On fractional M5 branes and frozen singularities

Yuji Tachikawa

Sep. 2015, KIAS

- Based on
- [del Zotto-Heckman-Tomasiello-Vafa, 1407.6359]
- [Ohmori-Shimizu-YT-Yonekura, 1503.06217, Sec. 3.1]
- [YT,1508.06679]
- [email discussions with A. Tomasiello]
- Also see:
- [Aspinwall-Morrison, hep-th/9705104]
- [de Boer-Dijkgraaf-Hori-Keurentjes-Morgan-Morrison-Sethi, hep-th/0103170]

I've been studying 6d $\mathcal{N}=(1,0)$ theories for two years.

A large class of such theories can be obtained by putting M5-branes on the ALE singularities:

When $\Gamma = \mathbb{Z}_k$, we have SU(k) gauge fields at the singularity, and an M5 just gives a bifundamental of $SU(k) \times SU(k)$:

But surprising things happen when Γ is of type D_k or E_k . [del Zotto-Heckman-Tomasiello-Vafa, 1407.6359]

For example, take Γ of type D_k and put 1 M5:

The M5 becomes two fractional M5s:

Somehow the middle region the gauge group is USp(2k - 8), and each half-M5 gives a bifundamental.

Similarly, when Γ is of type E_6 , a full M5-brane fractionates ...

Similarly, when Γ is of type E_6 , a full M5-brane fractionates ...

into 4 fractional M5s, and the gauge groups occur in the sequence

In general, a full M5

- on type *A* singularities: doesn't fractionate.
- on type D_k singularities: fractionates into 2. Groups: SO(2k), USp(2k - 8), SO(2k)
- on type *E*₆ singularities: fractionates into 4. Groups: *E*₆, Ø, **SU**(3), Ø, *E*₆.
- on type *E*₇ singularities: fractionates into 6, Groups: *E*₇, Ø, SU(2), SO(7), SU(2), Ø, *E*₇.
- on type *E*₈ singularities: fractionates into 12, Groups: *E*₈, Ø, Ø, SU(2), *G*₂, Ø, *F*₄, Ø, *G*₂, SU(2), Ø, Ø, *E*₈.

Why the hell is that?

Aim of the talk:

Better understand why this is the case.

Contents

1. IIA

2. F

3. M

4. Duality

Contents

1. IIA

2. F

3. M

4. Duality

For Γ of D, one can just reduce the system to IIA. For example, this becomes ...

which is known to fractionate to:

Remember: Op^{\pm} becomes Op^{\mp} when we cross a half-NS5.

So far so good, but when Γ is of type E, you can't reduce to IIA.

I say, type **A** and type **D** singularities are so **exceptional** that they don't show the generic behavior.

Type *E* is the generic case.

We can say we understand things **only when** we have a method equally applicable to all the types *A*, *D*, *E*.

Contents

1. IIA

2. F

3. M

4. Duality

So, let's use F-theory.

This is the method used by [del Zotto-Heckman-Tomasiello-Vafa, 1407.6359].

Recall that the M-theory configuration

is dual to ...

This F-theory configuration:

where two F-theory 7-branes intersect at a point.

So, how do we know that something happens when *G* is not of type *A*?

Recall that the elliptic fibration can be put to the Weierstrass form

$$y^2 = x^3 + ax + b$$

where *a*, *b* are functions on the base.

Let $\Delta = 4a^3 + 27b^2$ be its discriminant.

	g	${old G}$	$\operatorname{ord}(a)$	$\operatorname{ord}(b)$	$\operatorname{ord}(\Delta)$
I_k	$\begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$	$\mathbf{SU}(k)$	0	0	k
II	$\left \begin{array}{cc} 1 & 1 \\ -1 & 0 \end{array}\right $	Ø	1	1	2
III	$\left \begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right $	SU(2)	1	2	3
IV	$\left \begin{array}{cc} 0 & 1 \\ -1 & -1 \end{array} \right $	SU (3)	2	2	4
I_k^*	$\left(egin{array}{cc} -1 & -k \\ 0 & -1 \end{array} ight)$	$\mathbf{SO}(2k+8)$	2	3	k+6
IV^*	$\left \begin{array}{cc} -1 & -1 \\ 1 & 0 \end{array} \right $	E_6	3	4	8
III^*	$\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)$	E_7	3	5	9
II^*	$\left \begin{array}{cc} \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}\right $	E_8	4	5	10

So, suppose two E_7 7-branes intersect.

Here (3, 5, 9) means that (a, b, Δ) vanish to these orders there. At the intersection,

 $(3,5,9) + (3,5,9) = (6,10,18) \ge (4,6,12).$

A smooth elliptic fibration can't exceed (4, 6, 12).

So we blow-up the intersection point.

We now get this configuration

where

(2,4,6) = (3,5,9) + (3,5,9) - (4,6,12).

Looking up the table, this corresponds to I_0^* with **SO**(8).

A more detailed analysis using the Tate form (instead of the Weierstrass form) of the elliptic fibration shows that there is an **outer-automorphism** action of **SO(8)** around this S^2 of I_0^* curve

giving SO(7).

The intersection of (2, 4, 6) and (3, 5, 9) is still singular since

 $(2,4,6) + (3,5,9) \ge (4,6,12).$

We need to blow up, repeat ...

We end up with this final configuration:

So we can now work it out, for any $G = A_k$, D_k and $E_{6,7,8}$ in an uniform manner ...

But I don't feel I understood it.

Let's try something else.

[Ohmori-Shimizu-YT-Yonekura, 1503.06217, Sec. 3.1]

Contents

1. IIA

2. F

3. M

4. Duality

We start from the original setup:

We're interested in the tensor branch of this 6d $\mathcal{N}=(1,0)$ theory.

We can instead study the Coulomb branch of its T^3 compactification:

Reduce it to IIA:

Take the double T-dual:

Lift it back to M-theory:

We're now interested in its Higgs branch, since we've effectively taken the 3d mirror.

An M2 can dissolve into the *G* gauge field as an instanton on $T^3 \times \mathbb{R}$:

The plot below shows the evolution of the Chern-Simons invariant on T^3 at each slice.

When G = SO(2k), the instanton can fractionate:

In an extreme situation, we have this:

The bundle is flat but nontrivial.

Three holonomies are known to be given by

$$\begin{aligned} & \operatorname{diag}(+,+,+,-,-,-,-,+^{2k-7}) \\ & \operatorname{diag}(+,-,-,+,+,-,-,+^{2k-7}) \\ & \operatorname{diag}(-,+,-,+,-,+,-,+^{2k-7}) \end{aligned}$$

So the unbroken gauge group is

Going back the duality chain, we have

since we need to take 4d S-duality / 3d mirror symmetry:

 $SO(2k-7) \leftrightarrow USp(2k-8)$

Note that

$$\int_{S^3/\Gamma} C = \begin{cases} 0 \mod 1 & \text{if } \mathbf{SO}(2k) \\ 1/2 \mod 1 & \text{if } \mathbf{USp}(2k-8) \end{cases}$$

In the latter case, the singularity is partially frozen.

The analysis can be carried out in a similar manner for any G, using the results in a monograph from 2002:

What needs to be done is the classification of flat G bundles on T^3

and the computation of their Chern-Simons invariants.

Summary of the facts:

- $CS = n/d \mod 1$ where *d* appears as integer labels on the affine Dynkin diagram of type *G* and gcd(d, n) = 1,
- The bundle is determined by *d* independent of *G*.

Example: $G = E_7$. Allowed d = 1, 2, 3, 4 since the affine Dynkin diagram is

The bundle with CS = 1/2 is still

$$diag(+, +, +, -, -, -, -) diag(+, -, -, +, +, -, -) diag(-, +, -, +, -, +, -)$$

in **SO**(7). In fact they are in G_2 .

 E_7 has a maximal subgroup $G_2 \times \mathbf{USp}(6)$. Therefore

Taking the S-dual, we get

You can fractionate further, since allowed CS invariants are

$$CS=0,rac{1}{4},rac{1}{3},rac{1}{2},rac{2}{3},rac{3}{4}.$$

We have

In the original duality frame we have

Note that the M5 charges are **not equally distributed**.

The rule is

$$\int_{S^3/\Gamma} C = \begin{cases} 0 & \text{if } E_7 \\ 1/2 & \text{if } \mathbf{SO}(7) \\ 1/3, 2/3 & \text{if } \mathbf{SU}(2) \\ 1/4, 3/4 & \text{if } \varnothing \end{cases}$$

Contents

1. IIA

2. F

3. M

4. Duality

So we now have two ways to understand fractional M5s on ALE singularities:

How are they related? [YT,1508.06679] [email discussions with A. Tomasiello] We just have to show the equivalence of

The rest is just a fiber-wise application of this duality.

We just have to show the equivalence of

Let's start from the M-theory side:

Embed it in an elliptic fibration:

with $\int_{S^3/\Gamma} C = 1/2.$

Compactify it on S^1 , which we enlarge again at the last step:

Reduce it to IIA:

where $C_{(3)}$ is now the RR 3-form potential

Take the double T-dual:

where $C_{(1)}$ is now the RR 1-form potential.

Recall that E_7 singularity is metrically a cone with opening angle $\pi/2$

with

When lifted to M-theory, this becomes

The opening angle should be π , so the singularity should be **SO**(8). The half-rotation involves \mathbb{Z}_2 outer-auto. of **SO**(8), thus giving **SO**(7).

 $SL(2,\mathbb{Z})$ monodromies also match:

$$g_{E_7} = egin{pmatrix} 0 & -1 \ 1 & 0 \end{pmatrix} \ g_{\mathbf{SO}(8)} = egin{pmatrix} -1 & 0 \ 0 & -1 \end{pmatrix}$$

and we have

$$g_{\mathbf{SO}(8)} = g_{E_7}^2.$$

So the lift to M-theory of

with

is M-theory on

that is F-theory on

Making S^1 infinitely large, we have F-theory on

which was what we want to have:

In general, M-theory on

with $\int_{S^3/\Gamma} C = n/d$

is dual to

F-theory on

So, given G and r = n/d,

there are two different ways to determine the gauge group *H*:

In M-theory, the steps are:

- Take the flat *G*-bundle *P* on T^3 with CS = r.
- Let G_P be the unbroken subgroup.
- Then *H* is the Langlands dual of *G*_{*P*}.

In F-theory, the steps are:

- Take the corresponding $SL(2, \mathbb{Z})$ monodromy g.
- Let $g' = g^d$, and take the corresponding group G'.
- Take the invariant part H of G' under the outer-automorphism \mathbb{Z}_d .

They always agree!

Performing this duality fiber-wise, we have established the relation between F-theory on

and M-theory on

That's all what I wanted to say today.