q^{n-1/2}\right)^2}{(1-q^n)^4} = \sum_{r,l} d(r,l) q^r y^l$$

This can be expressed as

$$Z_{\rm U}(q, y, ar{q}, ar{y}) = |Z_{vac}|^2 [1 + \sum_R |\chi_R|^2]$$

- How can we exploit this structure of the Higher Spin Square?
- View the (non-chiral) spectrum through the lens of higher spin.

• The full untwisted sector given by

$$q^{\frac{N}{4}} \bar{q}^{\frac{N}{4}} Z_{\mathrm{U}}(q, y, \bar{q}, \bar{y}) = \prod_{r, \bar{r}=0}^{\prime} \prod_{l, \bar{l} \in \mathbb{Z}} \left( 1 - (-1)^{2r+2\bar{r}} q^{r} y^{l} \bar{q}^{\bar{r}} \bar{y}^{\bar{l}} \right)^{-d(r, l)d(\bar{r}, \bar{l})}$$

where 
$$\prod_{n=1}^{\infty} \frac{\left(1-yq^{n-1/2}\right)^2 \left(1-y^{-1}q^{n-1/2}\right)^2}{(1-q^n)^4} = \sum_{r,l} d(r,l) q^r y^l$$

• This can be expressed as

$$Z_{\rm U}(q, y, \bar{q}, \bar{y}) = |Z_{vac}|^2 [1 + \sum_R |\chi_R|^2]$$

- How can we exploit this structure of the Higher Spin Square?
- View the (non-chiral) spectrum through the lens of higher spin.
- The full untwisted sector given by

$$q^{\frac{N}{4}} \bar{q}^{\frac{N}{4}} Z_{\mathrm{U}}(q, y, \bar{q}, \bar{y}) = \prod_{r, \bar{r}=0}^{\prime} \prod_{l, \bar{l} \in \mathbb{Z}} \left( 1 - (-1)^{2r+2\bar{r}} q^{r} y^{l} \bar{q}^{\bar{r}} \bar{y}^{\bar{l}} \right)^{-d(r, l)d(\bar{r}, \bar{l})}$$

where 
$$\prod_{n=1}^{\infty} \frac{\left(1-yq^{n-1/2}\right)^2 \left(1-y^{-1}q^{n-1/2}\right)^2}{(1-q^n)^4} = \sum_{r,l} d(r,l) q^r y^l.$$

• This can be expressed as

$$Z_{\rm U}(q,y,ar{q},ar{y}) = |Z_{vac}|^2 [1 + \sum_R |\chi_R|^2]$$

- How can we exploit this structure of the Higher Spin Square?
- View the (non-chiral) spectrum through the lens of higher spin.
- The full untwisted sector given by

$$q^{\frac{N}{4}} \bar{q}^{\frac{N}{4}} Z_{\mathrm{U}}(q, y, \bar{q}, \bar{y}) = \prod_{r, \bar{r}=0}^{\prime} \prod_{I, \bar{I} \in \mathbb{Z}} \left( 1 - (-1)^{2r+2\bar{r}} q^{r} y^{I} \bar{q}^{\bar{r}} \bar{y}^{\bar{I}} \right)^{-d(r, I)d(\bar{r}, \bar{I})}$$

where 
$$\prod_{n=1}^{\infty} \frac{\left(1-yq^{n-1/2}\right)^2 \left(1-y^{-1}q^{n-1/2}\right)^2}{(1-q^n)^4} = \sum_{r,l} d(r,l) q^r y^l.$$

• This can be expressed as

$$Z_{
m U}(q,y,ar{q},ar{y}) = |Z_{vac}|^2 [1 + \sum_R |\chi_R|^2]$$

- This minimal irrep is built from the basic representation of the vertical higher spin algebra.
- In Vasiliev theory, this is the minimally coupled matter field.
- Thus the untwisted sector behaves like the "perturbative" sector of coset holography - the states (Λ; 0) (Gaberdiel-R.G.-Hartman-Raju).
- The twisted sectors behave, instead, like the "non-perturbative" sector (0; Λ) (Perlmutter, Prochazka, Raeymakers).
- Thus, in the two-cycle twisted sector

$$Z^{(2)}(q, y, \bar{q}, \bar{y}) = |Z_{vac}|^2 (|\chi_+|^2 + |\chi_-|^2) [1 + \sum_R |\chi_R|^2].$$

Here  $\chi_{\pm}$  are "near minimal" representations.

• They have slightly fewer null states than the minimal representation.

- This minimal irrep is built from the basic representation of the vertical higher spin algebra.
- In Vasiliev theory, this is the minimally coupled matter field.
- Thus the untwisted sector behaves like the "perturbative" sector of coset holography - the states (Λ; 0) (Gaberdiel-R.G.-Hartman-Raju).
- The twisted sectors behave, instead, like the "non-perturbative" sector (0; Λ) (Perlmutter, Prochazka, Raeymakers).
- Thus, in the two-cycle twisted sector

$$Z^{(2)}(q,y,ar{q},ar{y}) = |Z_{vac}|^2 (|\chi_+|^2 + |\chi_-|^2) [1 + \sum_R |\chi_R|^2].$$

Here  $\chi_{\pm}$  are "near minimal" representations.

• They have slightly fewer null states than the minimal representation.

<ロト </p>

- This minimal irrep is built from the basic representation of the vertical higher spin algebra.
- In Vasiliev theory, this is the minimally coupled matter field.
- Thus the untwisted sector behaves like the "perturbative" sector of coset holography - the states (Λ; 0) (Gaberdiel-R.G.-Hartman-Raju).
- The twisted sectors behave, instead, like the "non-perturbative" sector (0; Λ) (Perlmutter, Prochazka, Raeymakers).
- Thus, in the two-cycle twisted sector

 $Z^{(2)}(q, y, ar{q}, ar{y}) = |Z_{vac}|^2 (|\chi_+|^2 + |\chi_-|^2) [1 + \sum_R |\chi_R|^2].$ 

Here  $\chi_{\pm}$  are "near minimal" representations.

• They have slightly fewer null states than the minimal representation.

- This minimal irrep is built from the basic representation of the vertical higher spin algebra.
- In Vasiliev theory, this is the minimally coupled matter field.
- Thus the untwisted sector behaves like the "perturbative" sector of coset holography - the states (Λ; 0) (Gaberdiel-R.G.-Hartman-Raju).
- The twisted sectors behave, instead, like the "non-perturbative" sector (0; Λ) (Perlmutter, Prochazka, Raeymakers).

• Thus, in the two-cycle twisted sector

 $Z^{(2)}(q, y, \bar{q}, \bar{y}) = |Z_{vac}|^2 (|\chi_+|^2 + |\chi_-|^2) [1 + \sum_{P} |\chi_R|^2].$ 

Here  $\chi_{\pm}$  are "near minimal" representations.

• They have slightly fewer null states than the minimal representation.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- This minimal irrep is built from the basic representation of the vertical higher spin algebra.
- In Vasiliev theory, this is the minimally coupled matter field.
- Thus the untwisted sector behaves like the "perturbative" sector of coset holography - the states (Λ; 0) (Gaberdiel-R.G.-Hartman-Raju).
- The twisted sectors behave, instead, like the "non-perturbative" sector (0; Λ) (Perlmutter, Prochazka, Raeymakers).
- Thus, in the two-cycle twisted sector

$$Z^{(2)}(q, y, \bar{q}, \bar{y}) = |Z_{vac}|^2 (|\chi_+|^2 + |\chi_-|^2) [1 + \sum_R |\chi_R|^2].$$

Here  $\chi_{\pm}$  are "near minimal" representations.

• They have slightly fewer null states than the minimal representation.

- This minimal irrep is built from the basic representation of the vertical higher spin algebra.
- In Vasiliev theory, this is the minimally coupled matter field.
- Thus the untwisted sector behaves like the "perturbative" sector of coset holography - the states (Λ; 0) (Gaberdiel-R.G.-Hartman-Raju).
- The twisted sectors behave, instead, like the "non-perturbative" sector (0; Λ) (Perlmutter, Prochazka, Raeymakers).
- Thus, in the two-cycle twisted sector

$$Z^{(2)}(q, y, \bar{q}, \bar{y}) = |Z_{vac}|^2 (|\chi_+|^2 + |\chi_-|^2) [1 + \sum_R |\chi_R|^2].$$

Here  $\chi_{\pm}$  are "near minimal" representations.

• They have slightly fewer null states than the minimal representation.

(日) (同) (日) (日)

## Looking Ahead

- Stringy symmetries can be usefully viewed through the lens of Vasiliev theory Higher Spin Square.
- The entire untwisted sector of the string theory is one representation the minimal one of the higher spin square.
- Also have a reasonable understanding of the representations corresponding to the twisted sector.
- Need to use this to understand how the stringy symmetries are broken in going away from the orbifold point - symmetry is "higgsed" since one is giving a vev to a charged field (two cycle twisted sector).
- Hope: Use Wigner-Eckart philosophy to constrain matrix elements even away from the unbroken point.

(日) (同) (三) (三)