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Motivation

Understand the universal features !
of AdS quantum gravity directly from CFT.

• AdS Locality, Fock space, and Interactions!
• (Large) Black Hole Thermodynamics?!
• What CFT Data Controls Thermodynamics?!
• How hard is it to UV complete quantum gravity?



Outline

I. Ensemble vs Microstate Thermodynamics!

II. Probing thermodynamics using CFT correlators!

III. Thermality from Virasoro Conformal Blocks!

IV. New Constraints on Holographic CFT Data?!



!

!

Ensemble vs 
Microstate 

Thermodynamic



Ensemble 
Thermodynamics

Most often we discuss thermodynamics !
in the canonical ensemble:

In thermo limit, we obtain the temperature:

In an ensemble averaged view of the theory, !
we count states as function of energy!

and derive e.g. the Cardy formula.

Z[T ] =
X

E

eS(E)�E
T

dS

dhEi ⇡ 1

T



Eigenstate Thermalization 
and Microstates

Microstate perspective — ask if 

h E |O1 · · · Ok| Ei
for a single pure microstate looks like !

a correlator at a temperature set by the state:

hO1 · · · OkiT (E)

Related to `Eigenstate Thermalization Hypothesis’.!
Thermo limit for us will be large central charge.



What Observable  
(in AdS/CFT)?
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OL(z)
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Some basic facts we can we learn from this…



Can Measure Geodesic 
Lengths in AdS

hOH(1)OL(1)OL(z)OH(0)i ⇡ e��LL
geod

(z,1)

OH(0)

OH(1)

OL(1)

OL(z)

Follows at large mass from the!
geometric optics approximation in AdS.



Probing the  
Hawking Temperature

A thermal 2-pt function at Hawking temperature?!
Is it periodic in Euclidean time?

?
OH(0)

OH(1)

OL(1)

OL(z) ⇡ hOL(1)OL(z)iTH



A New Perspective on 
CFT Thermodynamics

We view thermodynamics as a direct 
result of interactions between the 

heavy `bath’ and light probe.!
This can be made precise in CFTs, !
via crossing symmetry.  Are stress 
tensors ``universal thermalizers”?OL

OLOH

OH

h H |OLOL| Hi = hOHOH
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Review of 
AdS/CFT  

Kinematics



AdS CFT
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Figure 1: This figure shows how the AdS cylinder in global coordinates corresponds to the
CFT in radial quantization. The time translation operator in the bulk of AdS is the Dilatation
operator in the CFT, so energies in AdS correspond to dimensions in the CFT.fig:AdSCylinderIntro

for general scalar theories at tree-level and for ⇥4 theory at one-loop. Recently we [2] verified
the conjecture for n-pt amplitudes in general scalar theories at tree-level by showing that our
diagrammatic rules for the Mellin amplitude reduce to the usual Feynman rules in the flat space
limit. By setting up the appropriate scattering experiment [10, 11, 12, 13] in AdS and making
gratuitous use of the stationary phase approximation, we will derive Penedones’ conjecture in
section 2.

Why is the Mellin amplitude related to the flat-space S-matrix? A key point is that
the Dilatation operator in the CFT generates global time translations in AdS, as pictured
in figure 1. In other words, the energy of particles in AdS is given by the dimension of a
CFT operator (or CFT state – we are freely making use the operator-state correspondence).
So aside from their manifest similarity in a large class of examples, one can understand the
relationship between Mellin and scattering amplitudes by thinking about which states in the
CFT correspond to scattering processes in AdS. CFT states dual to AdS particles with energies
parametrically larger than the AdS curvature scale correspond to primary operators with
very large scaling dimension. The �ij’s in the Mellin amplitude correspond to relative scaling
dimensions, so scattering states localize the Mellin amplitude on large �ij’s related to the energy
and momentum of the physical scattering process. We will show how to make this argument
precise by directly extracting scattering states from the correlation functions of n single-trace
operators, written in the Mellin representation. For scattering momenta pi large compared to

2

HAdS = DCFT

Energies and Dimensions 
in AdS/CFT



Center of Mass !
for Excited State

Descendant of a!
Primary

AdS CFT

 n,`(t, ⇢,⌦)
�
@2n@µ1 · · · @µ`O

� |0i

AdS Motion = Conformal 
Representation Theory



Gravity and the CFT 
Stress Tensor

Graviton vertices must be universal:

hOH(1)OH(0)Tµ⌫(1)i ⇠ �Hp
c

This comes from the stress tensor normalization

hTµ⌫T↵�i ⇠ c

plus Ward identities for conformal symmetries.

In AdS/CFT, graviton states created by stress tensor.

gµ⌫(X) $ Tµ⌫(x)



So stress tensor exchange looks like…

Tµ⌫

OH

OH OL

OL

⇠ �H�L

c

Universality of 
Gravitional Potentials

⇠ hµ⌫

Using the Bootstrap, can derive universal!
long-distance gravitational force for all CFTs.



The Idea of the Proof: 
A Scattering Analogy
Free propagation and massless exchange!
require large amplitude at large    , e.g.

Partial Wave Amplitudes —> Conformal Partial Waves

`

Completely analogous CFT phenomenon.!
Implies existence and energy of large      states.`

1

1� cos ✓
⇡ X

`!1
P`(cos ✓)

t-channel singularity —> lightcone OPE singularity



Full Non-Linear Gravity 
from the CFT?

OL

OLOH

OH
OH(0)

OH(1)

OL(1)

OL(z)

Want to sum over all multi-stress tensor!
operator exchanges in the CFT to!

reproduce the full AdS gravitational field.!
Let’s focus on 2d CFTs at large central charge.



Virasoro 
Conformal 

Blocks 
and 

Multi-Graviton 
Exchange



Gravitons and Virasoro

Graviton states in a 2d CFT or 3d Gravity…

In 2d, the stress tensor is purely (anti-)holomorphic

gµ⌫(X) $ Tµ⌫(x)

T (z) =
X

n

z�2�nLn

|gravi = T (0)|0i = L�2|0i

States created by acting at the origin, so



Virasoro Algebra

[Ln, Lm] = (n�m)Ln+m +
c

12
n(n2 � 1)�n,�m

All graviton correlators and interactions!
are fixed by the Virasoro algebra (ie by symmetry):

We will be interested in large central charge:

c =
3

2G

Virasoro approximately just decoupled oscillators…



Representations at 
Large Central Charge

[Ln, Lm] ⇡ c

12
n(n2 � 1)�n,�m

Just have independent oscillators.  States are

Lk1
�m1

Lk2
�m2

· · ·Lkn
�mn

|hi

Refer to as `gravitons’.  These are orthogonal !
when m = 2,3,… and norm is

Nmi,ki / ck1+···+kn

What does this mean for the exchange of gravitons?



Virasoro Blocks at 
Large Central Charge

Virasoro blocks, ie all graviton exchanges in AdS.

At large central charge (other parameters fixed!) !
can just sum over Virasoro generators directly.

*
OHOH

0

@
X

{mi,ki}

Lk1
�m1

· · ·Lkn
�mn

|hihh|Lkn
mn

· · ·Lk1
m1

N{mi,ki}

1

AOLOL

+

OL

OL

⇡
OH

OH

(projector)



Virasoro Blocks at 
Large Central Charge

When all dimensions are fixed, just get
*
OHOH

 
X

k

Lk
�1|hihh|Lk

1

Nk

!
OLOL

+

This is just the global conformal block!  !
For definiteness, each k is the expansion of:!

!

!

It corresponds to motion in AdS, but no graviton!
states are created at infinite central charge.

gh(1� z) = (1� z)h2F1(h, h, 2h, 1� z)



How do `Gravitons’ 
couple to Operators?

Formally, gravitons couple to operators via

Follows from Ward identity for stress tensor.  Thus
[Lm,O(z)] = hi(1 +m)zmO(z) + z1+m@zO(z)

hOOL�mi
hOOi ⇠ hO

Large central charge could be compensated !
by a large operator dimension.

or Tµ⌫

OH

OH OL

OL

⇠ �H�L

c



Ex: Virasoro Blocks 
in a ‘Newtonian’ Limit

Only produce gravitons when operator dimensions!
grow in the limit of large central charge.

c ! 1 with

hHhL

c
fixed

For example, in the `Newtonian’ limit

this has no graviton-graviton interactions, !
but objects do have gravitational binding energy.

[Lm,O(z)] = hi(1 +m)zmO(z) + z1+m@zO(z)



Virasoro 
Blocks in a 
Heavy-Light  

Semi-Classical 
Limit 



Heavy-Light  
Semi-Classical Limit

OH(0)

OH(1)

OL(1)

OL(z)

OH(0)

OH(1)

OL(1)

OL(z)

How to proceed??

hH , h̄H / c � hL, h̄L

c ! 1



Heavy-Light  
Semi-Classical Limit



Three Different 
Methods (known)

I. `Monodromy Method’ — based on Liouville theory!

II. `Hawking from Catalan’ — Direct Summation!

III. `Background field Method’ — Most Powerful…!



Idea of the Method

OH(0)

OH(1)

OL(1)

OL(z)

OH(0)

OH(1)

OL(1)

OL(z)

Main Idea:  Black Hole creates a classical !
background.  Can we find this background!
directly in the CFT, and expand about it?!

!

Find `gravitons’ as perturbations of BTZ background.



Why the Stress Tensor 
Isn’t a Primary Operator

Under a conformal transformation
z ! w(z)

Primary operators are supposed to transform to

a primary in the new coordinates/metric.

Now let’s study the CFT stress tensor !
under a conformal transformation…

O(w) = [z0(w)]hO(z(w))



Why the Stress Tensor 
Isn’t a Primary Operator

hTµ⌫igab 6= 0

Stress tensor will get a VEV due to curvature: 

ds2 = dzd̄z ! dwdz̄ = w0(z)dzd̄z

After conformal trans, CFT lives in a new metric

T (z) ! [z0(w)]2T (z(w)) + S(z(w), w)

Second term, `Schwarzian Derivative’, is the VEV.

This is why it’s not a primary operator.



*
OHOH

0

@
X

{mi,ki}

Lk1
�m1

· · ·Lkn
�mn

|hihh|Lkn
mn

· · ·Lk1
m1

N{mi,ki}

1

AOLOL

+

OL

OL

⇡
OH

OH

All complication from powers of heavy dimension:

In new background for CFT, cancel this against VEV…

hOH(1)OH(1)T (z)|hi = CHHh

✓
hH

(1� z)2
+

h

z2(1� z)

◆

What can we do with a 
Background for the CFT?



What can we do with a 
Background for the CFT?

We transform to coordinates

Using the transformation rule, we find

hOH(1)OH(1)T (w)|hi = CHHhh
1� z(w)

z2(w)

1� w = (1� z)↵ with ↵ =

r
1� 24hH

c

All dependence on the heavy operator dimension!
has cancelled once we put the CFT in a background!



Relation to AdS

ds2 =

1

cos

2 

✓
d2

+ ↵↵̄
dzdz̄

zz̄

◆
+

1

4

✓
↵
dz

z
� ↵̄

dz̄

z̄

◆2

Deficit/BTZ metric can be written as

Thus z and w related in the same way !
as pure AdS and BTZ.

Either obtain a deficit angle or temperature:

TH =

q
24hH

c � 1

2⇡



New Virasoro: Gravitons 
About BTZ Background

T (w) =
X

n

w�2�nL0
n

Series expand stress tensor in new coordinates:

New, distinct, Virasoro generators. !
Same Virasoro algebra because the stress tensor !

OPE take the same form in new coords.

Now we can write the sum over the Virasoro!
irreducible rep using new generators…



Block Computation in 
New Coordinates

*
OHOH

0

@
X

{mi,ki}

L0k1
�m1

· · ·L0kn
�mn

|hihh0|L0kn
mn

· · ·L0k1
m1

N{mi,ki}

1

AOLOL

+

We can compute block using new generators:

All         with              act trivially at large c!L0
n |n| > 1

This follows because the normalizations!
of gravitons still proportional to central charge,!

but no large dimensions in `vertices’.



Obtain Heavy-Light 
Virasoro Blocks

Heavy-Light Virasoro blocks are!
just global blocks in new coordinates.

No `gravitons’ are created at large central charge!
except those already in the classical background.

Vh(1� w) = (1� w)h�2hL
2F1(h, h, 2h, 1� w)

Note that all analysis was entirely in CFT,!
based only on Virasoro and large c.



Vacuum Block and 
Thermality

Above the BTZ threshold, we seem to have !
periodicity in Euclidean time, ie thermality,!

as Virasoro blocks depend on Euclidean time via:

 because above the BTZ threshold, we have

1� w = (1� z)2⇡iTH = e2⇡iTHtE

↵ ⌘
r

1� 24hH

c
= 2⇡iTH

If we look at `pure graviton exchange’ we find…



Vacuum Block and 
Thermality

V(t) =
✓

⇡TH

sin(⇡THt)

◆2hL

z ! 1� et

after we transform from the plane!
to the cylinder via:

The universal vacuum Virasoro block is:

Precisely what we expect for a thermal correlator!



Universality of 
OPE Data from 

Thermodynamics 
in General 

Dimensions?



Heavy-Light Correlator 
in AdS/CFT with d>2

OL

OLOH

OH
OH(0)

OH(1)

OL(1)

OL(z)

Which states propagate between heavy and light!
to `thermalize’ the light operator?

Tµ⌫ , Tµ⌫T↵� , T@nT, · · · , T k, · · ·



Simplifies Further in 
High Temperature Limit

OH(0)

OH(1)

OL(1)

OL(z)

OH(0)

OH(1)

TH ! 1

OL(1)

OL(z)

Measure distances in CFT in units of temperature:
(1� z) ! t

TH
, TH ! 1



High Temperature Limit

OH(0)

OH(1)

OL(1)

OL(z)

OH(0)

OH(1)

TH ! 1

OL(1)

OL(z)

Only operators without 
derivatives contribute.

OL

OLOH

OH

Tµ⌫ , T 2
µ⌫ , T 3

µ⌫ , · · ·

OPE Coefficients must!
have universal properties!

to recover thermodynamics:

hOOT ki
More specifically…



Universal Relations for 
OPE Coefficients

hOOT ki = Ckp
k!

If we define the OPE coefficients as

Periodicity in Euclidean time of the correlator
hOHOHO(t)O(0)i =

X

k

Ck

k!
tk

implies relations among OPE coefficients (any k):

Ck =
1X

m=1

Ck+m

m!

Infinitely many relations for each operator!!
Certainly not a consequence of Ward identity, etc…



Thermodynamic Constraints 
on Holographic CFT Data?

• For all, or only almost all operators?!
• Derivable from other constraints (e.g. the 

bootstrap) or is this a new constraint?!
• Constraints remain at finite central charge?!
• Can this help to explain if/why it’s hard to 

UV complete quantum gravity?

hOO(Tµ⌫)
ki ⇠

1X

m=0

p
k!(k +m)!

m!
hOO(Tµ⌫)

k+mi



Future Directions

• New perspectives on Virasoro Blocks, including 
generalizations and 1/c corrections (in progress)!

• Connections between OPE Data and Thermality…  
for which theories, in what limits?!

• Do thermodynamics constraints on OPE Data 
explain why it’s difficult to UV Complete Gravity?



!

!

EXTRA SLIDES



Exact Result for Four 
Different Operators

Thus we can compute the heavy-light Virasoro block using

Vh(w) = hOH1(1)OH2(1) [Ph,w]OL1(w)OL2(0)i (3.24)

The matrix elements

hhw|Lkn
mn

· · · Lk1
m1

OL1(0)OL2(w)i (3.25)

are identical to the matrix elements of light operators in a flat background, except now they

depend on w instead of z. This again follows because the Ln satisfy the Virasoro algebra,

and act according to equation (2.15) except with Ln ! Ln and O(z) ! O(w). However,

the heavy matrix elements

hOH1(1)OH2(1)Lk1
�m1

· · · Lkn
�mn

|hi (3.26)

are non-trivial, and have no direct equivalent in a flat background. They can be obtained

from equation (3.11), and its generalization to multiple T (w) insertions, simply by expanding

in w. In fact, in the case of the global generator L�1

= @w, we need only compute

hOH1(1)OH2(1)Lk
�1

|hi = lim
w!0

@k
whOH1(1)OH2(1)Oh(w)i

= ↵�hcH1H2h lim
w!0

@k
w(1 � w)�h+�H/↵. (3.27)

since L�1

translates Oh in the w coordinate system. This di↵ers from the equivalent result

in a flat metric only by the intriguing replacement �H ! �H/↵.

We have all the ingredients we need to compute the heavy-light Virasoro block at large

central charge. Just as in section 2.2, because the normalizations N{mi,ki} are proportional

to positive powers of c when mi 6= ±1, the Virasoro block reduces to

Vh(w) = hOH1(1)OH2(1)

 
X

k

Lk
�1

|hihhw|Lk
1

hhw|Lk
1

Lk
�1

|hi

!
OL1(w)OL2(0)i (3.28)

Only the heavy side di↵ers from the usual global conformal block, due to the �H rescaling.

Performing the sum, we find that in the scaling limit of (1.2),

lim
c!1

V(c, hp, hi, z) = (1 � w)(hL+�L)(1� 1
↵
)

⇣w
↵

⌘h�2hL

2

F
1

✓
h � �H

↵
, h+ �L, 2h, w

◆
, (3.29)

where we view w as a function of z through equation (3.10), and we have included the

14

Note the rescaling of the heavy dimension difference

hH1 � hH2 ⌘ �H ! �H
↵

Interesting to find a clear physical interpretation.

where we define

the stress tensor picks up the vacuum expectation value [23]

hT µ⌫i = c

12⇡

✓
rµr⌫� + rµ�r⌫� � gµ⌫

✓
r�r�� +

1

2
r��r��

◆◆
. (3.7)

After the conformal transformation z ! w(z) the CFT lives in a background metric

ds2 = w0(z)dzd̄z. (3.8)

By using w0(z) = e2� and the normalization T (z) = 2⇡Tzz(z), we obtain the Schwarzian

derivative in equation (3.5) from the general formula for the VEV.

Now let us demonstrate how we can make use of these results. We would like to study

the correlator

hOH(1)OH(1)T (z)Oh(0)i = CHHh

✓
hH

(1 � z)2
+

h

(1 � z)z2

◆
, (3.9)

where CHHh is an OPE coe�cient. Note that we are now placing the second heavy operator

at z = 1 rather than z = 0 as before. This will cause less clutter in many expressions since

the OPE limit will correspond to an expansion in powers of z rather than powers of 1 � z.

If we perform a conformal transformation to w(z) defined by

1 � w = (1 � z)↵ with ↵ =

r
1 � 24

hH

c
, (3.10)

then in the new coordinate system

hOH(1)OH(1)T (w)Oh(0)i = CHHh

✓
h
1 � z(w)

z2(w)

◆
. (3.11)

The key point is that all hH dependence has been removed through a cancellation between the

Schwarzian derivative and the primary transformation law. The conformal transformation

itself could have been determined a priori by writing the result for a transformation

parameterized by a general w(z) and then solving a di↵erential equation demanding that

all hH dependence be eliminated. In fact, one can generalize the procedure to find more

complicated conformal transformations that cancel the contribution from more than two

heavy operators.

We have seen how operators transform, but now we would like to study the states that

they create, especially the Virasoro descendants or ‘gravitons’ created by the stress tensor.

10
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What would we 
expect from 3d 
AdS Gravity?



Deficit Angles in D=2

In 2+1 dimensional AdS, expect deficit 
angles, detectable near infinity.

AdS

AdS Solution for a Sub-Planckian Object:
ds2 = cosh

2
()dt2 � d2 � (1� 8GM) sinh

2
()d�2



Deficit Angles in D=2

ds2 = cosh

2
()dt2 � d2 � (1� 8GM) sinh

2
()d�2

Deficit angles are characterized by parameter

↵ =
p
1� 8GM =

r
1� 24h

c

What if

h >
c

24
?



BTZ Black Holes

|↵| = 2⇡TH

Deficit angle analytically continues to BTZ with

Signal:  bulk and boundary correlators are !
periodic in imaginary time.

hOH |OA(it)OA(0)|OHi = (⇡TH)2hA

sinh2hA(⇡THt)

But why should all sufficiently !
heavy states be BTZ black holes?



Heavy States Always  
BTZ Black Holes?

One reason this makes sense is that!
around a BTZ black hole, there are no stable orbits!

V (r) =

✓
1� M

rd�2
+ r2

◆✓
m2 +

`2

r2

◆
Radial potential for orbits is

This is monotonic for d = 2.

Thus all geodesics `fall in’ on an AdS timescale.!
It’s hard to avoid quickly forming a black hole.



!

!

CFT Probe of 
Black Holes?



New Virasoro: 
Some Technicalities (1)

First of all, we should note that:

We can expand T (w) in the new coordinate w

T (w) =
X

n

w�2�nLn. (3.12)

The Virasoro algebra can be derived entirely from the singular terms in the T (z)T (0) OPE,

and these terms are preserved by conformal transformations. An important consequence

is that the new generators Ln expanded in w still satisfy the usual Virasoro algebra from

equation (2.2), with Ln ! Ln, and also the relation (2.15) when Ln act on conformally

transformed operators O(w).

The Ln are a complete basis of Virasoro generators, so one can write Lm as a linear

combination of the Ln and vice versa. A non-trivial special feature of the Ln generators is

Ln|hi = 0 for n � 1 (3.13)

when the state |hi is primary. Consequently, all states in the representation are generated

by acting with L�n’s, n > 0. These statements depend on the fact that the inverse

transformation z(w) has an analytic Taylor series expansion in w when expanded about

the origin, as can be seen from equation (3.10). Therefore, because correlators of the

form h↵|T (z)|hi are regular as z ! 0 for all h↵|, they are also regular in w coordinates

h↵|T (w)|hi as w ! 0. Equation (3.13) follows directly.

We can also be more explicit and use the transformation rule from equation (3.4) to

write the w-expansion of T (w) directly in terms of T (z(w)), which gives the relation

X

n

w�n�2Ln =
1

↵
(1 � w)

1
↵
�1

X

m

[z(w)]�m�2Lm � hH

↵2(1 � w)2
. (3.14)

All terms on the right-hand side have a series expansion in positive integer powers of w, so

when we combine terms proportional to w�n�2, we will include only Lm with m � n. This

provides an alternate and more explicit derivation of equation (3.13).

The conformal transformation z(w) has a branch cut running to infinity, so it cannot

be expanded in a Taylor series around w = z = 1. As a result the Ln do not have

well-behaved adjoints with respect to inversions. In particular, unlike the case of the usual

Virasoro generators

L†
n 6= L�n (3.15)

so the Ln do not act to the left on ‘ket’ states hh| in a simple way. Nevertheless, we may

11

because

1� w = (1� z)↵

is analytic about the origin.!
!

So primaries wrt old Virasoro !
are also primary wrt new Virasoro.



New Virasoro: 
Some Technicalities (2)

We can expand T (w) in the new coordinate w

T (w) =
X

n

w�2�nLn. (3.12)

The Virasoro algebra can be derived entirely from the singular terms in the T (z)T (0) OPE,

and these terms are preserved by conformal transformations. An important consequence

is that the new generators Ln expanded in w still satisfy the usual Virasoro algebra from

equation (2.2), with Ln ! Ln, and also the relation (2.15) when Ln act on conformally

transformed operators O(w).

The Ln are a complete basis of Virasoro generators, so one can write Lm as a linear

combination of the Ln and vice versa. A non-trivial special feature of the Ln generators is

Ln|hi = 0 for n � 1 (3.13)

when the state |hi is primary. Consequently, all states in the representation are generated

by acting with L�n’s, n > 0. These statements depend on the fact that the inverse

transformation z(w) has an analytic Taylor series expansion in w when expanded about

the origin, as can be seen from equation (3.10). Therefore, because correlators of the

form h↵|T (z)|hi are regular as z ! 0 for all h↵|, they are also regular in w coordinates

h↵|T (w)|hi as w ! 0. Equation (3.13) follows directly.

We can also be more explicit and use the transformation rule from equation (3.4) to

write the w-expansion of T (w) directly in terms of T (z(w)), which gives the relation

X

n

w�n�2Ln =
1

↵
(1 � w)

1
↵
�1

X

m

[z(w)]�m�2Lm � hH

↵2(1 � w)2
. (3.14)

All terms on the right-hand side have a series expansion in positive integer powers of w, so

when we combine terms proportional to w�n�2, we will include only Lm with m � n. This

provides an alternate and more explicit derivation of equation (3.13).

The conformal transformation z(w) has a branch cut running to infinity, so it cannot

be expanded in a Taylor series around w = z = 1. As a result the Ln do not have

well-behaved adjoints with respect to inversions. In particular, unlike the case of the usual

Virasoro generators

L†
n 6= L�n (3.15)

so the Ln do not act to the left on ‘ket’ states hh| in a simple way. Nevertheless, we may
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Because inversions are non-trivial, or equivalently!
because conf. trans. non-analytic at infinity.!

!

So how can we deal with adjoint states?!
Formally define:

formally define the ‘w-vacuum state’ h0w|, chosen to satisfy

h0w|L�n = 0 (3.16)

for all n � �1, and we can normalize it so that h0w|0i = 1. Similarly, for any primary state

|hi there exists a ket hhw| defined through

hhw| = lim
w!1

h0w|w2hO(w). (3.17)

Since the new Virasoro generators Ln act on operators in the new metric such as O(w) in

exactly the same way that the conventional generators act on operators in a flat metric,

matrix elements can be easily calculated. The hhw| state satisfies

hhw|L
0

= hhw|h and hhw|hi = 1 (3.18)

so for most purposes we can use hhw| in place of hh|, and Ln in place of Ln. We will use

this construction in the next section to create a modified version of the Virasoro conformal

block projector from equation (2.13), utilizing the Ln in place of the Ln generators.

3.2. Heavy-Light Virasoro Blocks from a Classical Background

We would like to compute the conformal blocks for the semi-classical heavy-light correlator

Vh(z) = hOH1(1)OH2(1) [Ph]OL1(z)OL2(0)i (3.19)

where Ph projects onto the state |hi and all of its Virasoro descendants. We will choose

the normalization of Vh(z) so that its leading term is zh�2hL in an expansion around z = 0.

We now allow hH1 6= hH2 and hL1 6= hL2 for maximal generality, but we will need to take

�H = hH1 � hH2 with |�H | ⌧ c (3.20)

and we also define �L = hL1 � hL2 . This computation is naively much more di�cult than

the one in section 2.2, because the Virasoro generators act on OH to produce factors of

hH / c. This means that the contribution from states containing L�n with n > 1 in Ph no

longer vanish, since the factors of hH in hOH1(1)OH2(1)L�n|hi compensate for factors of c

in the normalization. However, we will make use of the conformal transformation from the

previous section to simplify the computation, basically turning it into a recapitulation of
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so we have adjoint states
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the global conformal case.

Let us begin by transforming the light operators in the correlator to w coordinates, so

we want to compute the Virasoro blocks for

Vh(w) = hOH1(1)OH2(1) [Ph]OL1(w)OL2(0)i (3.21)

This formula di↵ers from Vh(z) by the Jacobian factor (z0(w))hL1 (z0(0))hL2 , which we will

restore below. We claim that in the heavy-light semi-classical limit

Ph,w ⇡
X

{mi,ki}

Lk1
�m1

· · · Lkn
�mn

|hihhw|Lkn
mn

· · · Lk1
m1

N{mi,ki}
(3.22)

is a projector onto the irreducible representation of the Virasoro algebra with primary

|hi. We have used ⇡ because this basis is not orthogonal at higher orders in 1/c, though

one can easily write down a formula without approximations by using the matrix of inner

products of states instead of just using the normalizations N{mi,ki}. We need to show that

the normalizations for Ln are identical to those for Ln, that this is a projection operator

satisfying (Ph,w)2 = Ph,w, and that it is complete, i.e. that all states in the representation

are included with proper normalization. The state hhw| was defined in equation (3.17).

If Ph,w is a projector, then its completeness follows because the Ln form a basis for

the Virasoro algebra. The fact that Ph,w is projector, and the equivalence of normalization

factors, follows from the general identification of matrix elements

hhw|Lkn
mn

· · · Lk1
m1

|hi = hh|Lkn
mn

· · ·Lk1
m1

|hi (3.23)

for arbitrary mi, ki, and n. This identification holds because the Lm and Lm both satisfy

the Virasoro algebra, so we can use their commutation relations to move mi < 0 to the left

and mi > 0 to the right. Since both generators annihilate |hi when mi > 0 and hhw| and
hh| when mi < 0, the full computation is determined by the Virasoro algebra. Note that

despite the presence of the adjoint state hhw| we have not made use of L†
n.

2

2One may worry whether the state hhw| is physical and thus whether our construction is meaningful.
Ultimately, one may view it simply as a convenience for constructing the projection operator Ph,w, whose
action on any state can be defined operationally by using (3.23). The projector thus defined is easily seen
to satisfy P2

h,w = Ph,w, and also to project any state onto the basis Lk1
�m1

. . . Lkn
�mn

|hi, which is all that is
required for the construction of the conformal blocks.
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Finally we can conclude that:

This follows because new and old generators!
both satisfy the Virasoro algebra, and also!
act on operators (in z or w, respectively)!

as determined by the OPE of the stress tensor!
with the primary operator in question, justifying:

Thus we can compute the heavy-light Virasoro block using

Vh(w) = hOH1(1)OH2(1) [Ph,w]OL1(w)OL2(0)i (3.24)

The matrix elements

hhw|Lkn
mn

· · · Lk1
m1

OL1(0)OL2(w)i (3.25)

are identical to the matrix elements of light operators in a flat background, except now they

depend on w instead of z. This again follows because the Ln satisfy the Virasoro algebra,

and act according to equation (2.15) except with Ln ! Ln and O(z) ! O(w). However,

the heavy matrix elements

hOH1(1)OH2(1)Lk1
�m1

· · · Lkn
�mn

|hi (3.26)

are non-trivial, and have no direct equivalent in a flat background. They can be obtained

from equation (3.11), and its generalization to multiple T (w) insertions, simply by expanding

in w. In fact, in the case of the global generator L�1

= @w, we need only compute

hOH1(1)OH2(1)Lk
�1

|hi = lim
w!0

@k
whOH1(1)OH2(1)Oh(w)i

= ↵�hcH1H2h lim
w!0

@k
w(1 � w)�h+�H/↵. (3.27)

since L�1

translates Oh in the w coordinate system. This di↵ers from the equivalent result

in a flat metric only by the intriguing replacement �H ! �H/↵.

We have all the ingredients we need to compute the heavy-light Virasoro block at large

central charge. Just as in section 2.2, because the normalizations N{mi,ki} are proportional

to positive powers of c when mi 6= ±1, the Virasoro block reduces to

Vh(w) = hOH1(1)OH2(1)

 
X

k

Lk
�1

|hihhw|Lk
1

hhw|Lk
1

Lk
�1

|hi

!
OL1(w)OL2(0)i (3.28)

Only the heavy side di↵ers from the usual global conformal block, due to the �H rescaling.

Performing the sum, we find that in the scaling limit of (1.2),

lim
c!1

V(c, hp, hi, z) = (1 � w)(hL+�L)(1� 1
↵
)

⇣w
↵

⌘h�2hL

2

F
1

✓
h � �H

↵
, h+ �L, 2h, w

◆
, (3.29)

where we view w as a function of z through equation (3.10), and we have included the
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Thus we can compute the heavy-light Virasoro block using
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where we view w as a function of z through equation (3.10), and we have included the
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Right correlator trivial; exactly as with old Virasoro.

Thus we can compute the heavy-light Virasoro block using

Vh(w) = hOH1(1)OH2(1) [Ph,w]OL1(w)OL2(0)i (3.24)

The matrix elements

hhw|Lkn
mn

· · · Lk1
m1

OL1(0)OL2(w)i (3.25)

are identical to the matrix elements of light operators in a flat background, except now they

depend on w instead of z. This again follows because the Ln satisfy the Virasoro algebra,

and act according to equation (2.15) except with Ln ! Ln and O(z) ! O(w). However,

the heavy matrix elements

hOH1(1)OH2(1)Lk1
�m1

· · · Lkn
�mn

|hi (3.26)

are non-trivial, and have no direct equivalent in a flat background. They can be obtained

from equation (3.11), and its generalization to multiple T (w) insertions, simply by expanding

in w. In fact, in the case of the global generator L�1

= @w, we need only compute

hOH1(1)OH2(1)Lk
�1

|hi = lim
w!0

@k
whOH1(1)OH2(1)Oh(w)i

= ↵�hcH1H2h lim
w!0

@k
w(1 � w)�h+�H/↵. (3.27)

since L�1

translates Oh in the w coordinate system. This di↵ers from the equivalent result

in a flat metric only by the intriguing replacement �H ! �H/↵.

We have all the ingredients we need to compute the heavy-light Virasoro block at large

central charge. Just as in section 2.2, because the normalizations N{mi,ki} are proportional

to positive powers of c when mi 6= ±1, the Virasoro block reduces to
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where we view w as a function of z through equation (3.10), and we have included the
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Left correlator from a conformal transformation:

Using this relation gives the final result, as desired.


