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Introduction

In this talk we study the classical vacuum Einstein
Equations.

Rµν = 0

Deceptively simple looking equations. Extremely
complicated dynamics, in particular involving black holes.
E.g. consider the collision of two black holes. Analytically
intractable. Phenonenon seems too complicated to ever
admit an exact solution. Progress in numerics, but also
very difficult.
Natural instinct of a theorist: search for a parameter and do
perturbation theory. However Einstein’s equations do not
have a parameter. Can we invent one?
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Introduction

Similar lack of parameters in quantum SU(3) Yang Mills
theory in D = 4. t’ Hooft introduced an effective parameter
by generalizing to the study of SU(N) Yang Mills theory.
New parameter = 1

N .
In the early 1980s Witten studied the problem of quantum
bound states with the 1

r potential in a large number of
dimensions. Emergent semiclassical picture of (e.g.) the
Helium atom, with definite inter nuclear separation and
‘bond angle’. While Witten’s motivations were pedegogical,
some chemists today find this approximation in the study of
complicated real world molecules.
This talk. Buiding on suggestions by Emparan, Suzuki,
Tanabe and collaborators, we adopt a similar strategy for
the analysis of black hole dynamics in classical gravity. Our
parameter is 1

D . D is the number of spacetime dimensions.
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Introduction: the membrane region

Schwarschild Black hole in D spacetime dimenstions.

ds2 = −
(

1−
( r0

r

)D−3
)

dt2 +
dr2(

1−
( r0

r

)D−3
) + r2dΩ2

D−2

(1)

EST made the following important observation. If r is held
fixed at any value greater than r0 as D →∞ then metric
reduces to flat space.
On the other hand set r = r0(1 + R

D−3) and keep R fixed as
D is sent to∞ then

lim
D→∞

( r0

r

)D−3
= lim

D→∞
(1 +

R
D − 3

)−(D−3) = e−R.

Thus ‘tail’ of the black hole extends only over the distance
δr ∼ r0

D . We refer to this thin layer as the ‘membrane’
region.
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Introduction: Light Qasinormal Modes

EST proceeded to compute the quasinormal modes of the
Schwarzschild Black hole in an expansion in 1

D . As usual
there are an infinite number of qasinormal modes at every
angular momentum. At any angular momentum EST find:
1.A finite number of modes with frequecies of order 1/r0.
Light modes.
2. All remaining infinite number of modes have frequencies
of order ∼ 1/δr . Heavy modes.
All quasinormal modes have imaginary components of
frequency atleast as large as the real parts. Heavy modes
decay over time scale δr . Light modes decay over time
scale r0.
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Introduction: Intuition for scales

We can understand the qualitative features of EST’s results
as follows. Qasinormal mode problem, similar to the
computation of the eigenmodes of ∇2 in a leaky spherical
shell of radius r0 and thickness δr . Modes expanded in
spherical and radial harmonics. All modes with nonzero
radial harmonics have freqency ∼ 1δr . Howevere modes
with zero radial harmonic have frequency ∼ 1/r0.
Light modes are static over time scales δr . Interesting way
to understand these modes as we now explain.
Infinitesimal translations, boosts and scale transformations
produce static linearized solutions to the equations of
motion. If we zoom onto a patch of size δr about any point
on the horizon, it turns out that the light modes well
approximate one of the zero modes. However the zero
mode parameter varies as a function of the location of the
patch. As a consequnce these configurations evolve on
time scale r0.
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Introduction: Effective low energy theory?

In other words EST’s light quasi normal modes describe
the linearized collective coordinate dynamics of black
holes. Obvious question: can we find the nonlinear ‘chiral
lagrangian’ of these modes.
As dynamics will turn out to be dissipative we should really
search for an equation of motion not a Lagrangain.
In this talk we will determine the nonlinear equations of
motion of the effective theory (to leading order) by a direct
analysis of Einstein’s equations. The method we employ is
reminicent of the Fluid Gravity correspondence. However
we work in flat space; our approximations are justified by
the expansion in 1

D rather than the long wavelength limit;
we do not require derivatives to be small in units of the
Schwarschild radius.
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Einstein’s equations with SO(d + 1) Isometry

The large D limit is simplest when observables are kept
fixed as D is taken to infinity.
We divide up the D dimensions into two sets of p + 2 and
d + 1 respectively (D = p + d + 3). We then study only
those spacetimes that enjoy an
SO(d + 1) = SO(D − p − 2) invariance.
In other words we require the metric to take the form

ds2
full = gµνdxµdxν + eφdΩ2

d (2)

E.g. flat space

ds2 = dwadwa + ds2 + s2dΩ2
d

In this talk we take the limit D →∞ with p held fixed. In
particular this means d →∞.
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The large d limit

Einstein’s equations become

e−φ(d − 1)− d
4

(∂φ)2 − 1
2
∇2φ = 0

Rµν =
d
2
∇µ∇νφ+

d
4
∇µφ∇νφ

(3)

Note factors of d behind ∂φ. Intuitive reason: φ controls
the size of a d sphere. Wiggles of φ much more expensive
than those of gµν . Sensible large d limit requires gµν and φ
to be treated asymmetrically. φ varies on length scale unity.
gµν varies on length scale 1

d .
Solutions of interest are nontrivial over length scales of
order unity. However metric varies over length scale 1

d . In
order to write metric we think of spacetime collection of
approximately dp+2 patches, each of size 1

d . Solve
Einsten’s equations in each region and smoothly match.
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Coordinates in a patch

Consider a particular patch centred around xµ
0 . We use

rescaled patch coordinates and metric (also gauge field
when we study generalizations ahead)

xµ = xµ
0 +

αµ(ya)

d
Gab = d2 × ∂aα

µ ∂bα
νgµν

Aa = d × ∂aα
µAµ

(4)
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Equations in the patch

Adapted to patch coordinates the equations of motion
become

∇aχ
a = e−φ

d − 1
d
− 1

4
χ2

Rab =
1
2
∇aχb +

1
4d

χaχb

(5)

Here Rab is the curvature with Gab regarded as the metric.
Similarly for covariant derivatives
We can now easily take the large d limit of the equations.
At leading order in 1

d φ and χ are constants in this
equation. In actual computations it is usually convenient to
partially fix coordinate freedom to ensure eφ = s2. s is the
radius of the sphere in the big space Rd+1.
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Patches of Black Holes

Can find exact large d solutions by studying patches of
known exact solutions.
Consider the Schwarschild BH in the Kerr Schild form. To
get this form we move to ‘radial’ Eddington Finklestein
coordinates in which

ds2 = 2dvdr̃ − dv2
(

1− (r0/r̃)D−3
)

+ r2dΩ2
D−2.

Then define a new ‘time’ coordinate t by v = t + r . We
have

ds2 = ds2
flat + (dt + dr̃)2(r0/r̃)D−3

Finally divide up flat space coordinates into p + 2 and
d + 1. Let

r̃2 = r2 + s2

.
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Patches of black holes

The ‘reduced’ p + 3 dimensional metric is given by

ds2 = dwadwa + ds2 +
(u + n)µ(u + n)νdxµdxν

ψp+d

with

ψ =

√
r2 + s2

r0
, uµdxµ = dt , nµdxµ =

dψ
|dψ|

We can obtain more general black hole solutions by
translating and boosting the function ψ and the oneform
field n in the p + 2 directions (boosts or translations in the
d + 1 dimensions violate SO(d + 1) symmetry and so are
not considered).
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Wigly membranes

While boosts change u and n they do not alter the fact that

u2 = −1, u.n = 0, n2 = 1, |dψ|2 = r2
0 =

(
s
ns

)2

This suggests a strategy to find a much larger class of
solutions at large d . We could simply try to replace ψ by an
arbitrary function and n by an arbitrary oneform field,
subject only to local constraints above and a few other
simple constraints.
At leading order in large d this produces a class of
spacetimes, whose even horizon may be shown to lie at
ψ = 1. Moreover ψ − 1� 1

d the metric is exponentially
close to flat space.
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The wiggly moving membrane

Thus from the point of view of the outside observer, the
class of metrics described above are nontrivial only in a
shell of thickness 1

d around the surface ψ = 1. We call this
the membrane region. It follows that, at leading order in
large d , the spacetimes obtained from this procedure are
characterized only by the location of the geometrical
surface ψ = 1 and the value of u on this surface. The
constraints listed above also have to be obeyed only on
this surface.
It is easy to construct ψ functions that satisfy the ‘norm’
equation above. We start with an unconstrained function B
whose zeroes will define the ‘membrane’ ψ = 1
In terms of B define an auxilliary function ψ by

ψ = 1 +
n.ds
sn.n

B, n = dB (6)

ψ is less than one inside and greater than one outside the
membrane.
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Wiggly Moving Membrane

We then use ψ to construct the spacetime metric

ds2 = ds2
flat +

(u + n)µ(u + n)νdxµdxν

ψd+p (7)

u = any oneform field with us = 0, u.n = 1 and u2 = −1.
Because the metric at leading order in d cares only about
surface data, it is convenient to write (7) entirely in terms of
this data. This may be achieved quite naturally. Given a
codimension one timelike surface swept out by a
membrane in flat space we construct a congruence of
spacelike geodesics that intersect this surface normal to it.
the function B at any point is defined as the proper
distance from that point to the membrane, along the
geodesic that connects the two. Let n = dB. It follows that
n.n = 1 n.∇n = 0. Similarly we define uµ away from the
membrane by parallel transport along these geodesics so
that n.∇u = 0.
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Membrane spacetimes solve the leading large d
equations

At leading order in d , a patch centred about the membrane
region of (7) is identical to the patch about the event
horizon of a Schwarschild black hole of radius r0 = s

ns
and

boost velocity u. We refer to u as the velocity of the
membrane. recall that u is tangent to the membrane, and
so is a velocity that does not modify the membrane surface.
It follows that (7) solves the leading order large d
equations in the membrane region and so everywhere
outside its event horizon. Inside the membrane region all
hell breaks loose in the spacetime (7), but the chaos is
causally disconnected from the outside so we dont care.
Outside the membrane region we simply have flat space.
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The first 1
d correction to the membrane metric

In order to correct the membrane metric above, we zoom in
on a patch about a membrane point. We then evaluate
Einstein’s equations to first subleading order in 1

d . The
equations are not satisfied at this order. A particular
component of Einstein’s equations may, for instance,
evaluate to 1

d u.K .uF (ψp+d ) where K is the extrinsic
curvature of the membrane surface B = 0 and F is an
arbitrary function. Note that at first order in 1

d the ‘source’
terms listed above cannot depend on more than one
derivative of u or n.
In order to obtain a solution to Einstein’s equations to this
order we allow our spacetime metric to be corrected at first
order in 1

d . The form of this correction metric is constrained
by symmetry. Our original metric has three special
oneforms: u, n and ds. Let these oneforms be cm
(m = 1 . . . 3). Let dy i denote a basis of the remaining
directions.
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First order correction

First order corrections to the metric are of three sorts:
scalar corrections proportional to cmcn or

∑
i dy idy i

‘vector’ corrections proportional to dcmdy i and ‘tensor’
corrections proportional to dy idy j . Tensor terms must be
proportional to tensor first order data like ∇iuj or ∇inj .
Vector terms must be proportional to vector first order data
like u.∇ns or cm.∇ni . Scalar terms are either proportional
to scalar first order data or to constants. Each of these
terms are further multiplied by unkonwn functions of ψp+d .
At first order Einstein’s equations yield ODEs for all these
unknown functions. Luckily these coupled ODEs all turn
out to be easily solvable.
It turns out that the most general solution generically has
physically unacceptable singularities at ψ = 1. Nonsingular
solutions that also asymptote to flat space exist if and only
if the membrane location and velocities obey the following
equations of motion.
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Membrane Equations of Motion

V⊥.K .V⊥ =
1− n2

s
sns

P (V⊥.∇(u − n)i) = 0

V⊥ =
ds
ns
− (n + u)

(8)

Here P is the projector orthogonal to the three dimensional
subspace spanned by n,u,ds
Total number of equations 1 + p. As many equations as
variables. Well defined initial value problem for the shape
of the membrane and the velocity field.
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Rewriting the equation of motion

It turns out that two equations of motion above may be
combined into a single vector equation

V⊥ · ∇
(

S
ns

(u − n)

)
+

dS
ns
− n = 0 (9)

This looks like p + 3 equations, but the dot product of this
equation with n − u and ds turns out to vanish identically,
so its actually p + 1 equations.
The equations may be rewritten in explicitly geometric form
as

− 1
d
∇K +

1
K
∇2u − d

K
u · ∇u + n

[
1

d K 2∇
2K − d

K 2 u · ∇K − 1
]

+
d

K 2 (u · ∇K )u = 0

(10)
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Metric correction at first order

Provided the equations above are obeyed We find the
following explicit expression for the first order corrected
metric.

ds2 = ds2
flat + ψ−d+p(O · dx)2

+

(
ψ−d

d

)
(O · dx)

[(
S S(4)

1− n2
S

+
nSS S(2)

(1− n2
S)2

)
Xµ

− d(ρ− 1)
S
(

2nSV
(1)
µ + V

(4)
µ

)
n2

S

+

(
2− S S(3)

nS
− 2S S(2)

n2
S(1− n2

S)
−

(2− n2
S)S S(1)

n2
S(1− n2

S)

)
Oµ

]
dxµ

(11)
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Redistribution Invariance

The equations above must pass a simple consistency
check. Any solution of the large d equations with the split
D = (p + 2) + (d + 1) may also be regarded as a solution
of the equations with the split D = (p + 2 + k) + (d + 1− k)
where k is a finite positive number held fixed in the large d
limit. This is because an SO(d + 1) invariant solution is
ofcourse also SO(d − k + 1) invariant.
This ‘redistribution invariance’ is not manifest in the original
form of our membrane equations. However it is manifest in
the geometrical form of these equations. The geometrical
form of the equations applies to any metric situation that
preserves SO(D − p − 2) isometry for any fixed p.
It is conceivable that the geometrical form of the equations
has a larger domain of validity.
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Simple Solutions

The equations above are quite unfamiliar. In order to build
intuition it is useful to search for simple solutions.
Lets search for solutions that undergo ‘rigid rotations’. Let
p be odd. We group the spatial p + 1 dimensional
coordinates into p+1

2 . two planes and work in polar
coordinates in each two plane. A membrane undergoes
rigid rotations if its velocity vector in these coordinates is
given by

uµ = γ(1,0, ω1,0, ω2, . . .), γ =
1√

1− ω2
i r2

i

where our coordinates are (t , r1, θ1, r2, θ2 . . .)
We also assume that angular rotations are symmetries of
the membrane world volume so that the time independent
membrane shape can be described by the equation

s2 = 2g(ri)
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Stationary Black Holes

Plugging into the equations above it is possible to show
that they are solved if and only if the shape function g
obeys

2g + (∂g)2 = K (1− ω2
ar2

a )

This equation admits the following simple exact solution:

g =
K
2

+
∑

i

ai r2
i

2
, where ai + a2

i + Kω2
i = .0

We have verified that the spacetime dual to this solution of
the membrane equations agrees with the large d limit of
the Myers Perry black hole solutions.
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Stationary solutions

The equation above also admits solutions of different
topologies. These solutions are dual to black ring solutions
of general relativity. A thorough classification of the
solutions to this equation would be an interesting - and I
believe tractable - exercise.
A version of the equation above first appeared in a paper
by Tanabe and Suzuki a few weeks after our paper. Their
procedure was to constrain the shape of stationary
membrane spacetimes at large d using a method that
crucially relies on the the existence of a killing time
translation vector.
The connection between the Suzuki-Tanabe equation and
our general membrane equation was initially not clear. We
now see the relationship; our membrane equations reduce
to the Suzuki-Tanabe equation under the assumption of
stationary rigid rotation. This satisfying observation may be
regarded as a consistency check of both our equations.
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Perturbation around Schwarzschild

The simplest of the stationary solution has no rotations and
is given by

s2 = 2g = K − ri r i .

This is a spherical D − 2 dimensional membarane of radius√
K dual to the Schwarzschild B H of the same radius.

Linearized the membrane equations around this simple
solution we find the following spectrum (for scalar and
vector modes)

ws = −i(l − 1)±
√

l − 1, wV = i(l − 1) (12)

where l is a positive integer related to the angular
momentum of the corresponding modes. Our results are in
perfect agreement with the leading order spectrum of light
quasinormal modes obtained by ESR from direct analysis
of the linearized equations around black holes.
Note that this spectrum is highly dissipative, even at
leading order in 1

d .
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Addition of Charge

In work to appear we have repeated this computation for
the Eisntein Maxwell System. Story very similiar, except
we also need to specify a charge distribution function Q on
the membrane. Corresponding to this new degree of
freedom we have a new equation. The membrane
equations with charge are

V⊥.K .V⊥ −
(

2Q2

(1−Q2)
V⊥.K .u

)
=

1− n2
s

sns

V⊥.∇Q = QV⊥.K .u

V⊥.∇(u − n)i + Q2 (V⊥.∇ni − u.∇(u − n)i)

V⊥ =
ds
ns
− (n + u)

(13)
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Addition of Charge

We have repeated this computation for the Eisntein
Maxwell System. Story very similiar, except we also need
to specify a charge distribution function Q on the
membrane. Corresponding to this new degree of freedom
we have a new equation. The membrane equations with
charge are

V⊥.K .V⊥ −
(

2Q2

(1−Q2)
V⊥.K .u

)
=

1− n2
s

sns

V⊥.∇Q = QV⊥.K .u

V⊥.∇(u − n)i + Q2 (V⊥.∇ni − u.∇(u − n)i)

V⊥ =
ds
ns
− (n + u)

(14)

Once again the equations may be combined and
geometrized
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Charged stationary solutions

It is natural to ask if the charged membrane equations also
admit ‘rigidly rotating’ stationary solutions like their
uncharged counterparts. We have investigated this
question over the last two days, and find the answer is yes.
The solutions we have found have u given by rigid rotation,

Q = αγ

s2 = 2g(ri)

2g + (∂g)2 = β

(
1− α−

∑
j
ω2

j r2
j

)2

1−
∑

j
ω2

j r2
j

(15)

It is easily argued that these equations admit solutions
dual to charged rotating black holes. We have not
managed to find the corresponding membrane solutions
solutions in closed analytic form for nonzero ω, but have
generated solutions to high order in ω perturbation theory.
Numerical solutions are also easily obtained.
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Entropy Current

The dissipative nature of black hole physics is quantified by
the Hawking area increase theorem, which states that the
area form on the event horizon always ‘increases’ along
the future directed generators of the event horizon
The area form may be used to construct an entropy current
on our membrane which is guaranteed to be of positive
divergence. Using our first order metric solution, we have
computed the entropy current to first order in the 1

d
expansion. We find

Jµ = sd
(

uµ − s
d
∇.uδµs +

Ja
1

d
δµa
)

where a runs over the p + 2 coordinates (all membrane
coordinates excluding s) and Ja

1 are known functions). Can
check that ∇.J vanishes at leading order. Expect first
entropy production at order 1/d . Need 2nd order corrected
metric to compute that.
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Charge and stress tensor

Presumably our membrane is equiped with a charge
current and stress tensor. We have not yet determined the
formula for these currents valid to arbitrary orders in the
1/D expansion. At leading order, however, the expressions
are easily guessed just from the fact that each little patch
of our membrane is a little bit of a Schwarzschild (or RN)
black hole.
Using these formulas we have verified that we correctly
reproduce the known thermodynamical formulas for
uncharged rotating black holes at leading order in large D,
and also have predictions for the thermodynamics of the
(new) charged rotating black holes in high dimensions.
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Radiation

The stress tensor and charge furrent also presumably act
as sources for radiation to infinity. It would be very
interesting - and should not be too hard - to determine a
formula for the charge and energy radiation fields (that
result from any given membrane motion) at leading order
the large d expansion. We hope to study this issue shortly.
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‘Duality’ between black holes and membranes

The ‘membrane’ equations of motion presented above are
the main result of this talk. Let us recap their significance.
Given any solution to the membrane equations, we have
constructed a corresponding solution to large d gravity to
first subleading order in 1

d . The gravity solution reduces to
flat space outside the membrane region. We expect that
every large d solution of gravity that reduces to flat space
outside the world volume of a compact world tube is dual
to some membrane solution by our construction.
A solution of gravity that vanishes outside the membrane
clearly describes the intrinsic dynamics of the black hole in
flat space. It follows the intrinsic dynamics of black holes in
large dimensions is governed by our membrane equations
(well defined initial value problem). It is tempting to use the
name ‘membrane paradigm’ for this phenomenon.
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Application to four dimensions

I started this talk asking for a parameter for general
relativity. We have found a parameter but is it of any use at
D = 4?
Probably unlikely worth testing. The following strategy
suggests itself. Take a tough problem in D = 4 (like the
collision of two black holes). Solve the corresponding
membrane equations. Then compute the resultant
radiation field and boldly set D = 4. Compare with the
results of a full simulation. If there are even qualitative
similarities between the answers, our expansion might
prove useful for physicists calliberating gravity wave
detectors to measure black hole mergers.
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Conclusions

We have reduced the equations that govern intrinsic black
hole dynamics in the limit of a large number of dimensions
to a well defined initial value problem for wiggly membrane
membrane. The degrees of freedom on this membrane are
its shape and a velocity field.
Our construction should be generalized in many ways: to
understand radiation, stress energy, entropy, charge and
higher orders, ...
In my opinion the construction presented in this paper
diserves the name ‘the membrane paradigm of black hole
physics’: we see it emerges at large D.
It will be interesting to see how well our large D solution
compares with results from numerical simulations in d = 4.
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Things to do

Determine the membrane charge current and stress tensor
at subleading orders in 1/D
Find the radiation formula
Uncharged and charged computation to 2nd order
Compute divergence of entropy current to 1st nontrivial
order
Study potentially new stationary solutions
Numerically investigate collision of two membranes and
compare with GTR simulations of collision of two black
holes.
. . .
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