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I've been studying 6d A'=(1, 0) theories for two years.

A large class of such theories can be obtained
by putting M5-branes on the ALE singularities:

c?/Tr

RS x
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When I' = Zj, we have SU(k) gauge fields at the singularity,
and an M5 just gives a bifundamental of SU(k) x SU(k):

bifundamental

\
SU(k)

SU(k)
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But surprising things happen when T is of type Dy, or E.
[del Zotto-Heckman-Tomasiello-Vafa, 1407.6359]

For example, take T of type Dy, and put 1 M5:

nontrivial
SCFT
\

802l so@k
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The M5 becomes two fractional M5s:

S0QH)  ysp2k-8) SO(2k)

Somehow the middle region the gauge group is USp(2k — 8),
and each half-M5 gives a bifundamental.
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Similarly, when T is of type Eg, a full M5-brane fractionates ...

nontrivial

SCFT
\
Eé6

Eé6
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Similarly, when T' is of type Eg, a full M5-brane fractionates ...

2 2
Es  su@) g

into 4 fractional M5s, and the gauge groups occur in the sequence

Eg, 9, SU(3), g, FEg.
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In general, a full M5

* on type A singularities:
doesn’t fractionate.
* on type Dy, singularities:
fractionates into 2.
Groups: SO(2k), USp(2k — 8), SO(2k)
* on type Eg singularities:
fractionates into 4.
Groups: Eg, @, SU(3), 9, Eg.
* on type Er singularities:
fractionates into 6,
Groups: E7, @, SU(2), SO(7), SU(2), @, E~.
* on type Eg singularities:
fractionates into 12,
Groups: Eg, 0, 0, SU(2), G, &, Fy, &, G2, SU(Z), o, I, Eg.
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Why the hell is that?



Aim of the talk:

Better understand why this is the case.
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For T of D, one can just reduce the system to lIA.

For example, this becomes ...

nontrivial
SCFT
\

SO(2k) SO(2k)
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This:

RS x .
kD6s + O6

which is known to fractionate to:
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this:
142NS5 12NS5

RS x o — _
kD6s + 06 (k-4) D6s + 06" kD6s + O6

Remember: Op™ becomes OpT when we cross a half-NS5.
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So far so good, but when T is of type E, you can’t reduce to IIA.

| say, type A and type D singularities are so exceptional
that they don’t show the generic behavior.

Type E is the generic case.

We can say we understand things only when we have a method equally
applicable to all the types A, D, E.
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So, let’s use F-theory.

This is the method used by
[del Zotto-Heckman-Tomasiello-Vafa, 1407.6359].

Recall that the M-theory configuration

RS x

M5

is dual to ...
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This F-theory configuration:

G

where two F-theory 7-branes intersect at a point.

So, how do we know that something happens when G is not of type A?
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Recall that the elliptic fibration can be put to the Weierstrass form
y2 =x3+ar+b
where a, b are functions on the base.

Let A = 4a® + 27b? be its discriminant.
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ord(a) ord(b) ord(A)
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g .
’;) SU(k)
h
é) SU(2)
11> SU(3)
:’f) SO(2k + 8)
W) m

o)

V) om

0 0 k
1 1 2
1 2 3
2 2 4
2 3 k+6
3 4 8
3 5 9
4 5 10
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So, suppose two Er 7-branes intersect.

E7
3,5,9)

(3’5’ 9) E7

Here (3, 5,9) means that (a, b, A) vanish to these orders there.

At the intersection,
(3,5,9) + (3,5,9) = (6,10,18) > (4,6,12).
A smooth elliptic fibration can’t exceed (4, 6, 12).

So we blow-up the intersection point.
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We now get this configuration

E7 2,4,6) /35,9

(3’ 5’ 9) E7

where
(2, 4, 6) = (3, 5, 9) + (3, 5, 9) — (4, G, 12).

Looking up the table, this corresponds to I with SO(8).
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A more detailed analysis using the Tate form

(instead of the Weierstrass form) of the elliptic fibration
shows that there is an outer-automorphism action

of 8O(8) around this § of I} curve

giving SO(7).
The intersection of (2, 4, 6) and (3, 5,9) is still singular since
(2,4,6) + (3,5,9) > (4,6,12).

We need to blow up, repeat ...
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We end up with this final configuration:

SOOQCC

%) SUR2) SO(@) SUQ) @

So we can now work it out, for any G = Ay, Dy, and Eg 7.8
in an uniform manner ...
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But | don’t feel I understood it.
Let’s try something else.

[Ohmori-Shimizu-YT-Yonekura, 1503.06217, Sec. 3.1]
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We start from the original setup:

RS x
M5

G G

We're interested in the tensor branch of this 6d N'=(1, 0) theory.
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We can instead study the Coulomb branch of its T® compactification:

M5
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Reduce it to llA:

D4
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Take the double T-dual:

D2
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Lift it back to M-theory:

M2

G

We're now interested in its Higgs branch,
since we've effectively taken the 3d mirror.
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An M2 can dissolve into the G gauge field as an instanton on T? x R:

G

0

The plot below shows the evolution of the Chern-Simons invariant
on T*® at each slice.
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When G = SO(2k), the instanton can fractionate:

SO(2k)
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In an extreme situation, we have this:

SO(2k)
W
LA
%
0

The bundle is flat but nontrivial.
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SO(2k)

Three holonomies are known to be given by
diag("'a +7 +a Ty Ty Ty Ty +2k_7)
diag(+7 T T +a +’ T Ty +2k_7)
diag(_a +9 T +’ T +7 ) +2k_7)
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So the unbroken gauge group is

SO2k) — SO(2k-T7)
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So we have

BM2 M2

SO(2k) SOQ2k-7) sO(2k)
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Going back the duality chain, we have

BM5 1505
SO(2k) USp(2k-8) s0(2k)

since we need to take 4d S-duality / 3d mirror symmetry:

SO(2k—7) > USp(2k—8)
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USp(2k-8) SO(2k)

Note that
/ C— 0 mod1 if SO(2k)
si;r |1/2 mod 1 if USp(2k—8)

In the latter case, the singularity is partially frozen.
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The analysis can be carried out in a similar manner for any G,
using the results in a monograph from 2002:

of the
Mathematical Society

MEMOIRS

Almost Commuting Elements
in Compact Lie Groups

Armand Borel
Robert Friedman
John W. Morgan
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What needs to be done is the classification of flat G bundles on T3

and the computation of their Chern-Simons invariants.

Summary of the facts:

* CS =n/d mod 1 where d appears as integer labels
on the affine Dynkin diagram of type G and ged(d,n) =1,

* The bundle is determined by d independent of G.
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Example: G = Ex. Allowed d = 1, 2, 3, 4 since the affine Dynkin

The bundle with C'S = 1/2 is still

diag("', +7 +7 Ty T 9 T _)
diag("'v Ty T +7 +7 T _)
diag(_7 +7 ) +7 T +a _)

in SO(7). In fact they are in G».
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E7 has a maximal subgroup G2 x USp(6). Therefore

E7 USp(6) E7
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Taking the S-dual, we get

AMO ¥aM5
¢
E7
SO(7) B
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You can fractionate further, since allowed CS invariants are

11123
=0y
We have

2 SUQR) USp(6) SUQR) Z E7

. .

[\

3/4
213 7
12

1/3

1/4 f
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In the original duality frame we have

V41712 16
S M5 M5 g0(7)

SUQ2) ¢ fo

Note that the M5 charges are not equally distributed.
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V41112 16
M5

M5 M5 g0(7) 112 1/4

SUQ2) & E7
The rule is
0 if By
/ c_ )12 if SO(7)
ss;r |1/3,2/3 if SU(2)

1/4,3/4 ifo
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So we now have two ways to understand
fractional M5s on ALE singularities:

E7
>Q©(9

@ SU@2) SO(7) SUQR) @

V4112 16
M5

16 1112 14
M

E7 5 M5 M5

2 SU?2)

How are they related? [YT,1508.06679]
[email discussions with A. Tomasiello]
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We just have to show the equivalence of

\\ )T
\ \
F: R6X</: (’ O

SO(8)— SO(7)

M: R®x gy
!

SO(7)

The rest is just a fiber-wise application of this duality.
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We just have to show the equivalence of

SO(8
F:R7x©outerx (g<

auto.
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Let’s start from the M-theory side:

R” x EJ,7 with C=1/2.
S8T
SO(7)
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Embed it in an elliptic fibration:

E7
R” x | with / C=1/2.
SO(7 s3/T
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Compactify it on S, which we enlarge again at the last step:

<

E7
R¢ x St x | with / C=1/2.
SO(7 s3/T
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Reduce it to llA:

E7
R x | with Ci) =1/2
(3)
SO(7 53/1

where C(3) is now the RR 3-form potential
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Take the double T-dual:

R x with /C(l):1/2
S1

where C(y) is now the RR 1-form potential.

58/70



Recall that E singularity is metrically
a cone with opening angle /2

with
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When lifted to M-theory, this becomes

«— identify after half rotation ~

Y

M-theory “circle”

The opening angle should be 7, so the singularity should be SO(8).
The half-rotation involves Zy outer-auto. of SO(8), thus giving SO(7).
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SL(2,Z) monodromies also match:

and we have
gsos) = 9B,
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So the lift to M-theory of

with
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is M-theory on

«— identify after half rotation ~

>
>

M-theory “circle”
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that is F-theory on

«— identify after half rotation ~

SO(8)

>
>

circle
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Making S* infinitely large, we have F-theory on

— identify after half rotation ~_

SO(8)

>
>

circle

65/70



which was what we want to have:

SO(8
R7 x <> outer y ( g(
auto.
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In general, M-theory on

with C =n/d
S3/T

is dual to
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F-theory on

R” x

identify after n/d rotation
« N

i G [N
] ]
/Igd }J/I \ /Igd
circle
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So, given G and r = n/d,
there are two different ways to determine the gauge group H:

In M-theory, the steps are:

¢ Take the flat G-bundle P on T with C'S = r.
* Let Gp be the unbroken subgroup.
* Then H is the Langlands dual of Gp.

In F-theory, the steps are:

* Take the corresponding SL(2,Z) monodromy g.
e Let g’ = g%, and take the corresponding group G”.

* Take the invariant part H of G’ under the outer-automorphism Zg.

They always agree!

69/70



Performing this duality fiber-wise, we have established the relation
between F-theory on

OOQ0C

@ SU2) SO SUQR) @

and M-theory on

16 112 14
M5 Ms wms

That’s all what | wanted to say today.
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