Exact Path Integral
for 3D Quantum Gravity

Seiji Terashima (virp)
16 September 2015 at KIAS-YITP workshop

based on the paper collaborated with Norihiro lizuka and Akinori Tanaka:
arXiv:1504.05991




Intfroduction



Quantum Gravity:

Difficulties:
e Perturbatively unrenormalizable
e Un-boundedness of action

e Summations over different topologies



Dual CFT
(for QG with asymptotic AdS)

Renormalizable, Positive definite action,
No geometries (for finite N).

However, no proof of the equivalence



In this talk,
we Will try to compute QG partition function

from bulk theory.

_ —S :
Zg'ramlty — /Dg,uue gravity

(Is it possible?)



3d pure gravity
(with negative cosmological constant)

1 2
ravity — d3 R 9
Saravity = 16 / w‘@( i 52)

Simplest theory with “black holes”
(although no gravitons)

They are called BTZ black holes,
which have horizons and nonzero entropies



We will use following relations:

3d pure gravity

3d Chern-Simons theory

3d SUSY Chern-Simons



3d SUSY Chern-Simons theory

We can use localization technigue

to compute exact partition function
(with some assumptions)

The result for c=24 is

Zg’ra,vity — J(Q)J(Q)
which is Z tor Frenkel-Lepowsky-Meurman's CFT,
as Witten proposed before!



Plan

e Intfroduction
* Review of 3d gravity
e Previous results

e Exact partition function using localization



Review of 3d gravity
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3d pure gravity

What we want to compute is
Zg?“afuity — /Dgﬂve_sgramty

with
B 1 3 2
Sgravity - 167TGN /d $\/§ (R+ E) + SGH + SC

where

[ /is AdS scale

Scyg = SW%;N f d?zvVhK is Gibbons-Hawking boundary term

K extrinsic curvature, and A the boundary metric

1
.= — d*zVh
\S 87TGN/ :IZ\/_
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Centiral charge of dual CFT
from classical 3d gravity

Asymptotic symmetry of 3d QG with asymptotic AdS_3
is
Virasoro algebra with the central charge:

C — SE/QGN

Using this and Cardy formulq,
we can reproduce
entropy of BTZ black hole (leading order).
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3d pure QG 3D Chern-Simons
(classical)

Introducing SL(2,C) gauge field A,

(wz + %eZ) %Jadm“ = A (w — %eu) Zaada:"”’ = A

where o, 1s Pauli matrix

we can show

/M 3z e(R(e,w) + E%) + / =N (SOS SCS[A])

where SCS :/ Tr AdA—i— AS)
M
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3d pure QG 3D Chern-Simons

(classical)
Therefore,
ik ik T —
Sg'rafuity — ESCS[A] - ESCS [A] — Sga,’u,ge
where k = f
4G N

Charge quantization condition: k/4 € Z

c =6k € 247
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Previous results
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What we will compute:

Partition function of Euclidian 3d gravity with
asymptoric AdS with torus boundary.

complex structure 7

solid torus T

u surface (boundary)

for AdS soliton, BTZ black holes

0 1
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Important facts of the theory:

only solutfions of e.o.m. are
AdS space and BTZ black holes.

all of them are topologically solid torus (= D* x S*'),
but, contractable cycles of torus are different.

non-contractable cycle T
contractable cycle

surface (boundary)

for AdS soliton, BTZ black holes
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Important facts of the theory:

Moreover, they are related by SL(2,Z) action
and the on-shell action is

. — o ) Pre e aT+b
e S — ZC,dZC,da Zc,d — € T34 cr+d
where ¢ > 0 and (¢, d)gep = 1
non-contractable cycle T

~ contractable cycle

surface (boundary)

for AdS soliton, BTZ black holes
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3d pure QG 2d exiremal CFT

From CS description, Witten suggest that
partition function of 3d gravity may be
holomorphically factorized:

Zg’ra,’vity — Z(Q)Z(q_)

where q¢ = exp(27iT)

For c=24, there is unique CFT by FLM with

1
Z(q) = J(q) = = +196884q - - -

q
J(q) is modular invariant has pole at ¢ = 0
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J-function as a (classical) partition function

Pah-integrals over different topologies

Z gravity / Dgye”mavin — Y / Dgetor e Poravity

topology
Assuming only solutions of e.o.m. contribute

— E Sgravity |on shell — E Zc ch d

topology (cd>)0 ,
c,d)=

Including "non-geometric” contributions

S Z(QZ() e 2= Y Zu
(C(jd>)O=1 20



J-function as a (classical) partition function

Z chd(T)

c>0,

(c,d)=1
Adding a constant as a regularization (Rademacher sum)
— Zo1 + Z — Zea(o0)) = R (q)
c>0,
(c,d)=1
where R(m)( 27rzm1' 4+ Z ( 2mim < e27m'm%)
c>0,
(c,d)zl

In particular, R©"1(q) = J(q) ,



J-function as a (classical) partition function

However,
we do not know
why there is no loop corrections,

nor,
why including non-geometric contributions
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Partition function (classical + 1-loop)

Perturbatively, 3d gravity is 1-loop exact,
and for AdS background we have

Z(@)=q 7 | -¢"),

where

©.@)

lgl —q") is from Virasoro decendants of vacuum
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Partition function (classical + 1-loop)

Thus, naively
gfr(:wzty Z Zc ch p

c>0,
(c,d,)zl -
Z. 4 = modular transform of Zy; = g 21 H (1—4q"),
n=2
However,

cofficient of ¢" in Z97%"""Y can be non-integer or negative.

Thus, Z97%v% £ CFT partition function
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Partition function (classical + 1-loop)

Even it we assume holomorphic factorized one

( \ ( \
Zgravity _ Z Ze.d Z Ze.d

ezt ) \@cazr )

We can notf have J-function for c=24
because of J[a-4)

n=2

25



So, there are many mysteries...
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Path-integral of 3D Gravity
using localization
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We will use following relations:

3d pure gravity

3d Chern-Simons theory

3d SUSY Chern-Simons
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3d SUSY Chern-Simons theory

Let us consider
3d N = 2 vector multiplet V = (A, o, D, \, \)

with the SUSY action
Sscs|V] = Scs|A] + /d?’.fc\/g TI‘( — A\ + 2DO‘)

where additional fermion and bosons
are auxiliary fields.

Therefore,

/DAe—Scs[A] ~ /DV e~ Sscos(V]
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SUSY CS theory on solid torus

The solid torus

ds® = df* + cos” 0 (dp® + tan® 0dt3) \ )
for 0<0<0y<7/2,0<¢p<21,0<tp <2m,

where 6 = 6y is a boundary torus with purely imaginary 7 = 8 = i tan

Following Dirichlet boundary condition keeps SUSY:
A¢—>CL(P, AtE — Qi 5, o—0

A — e_i(go_tE)q/QX
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Zgra'vity

Partition functions are related as

/DQMVB Sgravity %Z/DQSGCWT Sgravity
%f (3" DA)(Y DA)er#ESeslal+ i scsld
N / (Z va) (Z DV) 6—%Sscs[vl+%5508[‘7]

where we assumed ZDQSQC“T = Z DA Z DA
c>0, c>0,
(c,d)=1 (c,d)=1

This will be justified by the localization
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Using localization technique

Zeclassical = GZkWTT(a"DatE)
Zone—loop — H (m — a(afﬁp))
meZ
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Saddle points equation:

F=0,0=0
this corresponds to e.o.m. of gravity

the solution (BTZ) is

1 1 1
a’go = %03 = E(‘Tg7 Atp = 50’3

Note that
the solutions of e.o.m. should have
solid torus topology.
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The partition function:
Zled) = fDV@ﬁ(SSCSW” = ehirlactg) (eim(%) _ e—z'm(%))

Z,1) = g "eff (1 — q) where kepr = (k+2)/4
Other contributions are obtained
by SL(2,Z) action

. b . b
_27T’L’€eff —S:i_d L 6—27T’Ll€eff %

Z(c,d) — €
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Rademacher sum:

Znotlq] = Zo,1)(T Z ( cd(OO))

c>0,
(Cvd):

— R(Tkess) (q) — RTRess T ()

R(m)( — 27mm7- + Z ( 27rzma7+b 27?75771%)

c>0,
(c,d)zl

1
For c=24, we have 7, =- -1

q
Znotlq] = J(q) + cosnt

ngr*afvity — J(Q)J(Q)
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How about the Virasoro decendants modes?

We have seen that
Zo1=q "7 (1 — q) where korr = (k+2)/4
which can be rewritten as

ZO,l — ZB—fefr'mfion @Hzozz(l _®

ZB—fefrmion = n:l(l T qn) \

This is the 1-loop result of gravity
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SUSY CS has exira fermion modes:

Using doubling trick: =06, -9
we will define

Y1 (x) = A (x)0(z) + e_i("p_tE))_\l(—:U)H(—x)
o(x) = Xa(2)0(x) — e PTE Ny (—2)0(— )
Then, the mass term is

Mz)A (@) = A (2) Ao () — Ao () A1 ()
= Y1(x)ha(x) — P1(—x)P2(—x) = sign(x )1 (x)e(z)

domain wall type mass term,

massless “edge” modes on x=0
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SUSY CS has exira fermion modes:

These fermion modes strictly localized
at the boundary and then
completely decoupled from other modes
fort - 0

Thus, we can think the theory essentially describe
3d pure gravity
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Conclusion

“exact” partition function of 3d pure
gravity

Using SUSY extension and localziation
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Fin.
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