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Motivation
• N=(0, 4) gauge theories flow to SCFT

• Recent developments on N=(0, 2) theory - IR dualities [Gadde-
Gukov-Putrov][Jia-Sharpe-Wu][Kutasov-Lin] See E.Sharpe’s talk

• Self-dual strings in 6d (1, 0) (2, 0) theories. “M-string” [Haghighat-Iqbal-
Kozcaz-Lockart-Vafa] [Kim-Kim-Lee-Park-Vafa]…. 

• Not so many literatures on N=(0,4) non-abelian gauge theory. [Tong]

• M5-branes wrapped on a 4-manifold M4

• d=2 (0, 2) SCFT T[M4] <=> TQFT on M4 [Gadde-Gukov-Putrov]

• Special class: Cg1,n1 x Cg2,n2  [Benini-Bobev]



Summary



Summary (1)
6d (2, 0) theory

4d N=2 class S theory T[C]

2d N=(0, 4) class S theory T[C]

S-dual

IR dual

reduce on Cg,n

reduce on S2

[Gaiotto] 
[Gaiotto-Moore-Neitzke]



Summary (2)

6d (2, 0) theory on T2xS2xCg,n

2d N=(0, 4) theory T[Cg,n] on T2 2d TQFT on Cg,n 

S2xCg,n T2xS2

Elliptic genus of T[Cg,n] Correlation function of TQFT

[Alday-Gaiotto-Tachikawa]  
[Gadde-Pomoni-Rastelli-Razamat-Yan] 

[Dimfte-Gaiotto-Gukov]  
[Gadde-Gukov-Putrov]



SU(2) theories



(0, 4) gauge theory
• (0, 4) multiplets

• vector multiplet = (0, 2) vector + (0, 2) Fermi

• (twisted) hypermultiplet = (0, 2) chiral + (0, 2) chiral

• Fermi multiplet = (0, 2) Fermi

• Lagrangian for a given matter content fixed by SUSY?

• Gauge theories generally realize non-compact CFTs with 
holomorphic bundle over a hyperkahler target space

Also, this duality is similar to a N = (0, 2) Seiberg-like duality found in [1] in the case when

there are no Fermi multiplets in fundamental representation of the gauge group. There is

an important di↵erence however, theories considered in the aforementioned paper had U(N)

gauge symmetry, not SU(N).

As we show in appendix D, the identity (4.12) can be used to derive an iversion formula

for a certain integral operator with kernel constructed from theta-functions. It is analogous

to the inversion formula in [36] for an operator with kernel constructed in a similar way from

elliptic Gamma functions and allows us to find an explicit expression for the index of T (0,4)
3

theory in section 3.2.2.
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A Review on N = (0, 2) and N = (0, 4) theory

Let us summarize some basic facts about N = (0, 2) and N = (0, 4) gauge theories [37]. See

also [38, 39].

N = (0, 2) multiplets A general N = (0, 2) gauge theory can have the following supersym-

metry multiplets:

Multiplets Superfield Components (on-shell)

Vector U (Aµ,��)

Chiral � ( 
+

,�)

Fermi  ( �)

(A.1)

Here, the subscript ± stands for right/left-moving complex Weyl spinors respectively. An

N = (0, 2) theory allows formulation in (x±, ✓+, ✓̄+) superspace. A chiral superfield satisfies

D̄
+

� = 0 , (A.2)

and has the following expansion:

� = �+
p
2✓+ 

+

� i✓+✓̄+@
+

�. (A.3)
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SU(2) building blocks

• a) Sphere with 3-punctures: SU(2)3-trifundamental half-hypermultiplet

• R-charge for the hypermultiplets are zero. 

• CFT on the Higgs branch [Witten]

• b) Cylinder: SU(2) gauge multiplet

a) b)

SU(2) 

SU(2) SU(2) 

SU(2) 



Superconformal Index

• We verify duality by computing the elliptic genus or superconformal index.

• Vector multiplet

• Hypermultiplet

• Fermi multiplet

• a denotes a choice of R-charge.  We choose a=1, which sets R charge for 
the hypermultiplets to be zero. 

[Gadde-Gukov]  
[Benini-Eager-Hori-Tachikawa]

of SU(2)l ⇥ SU(2)r ⇥ SU(2)R. The charges of the component fields are as follows:

Multiplets components SU(2)l ⇥ SU(2)r ⇥ SU(2)R
Vector Aµ (1, 1, 1)

� (2, 2, 1)

�� (1, 2, 2)

�
+

(2, 1, 2)

Hypermultiplet q (1, 1, 2)

 � (2, 1, 1)

 
+

(1, 2, 1)

(A.17)

Here SU(2)R = SU(2)�R, SU(2)r = SU(2)+R and SU(2)l = SU(2)I . The other R-symmetry

SU(2)l becomes the global symmetry for (0, 4) theories.

Note that the scalar in the hypermultiplet is uncharged under SU(2)l ⇥ SU(2)r but

charged under SU(2)R, whereas the scalar in the vector multiplet is charged under the SU(2)R
but uncharged under SU(2)l⇥SU(2)r. It has been argued that N = (4, 4) gauge theory flows

to two decoupled SCFTs on the Higgs branch and the Coulomb branch [19, 31]. For a large

value of these scalar fields, we can trust the semi-classical description, which is given by the

Higgs/Coulomb branch. For the Higgs branch theories, the R-symmetry should be given by

SU(2)l ⇥ SU(2)r since the scalars are charged under SU(2)R. It is the other way around for

the Coulomb branch theories. (Here the extra SU(2) R-symmetry is not visible in the UV.)

Since R-symmetries on the Coulomb branch and Higgs branch are distinct, they cannot be

the same SCFT.

B Review on elliptic genus

Elliptic genus for (0, 2) gauge theories

The elliptic genus of N = (0, 2) supersymmetric theories was discussed in [20, 21, 23]. We

will summarize the prescription for computing the elliptic genus of N = (0, 2) theories in this

section.

Consider a two-dimensional theory withN = (0, 2) supersymmetry and a flavor symmetry

group F . The elliptic genus on Ramond (R) sector is defined as

I(0,2),R(a; q) = TrR(�1)F qHL q̄HR

Y

i

afii , (B.1)

while the elliptic genus on Neveu-Schwarz (NS) sector is defined as

I(0,2),NS(a; q) = TrNS(�1)F qHL q̄HR

� 1
2JR

Y

i

afii , (B.2)

where TrR or TrNS are taken over the Hilbert space of SCFT on a circle, with fermions

satisfying periodic or anti-periodic boundary conditions respectively. F is the fermion number,

and the parameter

q = e2⇡i⌧ (B.3)

– 28 –

where W (G) is the order of Weyl group of G. The integral is performed over a certain contour

“JK” in the moduli space of flat connections on the two-torus M
flat

(T 2

⌧ , G) which corresponds

to taking a sum of Je↵rey-Kirwan residues. The absence of gauge anomaly is equivalent to

the condition that the integrand is elliptic in z.

Elliptic genus for N = (0, 4) theory

To compute the elliptic genus for two-dimensional theories with (0, 4) supersymmetry, one can

first decompose the (0, 4) supersymmetric algebra into its (0, 2) subalgebra. The R-symmetry

of (0, 4) is SU(2)�R ⇥ SU(2)+R from which the combination JR = (1 � ↵)R� + (1 + ↵)R+ is

chosen as (0, 2) R-charge. The other combination Rv = 2(R� � R+) can be treated as a

global symmetry in (0, 2) algebra.

With the embedding of (0, 2) algebra into (0, 4) algebra and the decomposition of (0, 4)

multiplets discussed in appendix A, one can write down the elliptic genus for (0, 4) multiplets.

For half-hyper multiplets we have

I(0,4),R
�,R (x; q) =

Y

⇢2R

1

✓̃(vx⇢; q)
, I(0,4),NS

�,R (x; q) =
Y

⇢2R

1

✓(q
1�↵

4 vx⇢; q)
, (B.10)

where the fugacity v labels the anti-diagonal Cartan F of SU(2)�R⇥SU(2)+R mentioned above.

For half twisted-hyper,

I(0,4),R
�

0,R (x; q) =
Y

⇢2R

1

✓̃(v�1x⇢; q)
, I(0,4),NS

�

0,R (x; q) =
Y

⇢2R

1

✓(q
1+↵

4 v�1x⇢; q)
. (B.11)

The elliptic genus of (0, 4) Fermi multiplet is

I(0,4),R
 ,R (x; q) =

Y

⇢2R
(�✓(x⇢; q)), I(0,4),NS

 ,R (x; q) =
Y

⇢2R
✓(q

1
2x⇢; q). (B.12)

And finally the vector multiplet,

I(0,4),R
⇤,G (z; q) = (✓̃(v�2; q))rkG

Y

↵2adj
G

↵ 6=0

✓̃(v�2z↵; q)✓̃(z↵; q),

I(0,4),NS
⇤,G (z; q) = (✓(q

1+↵

2 v�2; q))rkG
Y

↵2adj
G

↵ 6=0

✓(q
1+↵

2 v�2z↵; q)✓(z↵; q).
(B.13)

Notice that in the main text we simply choose ↵ = 1.

Elliptic genus for N = (2, 2) theory

With the embedding of (0, 2) algebra into (2, 2) algebra and the decomposition of (2, 2)

multiplets discussed in appendix A, one can write down the elliptic genus for (2, 2) multiplets.

For chiral multiplets we have

I(0,4),R
�,R (x; q) =

Y

⇢2R

✓̃(yR/2�1x⇢; q)

✓̃(yR/2x⇢; q)
, I(0,4),NS

�,R (x; q) =
Y

⇢2R

✓(q
1
2 (R/2+1)yR/2�1x⇢; q)

✓(qR/4yR/2x⇢; q)
, (B.14)
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SU(2) Nf=4 theory
• Can be obtained from a 4-punctured sphere 

• We get a CFT on the Higgs branch = SO(8) 1-instanton moduli space

• Elliptic genus can be written in terms of SO(8) characters  
 
 
 

• EG can be written in terms of F4-characters as in 4d [Gadde-Pomoni-
Rastelli-Razamat], so that Weyl group can act. NO conserved current 
of F4

where two numbers in each pair denote the representations w.r.t. SU(2) gauge and SO(8)

flavor group respectively. The complex dimension of the Higgs branch is 10 and the numerator

of (2.13) formally corresponds to additional conditions on these 28 mesons from D-term

constraints (cf. [25, 26]).

The index has the following expansion w.r.t. q and v written in terms of SO(8) characters:

I(0,4)
i�h (x; v; q) =

�
1+ 28 v2 + 300 v4 + 1925 v6 + . . .

�

+
�
(1+ 28) + (2 · 28+ 300+ 350)v2 + . . .

�
q + . . .

(2.15)

One can see that only SO(8) triality invariant representations appear in the index.

The crossing symmetry of the index (2.13) can be proven explicitly, not just term by term

in q and v expansion. To do this let us consider the di↵erence between indices that di↵er by

a non-trivial transposition of two SU(2) flavor fugacities:

I(0,4)
�

(x, y, z, w; v; q) ⌘ I(0,4)
i�h (x, y, z, w; v; q)� I(0,4)

i�h (x, z, y, w; v; q). (2.16)

Using the explicit expression for the index it is easy to show that I(0,4)
�

(x, y, z, w; v; q) has no

poles in variables (x, y, z, w) (i.e. the residues from two terms in (2.16) cancel each other).

The theory has anomaly coe�cient 2 w.r.t. each SU(2) flavor symmetry factor. Therefore if

we further define

Ĩ(0,4)
�

(x, y, z, w; v; q) ⌘ I(0,4)
�

(x, y, z, w; v; q) · �✓(x±)✓(y±)✓(z±)✓(w±)
�
4

(2.17)

it will be a function elliptic in (x, y, z, w) (i.e. invariant under the shifts x ! qx, y ! qy,

etc.) and with no poles. It follows that Ĩ(0,4)
�

(x, y, z, w; v; q) should be constant in x, y, z, w.

And since I(0,4)
�

(x, y, z, w; v; q) has no pole at x = 1 this constant should be zero. This proves

the crossing symmetry property the index I(0,4)
i�h (x, y, z, w; v; q), namely:

I(0,4)
i�h (x, y, z, w; v; q)� I(0,4)

i�h (x, z, y, w; v; q) = 0 . (2.18)

The triality outer-automorphism of SO(8) can be understood as the Weyl group action

of F
4

if we embed SO(8) ⇢ F
4

. This means that the series (2.15) can be formally rewritten

in terms of characters of F
4

representations:

I(0,4)
i�h (x; v; q) =

�
1+ (52� 26+ 2 · 1) v2 + 300 v4 + . . .

�

+ ((52� 26+ 3 · 1) + . . .) q + . . .
(2.19)

The index of the analogous N = 2 4d theory has similar property [4]. As in the 4d case,

it does not follow that the global symmetry actually enhances from SO(8) to F
4

in the IR

SCFT because there is no conserved current of F
4

.
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where two numbers in each pair denote the representations w.r.t. SU(2) gauge and SO(8)

flavor group respectively. The complex dimension of the Higgs branch is 10 and the numerator

of (2.13) formally corresponds to additional conditions on these 28 mesons from D-term

constraints (cf. [25, 26]).

The index has the following expansion w.r.t. q and v written in terms of SO(8) characters:

I(0,4)
i�h (x; v; q) =

�
1+ 28 v2 + 300 v4 + 1925 v6 + . . .

�

+
�
(1+ 28) + (2 · 28+ 300+ 350)v2 + . . .

�
q + . . .

(2.15)

One can see that only SO(8) triality invariant representations appear in the index.

The crossing symmetry of the index (2.13) can be proven explicitly, not just term by term

in q and v expansion. To do this let us consider the di↵erence between indices that di↵er by

a non-trivial transposition of two SU(2) flavor fugacities:
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�

(x, y, z, w; v; q) ⌘ I(0,4)
i�h (x, y, z, w; v; q)� I(0,4)

i�h (x, z, y, w; v; q). (2.16)

Using the explicit expression for the index it is easy to show that I(0,4)
�

(x, y, z, w; v; q) has no

poles in variables (x, y, z, w) (i.e. the residues from two terms in (2.16) cancel each other).

The theory has anomaly coe�cient 2 w.r.t. each SU(2) flavor symmetry factor. Therefore if

we further define

Ĩ(0,4)
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(x, y, z, w; v; q) ⌘ I(0,4)
�

(x, y, z, w; v; q) · �✓(x±)✓(y±)✓(z±)✓(w±)
�
4

(2.17)

it will be a function elliptic in (x, y, z, w) (i.e. invariant under the shifts x ! qx, y ! qy,
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The index of the analogous N = 2 4d theory has similar property [4]. As in the 4d case,

it does not follow that the global symmetry actually enhances from SO(8) to F
4

in the IR

SCFT because there is no conserved current of F
4

.
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Therefore the invariance of the spectrum under SO(8) triality is equivalent to the symmetry

under permutations of SU(2) factors in SU(2)4 flavor symmetry, or crossing symmetry of the

quiver diagram (see Fig. 3).

Figure 3: The symmetry under exchange of SU(2) factors in the flavor symmetry of the

theory can be interpreted as the crossing symmetry of the quiver diagram. The letters x, y, z, w

used to distinguish various SU(2) factors and later in the text denote the corresponding SU(2)

flavor fugacities in the elliptic genus.

The statement can be checked by calculating the 2d superconformal index (also known

as flavored elliptic genus3) of the theory [20–23]. The NS-NS index of the theory at hand can

be calculated as the following integral (see appendix B for a review of the superconformal

index in 2d):

I(0,4)
i�h (x, y, z, w; v; q) =

Z

JK

d⇠

2⇡i⇠
I(0,4)
T2

(x, y, ⇠; v; q) I(0,4)
V,SU(2)

(⇠; v, q) I(0,4)
T2

(1/⇠, z, w; v, q) , (2.6)

taken over a certain contour “JK” which corresponds to taking a sum of Je↵rey-Kirwan

residues. For example, in the case of rank one gauge group the contour encircles only the

poles coming from scalar fields with positive (or, equivalently, negative) charges w.r.t. the

Cartan U(1). The factors entering the integrand are

I(0,4)
T2

(x, y, z; v; q) ⌘ 1

✓(v x±y±z±)
, (2.7)

the index of T (0,4)
2

(tri-fundamental half-hyper) where x, y and z denote the fugacities corre-

sponding to SU(2)3 flavor symmetries, and

I(0,4)
V,SU(2)

(⇠; v, q) ⌘ (q; q)2✓(q/v2)✓(q ⇠±2/v2)✓(⇠±2) , (2.8)

the index of (0, 4) SU(2) vector multiplet. Here and throughout the paper we use the common

notation:

f(x±) ⌘ f(x)f(x�1). (2.9)

3In this paper we are using “superconformal index” and “elliptic genus” interchangeably.
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if we embed SO(8) ⇢ F
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The index of the analogous N = 2 4d theory has similar property [4]. As in the 4d case,

it does not follow that the global symmetry actually enhances from SO(8) to F
4

in the IR

SCFT because there is no conserved current of F
4

.
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• The “dual theory” has the same Lagrangian. 
Constraints on the spectrum. 
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Elliptic genus and 2d TQFT
2.2 Dualities of quiver theories and the TQFT structure of the index

2.2.1 Elliptic genus and 2d TQFT

Similarly to the 4d N = 2 case [4], the crossing symmetry of the index (2.6) indicates that

(2.7) and (2.8) can be used to define a 2d TQFT. Namely, let us define the Hilbert space of

the 2d TQFT associated to a circle as the following space of meromorphic functions4:

H(0,4)
S1 = {f : C⇤ ! C | f(x) = f(1/x), f(qx) = q4x8f(x)} . (2.20)

Then define the basic building blocks of 2d TQFT:

C : C �! H(0,4)
S1 ⌦H(0,4)

S1 ⌦H(0,4)
S1

1 7�! I(0,4)
T2

(x, y, z; v; q)

⌘ : H(0,4)
S1 ⌦H(0,4)

S1 �! C

f(x, y) 7�! R

JK

d⇠
2⇡i⇠ I

(0,4)
V,SU(2)

(⇠; v; q)f(⇠, ⇠)

(2.21)

Note that the last property in (2.20) is required for the integrand in the definition of ⌘ to be

elliptic. Using ⌘ and C one can define a commutative product µ on H(0,4)
S1 :

µ ⌘ (⌘ ⌦ id⌦ ⌘) � (id⌦ C ⌦ id)

µ : H(0,4)
S1 ⌦H(0,4)

S1 �! H(0,4)
S1

(2.22)

where id : H(0,4)
S1 �! H(0,4)

S1 is the identity map. The crossing symmetry property (2.18) of

the index is then equivalent to the associativity of µ which can be formulated in the following

4This space can be understood as the space of meromorphic sections of L�4 ! Mflat(T
2
⌧

, SU(2)), see

appendix C for details. It would be interesting to check explicitly if this is the Hilbert space of VW TQFT

associated to CP1 ⇥ S1, or, equivalently, the BPS sector of the Hilbert space of Tsu(2)[CP1 ⇥ S1] quantized on

T 2
⌧

.
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Building blocks

1) 3-point function

2) propagator
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way:
=

µ � (µ⌦ id)

=

µ � (id⌦ µ)

(2.23)

2.2.2 Dualities between generalized quiver theories

As in [2], the crossing symmetry property of the IR spectrum of the theory depicted in Fig.

2 can be used to deduce IR dualities between various theories constructed from the basic

building blocks in Fig. 1.

For example, consider a theory defined by the quiver in the l.h.s. of Fig. 4. Applying

the crossing symmetry transformation in Fig. 3 to the middle part we get a di↵erent theory

corresponding to the quiver in the r.h.s. of Fig. 4. From the point of view of 2d TQFT

defined above the index of the theory is the partition function (which can be understood as

an element of 2 (H(0,4)
S1 )⌦6) of the sphere with 6 punctures. The first theory is a linear quiver

Figure 4: Duality between two di↵erent (0, 4) theories with SU(2)3 gauge group and SU(2)6

flavor symmetry. For the sake of simplicity we suppress SU(2) inscribed inside squares and

circles of the quivers.

gauge theory, and the second one contains trifundamental hypermultiplet coupled to three

SU(2) gauge groups.

One can consider another example of duality between two distinct 2d (0,4) theories that

follows from the crossing symmetry as depicted in Fig. 5. The index of such theory can be

understood as the 2d TQFT partition function of a genus two Riemann surface.

However, in the case when quiver has loops the physics is a little more complicated because

the gauge group is not completely broken. Consider a theory corrsponding to a quiver with g

loops and n external legs. In terms of 2d TQFT the index is the partition function of a genus
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associativity

commutative product



What TQFT is it?
• We have a complete formal definition, but no Lagrangian

• When q=0, it reduces to the Hilbert series of the Higgs 
branch (when g=0) or more precisely the Hall-Littlewood 
index of 4d N=2 theory [Gadde-Rastelli-Razamat-Yan]

• HL index is a limit of Macdonald index, where the TQFT 
is given by the (q, t)-deformed 2d Yang-Mills theory

• For non-zero q, we need to find an elliptic version of the 
Hall-Littlewood polynomial. 



SU(N) theories



SU(N) Nf=2N

• Basic building block UN 
- 2 maximal, 1 minimal 
punctures

• A pair of UN realizes 
SU(N) theory

• Crossing-symmetry

SU(N)a 

SU(N)b 

U(1)x 

Figure 7: The quiver diagram for theory U (0,4)
N of free hypermultiplet in the bifundamental

representation of SU(N)a ⇥ SU(N)b and barionic symmetry U(1)x.

As in section 2.1 we find that the index of the theory has a similar crossing-symmetry

property. Consider a trinion U (0,4)
N describing a hypermultiplet in the bifundamental repre-

sentation of SU(N)⇥SU(N) (see Fig. 7). It also has a baryonic symmetry U(1). The index

is given by

I(0,4)
U
N

(a,b, x; v; q) =
NY

i,j=1

1

✓(v(xaibj)±)
, (3.7)

where a,b, x denote fugacities for SU(N)a ⇥ SU(N)b ⇥ U(1)x respectively. Now, let us glue

a pair of U (0,4)
N (by coupling them both to a (0, 4) SU(N) vector multiplet) to form SU(N)

SQCD with 2N flavors. The index of the resulting theory reads

I(0,4)
i�h (a,b, x, y) =

Z

JK

 
N�1Y

i=1

d⇠i
2⇡i⇠i

!
I(0,4)
U
N

(a, ⇠, x)I(0,4)
V,SU(N)

(⇠)I(0,4)
U
N

(⇠�1,b, y) , (3.8)

where we dropped v, q dependence in the expression for brevity. The vector multiplet index

is given by

I(0,4)
V,SU(N)

(⇠; v; q) = ✓
⇣ q

v2

⌘Y

i 6=j

✓

✓
q

v2
⇠i
⇠j

◆
✓

✓
⇠i
⇠j

◆
. (3.9)

Here we have used the flavor fugacities with SU(N)a⇥SU(N)b⇥U(1)x⇥U(1)y ⇢ SU(2N)⇥
U(1) manifest.

We find that the index is invariant under the exchange of a $ b or equivalently x $ y:

I(0,4)
i�h (a,b, x, y) = I(0,4)

i�h (b,a, x, y) = I(0,4)
i�h (a,b, y, x) . (3.10)

On the level of quiver diagrams this can be understood as a crossing symmetry between

s-channel and u-channel (see Fig. 8). This duality or crossing-symmetry implies that the

spectrum of the operators in the CFT should obey such property. It is not automatic from

the global symmetry of the theory.

– 15 –

SU(N)»

SU(N)a SU(N)b 

U(1)x U(1)y 

' SU(N)»

SU(N)a SU(N)b 

U(1)x U(1)y 

(©0,©0)~ (©1,©1)~

Figure 8: The quiver on the left represents (0, 4) SU(N) SQCD with 2N flavors as a gluing

of two copies of U (0,4)
N . The equivalence to the diagram on the right represents crossing-

symmetry of the index.

The crossing-symmetry can be understood as a duality. Even though the matter content

on both side of the dual theories are the same, the operator contents on one side are mapped

to another operators on the other side. For example, we have gauge-invariant operators of

the form as in the following table (here we decomposed (�, �̃) from (3.1) into (�
0,1, �̃0,1) of

two copies of U (0,4)
N as shown in Fig. 8):

operators U(1)x U(1)y SU(N)A SU(N)B
✏(�

0

)k(�̃
1

)N�k k �N + k ⇤k ⇤k

✏(�̃
0

)k(�
1

)N�k �k N � k ⇤N�k ⇤N�k

�
0

�̃
0

0 0 N ⌦ N̄ 1

�
1

�̃
1

0 0 1 N ⌦ N̄

�
0

�
1

1 1 N N̄

�̃
0

�̃
0

�1 �1 N̄ N

(3.11)

where ⇤k is k�th antisymmetric representation and ✏ is completely antisymmetric tensor to

contract the gauge indices. The first two lines are baryonic operators where as the latter

four are mesonic operators. Under the exchange of U(1)x and U(1)y, the mesonic operators

remain unchanged, but the baryonic operators are mapped via

(�
0

)k(�̃
1

)N�k ! (�
1

)k(�̃
0

)N�k , and (�̃
0

)k(�
1

)N�k ! �̃k
1

(�
0

)N�k . (3.12)

Let us now consider the N = (4, 4) version of the theory. The matter contents are

essentially the same except that we replaced (0, 4) multiplets to (4, 4) multiplets. We can
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Figure 7: The quiver diagram for theory U (0,4)
N of free hypermultiplet in the bifundamental

representation of SU(N)a ⇥ SU(N)b and barionic symmetry U(1)x.
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⇠j

◆
. (3.9)

Here we have used the flavor fugacities with SU(N)a⇥SU(N)b⇥U(1)x⇥U(1)y ⇢ SU(2N)⇥
U(1) manifest.

We find that the index is invariant under the exchange of a $ b or equivalently x $ y:

I(0,4)
i�h (a,b, x, y) = I(0,4)

i�h (b,a, x, y) = I(0,4)
i�h (a,b, y, x) . (3.10)

On the level of quiver diagrams this can be understood as a crossing symmetry between

s-channel and u-channel (see Fig. 8). This duality or crossing-symmetry implies that the

spectrum of the operators in the CFT should obey such property. It is not automatic from

the global symmetry of the theory.
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SU(N) quiver theories
3.2 Dualities of quiver theories and T (0,4)

N theory

In this section, we discuss quiver gauge theories and dualities.

3.2.1 Quiver gauge theories

Linear quiver Let us consider linear quiver theories composed of connectingm copies of UN

blocks. This will yield SU(N)m�1 gauge theory with bifundamentals in SU(N)i⇥SU(N)i+1

where we identify SU(N)
0

and SU(N)m as the global symmetry groups, see Fig. 9.

SU(N)0 

U(1)0 U(1)1 

SU(N)1 SU(N)2 

...
 

SU(N)m-2 SU(N)m-1 

SU(N)m 

U(1)m-2 U(1)m-1 

Figure 9: A linear quiver realizing a theory with SU(N)m�1 gauge group and SU(N)2 ⇥
U(1)m flavor group.

The quiver gauge theory flows to CFT on the Higgs branch. The central charges can be

computed easily to be

cR = 6
�
N2 +m� 1

�
, cL = 4(N2 +m� 1) . (3.20)

The (quaternionic) dimension of the Higgs branch is given by cR/6.

As we have discussed in section 3.1, the index of the quiver theory also enjoys crossing-

symmetry. It can be also applied to the linear quiver theory, which has the global symmetry

SU(N)A⇥SU(N)B ⇥ (
Qm

i=1

U(1)i). The crossing-symmetry now extends to the permutation

of all the U(1)i symmetries. Therefore we have a duality map analogous to (3.12), by apply-

ing the duality repeatedly. The single-trace gauge invariant operators contains the bayonic

operators det�i and det�̃i with i = 0, · · · ,m and mesonic operators �
0

�̃
0

and �m�̃m. Under

the permutation, U(1)i $ U(1)j , we exchange det�i $ det�j .

Circular quiver We can also consider a circular quiver theory by gauging the diagonal

subgroup of SU(N)
0

⇥SU(N)m of the linear quiver. As in the case of SU(2) theories, we get

a CFT on the Kibble branch with dimension m + 1, see Fig. 9. The central charge of this

theory is given by

cR = 6(nh � nv + 1) = 6(m+ 1) , cL = 4(m+ 1) + 2 . (3.21)

Note that the central charges do not depend on the choice of the gauge group, even though

the elliptic genus does depend on the gauge group.
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Figure 10: A circular quiver realizing a theory with SU(N)m gauge group and U(1)m flavor

group.

3.2.2 Analog of Argyres-Seiberg duality and T (0,4)
3

theory

Let us consider the SU(3) case. Similarly to the N = 2 4d case [32] we conjecture that SU(3)

Figure 11: Two-dimensional N = (0, 4) analog of Argyres-Seiberg duality. The subscripts

of flavor and gauge groups denote corresponding fugacities in the index.

gauge theory with 6 flavors is dual to the theory constructed from T (0,4)
3

, two hypermultiplets

and (0, 4) SU(2) vector multiplet gauging the diagonal of SU(2) ⇢ SU(3) subgroup of the

flavor symmetry T (0,4)
3

and SU(2) flavor symmetry acting on two hypermultiplets (see Fig.

11). On the level of indices the duality reads

I(0,4)i�h (a,b;x, y) =
1

2

Z

JK

d⇣

2⇡i⇣

I(0,4)V,SU(2)

(⇣)

✓(vs±1⇣±1)
I(0,4)T3

(a,b, c) , (3.22)

(c
1

, c
2

, c
3

) ⌘ (r⇣, r/⇣, 1/r2), x ⌘ s1/3/r, y ⌘ s�1/3/r
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• Symmetric under 
the permutations 
of U(1)i’s



Argyres-Seiberg duality
Figure 10: A circular quiver realizing a theory with SU(N)m gauge group and U(1)m flavor
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(0,4) E6 SCFT
• We find that it is possible to invert the integral equations as in 4d 

N=2 [Gadde-Rastelli-Razamat-Yan]

• We prove an inversion formula analogous to [Spridonov-Warnaar] 
for the theta function integral.  

• This can be also understood as the index for an N=(0, 2) theory 
with SUSY enhancement in the IR. [Gadde-Razamat-Willett]

• It gives the elliptic genus of E61-instanton string.  
 

Assuming that as in SU(2) case T (0,4)
3

describes a certain Higgs branch CFT its central

charges can be easily determined from the relation depicted in Fig. 11:

cR = 6 · 11 cL = 4 · 11, (3.23)

where 11 is the quaternionic dimension of the Higgs branch.

Similarly to N = 2 4d case [8] one can go further and solve the integral equation (3.22)

for I(0,4)T3
. To do so let us use expression (2.8) for I(0,4)V,SU(2)

(⇣) and apply the inversion formula

(D.5):

I(0,4)T3
(a,b, c) =

1

2 ✓(v2⇣±2)

Z

JK

ds

2⇡i s

✓(s±2)✓(v�2)

✓(v�1s±1⇣±1)
I(0,4)i�h (a,b;x, y) . (3.24)

Since at each step the one can calculate contour integrals explicitly by residues, this provides

us with explicit (although quite long) expression for the index of T (0,4)
3

theory. The result is

symmetric under permutation of SU(3) fugacities a,b, c which non-trivial check supporting

the conjecture about the existence of such theory T (0,4)
3

and the fact that its flavor symmetry

is enhanced to E
6

� SU(3)3. The expansion of the index w.r.t q and v in terms of characters

of E
6

representations reads:

I(0,4)T3
=
�
1+ 78 v2 + 2430 v4 + . . .

�

+
�
(1+ 78) + (1+ 2 · 78+ 2430+ 2925)v2 + . . .

�
q + . . .

(3.25)

Let us note that q0 order coincides with the Hilbert series of the Higgs branch moduli space,

conjectured to be the same as the moduli space of one E
6

instanton [25, 29, 30]. The leading

terms also agree with the S2 ⇥ T 2 partition function computed in [16].

The T (0,4)
3

is a 2d version of the celebrated E
6

SCFT of Minahan-Nemeschansky [9]. One

important di↵erence here is that our theory does not have any Coulomb branch. We can

also come up with a “Lagrangian” for the “non-Lagrangian” E
6

SCFT as done in [16]. The

N = (0, 2) field content can be straightforwardly read o↵ the integral representation of the

index of T (0,4)
3

. Namely, (3.24) represents combining the theory associated to the quiver in

the left part of Fig. 11 together with two chiral multiplets in representations

(2,2)�1 � (1,3)2 (3.26)

of SU(2)s ⇥ SU(2)⇣ ⇥ U(1)v, two Fermi multiplets in

(1,1)�2 � (1,1)2 , (3.27)

and then gauging SU(2)s with N = (0, 2) Vector multiplet. The choice of superpotential

should be consistent with global symmetry charges appearing in the index. The result is in

agreement with twisted compactification of N = 1 4d theory proposed in [16] on S2.

As we have discussed in section 2.2, crossing-symmetry implies the TQFT structure of the

elliptic genus. But unlike the case of SU(2) theories, we have two distinct type of punctures:
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(0, 4) TN SCFT and duality

for the maximal puncture and

nh(Ymin

) = N2 , nv(Ymin

) = (N + 1)(N � 1) , (3.30)

for the minimal puncture. We define n(g,n)
h = nh(Cg) +

Pn
i=1

nh(Yi) and n(g,n)
v = nv(Cg) +Pn

i=1

nv(Yi).

As we have discussed, for g = 0, we have the Higgs branch, and for g � 1, we have the

Kibble branch. We get

cR = 6(n(g=0,n)
h � n(g=0,n)

v ) , cL = 4(n(g,n)
h � n(g,n)

v ) + 2g , (3.31)

for g = 0 and

cR = 6(n(g,n)
h � n(g,n)

v + g) , cL = 4(n(g,n)
h � n(g,n)

v ) + 2g , (3.32)

for g � 1. One can check that this result indeed agrees with central charge expressions we

computed in previous sections from the 2d gauge theory description for the case with g = 0

with 2 maximal and n� 2 minimal punctures and g = 1 with n minimal punctures.

The T (0,4)
N theory corresponds to a sphere with 3 maximal punctures with SU(N)a ⇥

SU(N)b ⇥ SU(N)c global (non-R) symmetry. We get the central charges to be

cR = 3(N � 1)(3N + 2) , cL = 2(N � 1)(3N + 2) , (3.33)

agrees with N = 2, 3 results in section 2.1 and 3.2.2.

SU(N)a 

U(1)0 U(1)1 

SU(N)1 SU(N)2 

...
 

SU(N)N-3 SU(N)N-2

SU(N)b 

U(1)N-3 U(1)N-2 

'

SU(N-1)   ½SU(N)c 

SU(N)a 

SU(N)b 

T
N 
(0,4)

U(1) SU(2) 
...
 

SU(N-2) 

U(1) U(1) U(1) 

Figure 12: The duality between T (0,4)
N coupled to a quiver tail (bottom) and a linear quiver

with SU(N)N�2 gauge group (top).

We can also compute the central charges from the dual Lagrangian description. When TN

theory is coupled to a quiver tail, of the form SU(N)c � SU(N�1)⇥SU(N�2)⇥ · · ·⇥SU(2)
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(2, 2) and (0, 2) duality



New N=(2, 2), (0, 2) duality

• Consider a (2, 2) or (0, 2) theory of the form   
 

                 [SU(N)](a, x) x SU(N) x [SU(N)](b, y)  
 

where the bifundamentals are given by chiral multiplets.

• We find that the following index is symmetric under    
and 

• IR fixed point is invariant under 

with bifundamentals and fundamentals attached as in the quiver diagram in the bottom of

Fig. 12. This theory is dual to a linear quiver with gauge group SU(N)N�2, and fundamental

attached to the end as in the top of Fig. 12. The SU(N) flavor symmetry anomaly coe�cient

can be computed in the dual frame:

kSU(N)

x

= Tr�3SU(N)2x = N (where x = a, b, c) . (3.34)

4 Other dualities

4.1 N = (0, 2) and N = (2, 2) analog of the crossing symmetry

In this section we will show that there are N = (0, 2) and N = (2, 2) analogies of the crossing

symmetry property of the spectrum considered in the previous section. In what follows we

will study the cases N = (0, 2) and N = (2, 2) in parallel. Let us define UN
N as N2 chiral

multiplets in (N,N)
+1 representation of SU(N)a ⇥ SU(N)b ⇥ U(1)x flavor symmetry. The

corresponding index contribution reads

I(0,2)
U
N

(a,b, x; q) =
NY

i,j=1

1

✓(xaibj)
(4.1)

or

I(2,2)
U
N

(a,b, x; q) =
NY

i,j=1

✓(txaibj)

✓(xaibj)
(4.2)

where a = {ai}Ni=1

, b = {bi}Ni=1

are SU(N)a,b fugacities satisfying

Y

i

ai = 1,
Y

i

bi = 1, (4.3)

and x is U(1)x fugacity. In the N = (2, 2) case we have an extra left-moving U(1) R-

symmetry fugacity t. Now let us consider N = (0, 2) or N = (2, 2) SU(N) SQCD with N

fundamental and N anti-fundamental flavors, which can be obtained by coupling two copies

of UN
N to SU(N) vector multiplet. In the N = (0, 2) case, similarly to the (0, 4) case, gauge

anomaly contributions from chiral and vector multiplets cancel each other. The theory has

the following index:

IN
i�h(a,b, x, y) =

1

N !

Z

JK

N�1Y

i=1

d⇠i
2⇡i ⇠i

IN
U
N

(a, ⇠, x) IN
V,SU(N)

(⇠) IN
U
N

(⇠�1,b, y) , (4.4)

where

I(0,2)
V,SU(N)

(⇠) = (q; q)N�1

Y

i 6=j

✓(⇠i/⇠j) , (4.5)

I(2,2)
V,SU(N)

(⇠) = (q; q)N�1

Q
i 6=j ✓(⇠i/⇠j)Q
i,j ✓(t ⇠i/⇠j)

. (4.6)
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One can show that the index (4.4) is invariant under the exchange of fugacities a $ b or,

equivalently, x $ y. Therefore we would like to conjecture that, as in the (0, 4) and (4, 4)

cases, the spectrum of the SCFT at the IR fixed point is invariant under the exchange of

flavor symmetries U(1)x $ U(1)y

4.2 Duality to a N = (0, 2) Landau-Ginzburg theory

In the case of N = (0, 2) one can check that the index (4.4) satisfies the following identity:

I(0,2)
i�h (a,b, x, y) =

✓(xNyN )

✓(xN )✓(yN )
Q

i,j ✓(xyaibj)
(4.7)

from which the symmetry under the exchange x $ y becomes obvious. This result can be

reformulated in the following way. Let us define

I(0,2)
K

N

(a,b�1, x) ⌘ ✓(q/xN )Q
i,j ✓(xai/bj)

. (4.8)

which can be understood as the index of the (0, 2) Landau-Ginzburg model K(0,2)
N with N2

chiral multiplets {�j
i}Ni,j=1

with R-charge 0, Fermi multiplet � with R-charge 1 and superpo-

tential

W = �det�. (4.9)

The superpotential imposes the condition

det� = 0 (4.10)

and breaks U(N2) flavor symmetry of N2 free chirals to SU(N)a ⇥ SU(N)b ⇥ U(1)x. The

equation (4.10) describes a (N2�1)-dimensional conifold CN embedded in CN2
. In particular

C
2

= {�1

1

�2

2

� �2

1

�1

2

= 0} (4.11)

is the Calabi-Yau threefold usually referenced to as just “conifold” in the literature. Then

the equation (4.7) can be written as

1

N !

Z

JK

d⇠

2⇡i⇠
I(0,2)
K

N

(a, ⇠�1, x) I(0,2)
V,SU(N)

(⇠) I(0,2)
K

N

(⇠,b�1, 1/y) = I(0,2)
K

N

(a,b�1, x/y) (4.12)

Physically (4.12) means that gauging a diagonal subgroup of SU(N)⇥SU(N) flavor symmetry

from two copies of K(0,2)
N is dual to just one copy of K(0,2)

N . Let (�(1))↵i , (�
(2))j� be chiral

fields from two copies of K(0,2)
N in the l.h.s. of duality. The conditions det�(1,2) = 0 kill

baryons of the theory in the chiral ring. This means that we are only left with mesons

�i
j ⌘ (�(1))↵j (�

(2))i↵ which play the roles of chiral fields of the dual Landau-Ginzburg model.

The condition det� = 0 is obviously satisfied and one can also show there are no additional
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flavor symmetries U(1)x $ U(1)y
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The superpotential imposes the condition
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Summary



Summary

• We find dualities of  “class S” N=(0, 4) theories

• Elliptic genus of (0, 4) theory T[C] = TQFT on C

• Elliptic genus of E6 1-instanton string

• New dualities of N=(2, 2) and (0, 2) quiver theories.



Thank you!


