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Introduction




Supersymmetric background with no flux

Vme=0 e special holonomy

Classic case: Type Il on Calabi—Yau

Geometry encoded in pair of integrable objects

dw =0 symplectic structure

dQ2=0 complex structure



Supersymmetric background with flux (eg type I1)?
(Vm +* %Hmnp'ynp) Ei + %ed) Z F(i)er(€¥ =0

Y™ (Vi F 55 Hnop Y™ — Om) € =0

What is the geometry?

e special holonomy? analogues of w and Q7
o integrability?

o deformations? moduli spaces? ...

(n.b. no-go means non-compact/bdry for Minkowski)



G structures
Killing spinors s?—L invariant under

G = Stab({eF}) € SO(6) C GL(6)
define G-structure and flux gives lack of integrability, eg

dw =~ flux Sp(6,R) structure

G =SU(3
G) { dQ ~ flux SL(3,C) structure

e classification, new solutions, ...

e global questions: G can change, ..., moduli hard, ...

[Gauntlett, Martelli, Pakis & DW; Gauntlett & Pakis; ...,



Is there some integrable geometry?

supersymmetry < integrable G-structure in generalised geometry



Generalised Calabi—Yau structures
Generalised tangent space E ~ TM @& T*M with

Stab({e}) = SU(3) x SU(3) € SO(6) x SO(6) C O(6,6) x R+
gives class of pure NS-NS backgrounds

d®" =0  SU(3,3). structure
G = SU(3) x SU(3)
do~ =0 SU(3,3)_ structure
for generalised spinor @+ € S*(E) ~ A T*M
¢+ = eiqSeiBiiw ¢ = ef‘z’e*B (Ql + Qg + Q5)

[Hitchin, Gualtieri; Grafia, Minasian, Petrini and Tomasiello]



Generic N’ = 2 backgrounds

Warped compactification

Me  type Il
ds® = *2ds?*(R>1) 4 ds?(M) o P

M;  M-theory
e ‘“exceptional generalised geometry” with E77y xR*
e spinors in SU(8) vector rep e = (¢7,¢7)
e so for AV =2 we have

Stab(ey, €2) = SU(6) C SU(8) C Ez7) xR



The problem

Generalised w and Q

77 “H structure’

G =SU(6
(6) 77 "\ structure”

e how do we define structures?

e what are integrability conditions?

[¢f. Grada, Louis, Sim & DW; Grafia & Orsi; Grafia & Triend|)



Generalised geometry




O(d, d) x R generalised geometry
Unify symmetries of NS-NS sector g = L,g, 6B = L,B + d\

e generalised tangent space E~ TM & T*M
e natural O(d, d) metric given VM = v + X € T(E)
77( v, V) = Vv
e infinitesimal symmetries as “generalised Lie derivative ”

Ly = diffeo by v + gauge by A

[Hitchin, Gualtieri)



Eqa) xR™ generalised geometry (d < 7)
Unify all symmetries of fields restricted to My_1 in type Il

bg=L.,g 0CL =L, Ce +dXT + ...
6B =L,B+d\ SB=L,B+d\+...

gives generalised tangent space
E~TMaTMONTMONTMa (T*Me AN T*M)
VM = (v Ay Aoy AT, .20
Transforms under Ey4) <R rep with R* weight (det T* M)/ (0=<)

[Hull; Pacheco & DW]



In M-theory

EcTMONTMONTMa (T*Me N T*M)
VM = (v™ Ay Amgovay -2 )

Generalised Lie derivative
Ly = diffeo + gauge transf = V - 9 — (0 Xaq V)
where type IIA, 1IB and M-theory distinguished by
omf = (0mf,0,0,...) € E*

[Coimbra, S-Constable & DW/|



Generalised tensors: Eq(q) xR™ representations
For example, adjoint includes potentials

adF ~R@(TM® T*M) & N> T*M & NTM
SNTMON T MOAETM O AT T*M,

AMN: ("'7anﬂ"'ﬂBml---mG""7Ci)

Gives “twisting” of generalised vector and adjoint



Generalised geometry and supergravity
Unified description of supergravity on M

e Generalised metric
Gun invariant under max compact Hy C Eg(g) xR

equivalent to {g, $, B, B, C*, A}

o Generalised Levi-Civita connection Dy VN = oy VN + QuNp VP
exists gen. torsion-free connection D with DG = 0

but not unique



e Analogue of Ricci tensor is unique gives bosonic action
Sp = / lvolg| R eom = gen. Ricci flat
M
where |volg| = (/g e*4
e Leading-order fermions and supersymmetry
=D Ye op = De etc

unique operators, full theory has local SU(8) invariance

[CSW] (c.f [Berman & Perry,...] and [Siegel; Hohm, Kwak & Zweibach; Jeon, Lee &
Park] for O(d, d))



H and V structures




H and V structures
Generalised structures in E7(7y xR

H structure G = Spin*(12) “hypermultiplets”

V structure G = Eg(p) “vector-multiplets”

[Grada, Louis, Sim & DW]

Invariant tensor for V structure

Generalised vector in 5641
K eT(E) such that g(K) >0

where g is E7(7) quartic invariant, determines second vector K



Invariant tensor for H structure
Weighted tensors in 1333

Jo(x) € T(ad F @ (det T*M)/?)
forming highest weight su, algebra

[Jos 8] = 2K€apydy
tr Jan = —I{25a5

where 1% € (det T*M)



Compatible structures and SU(6)
The H and V structures are compatible if
Jo - K=0 q(K) = 3x?
analogues of w A Q =0 and 1w? = QA Q
the compatible pair {J,, K} define an SU(6) structure

J, and K come from spinor bilinears.

20



Example: CY in 1A

ad F ~ (TM ® T*M)
Jp=36Q— 360 BNT*M &N TM
OROATM @ A T*M
SN TMOA T*M,

k= %m/ + %KVO'(; — %HVO%

2

where kK~ = volg = %iQ A and [ is complex structure

E~TMOT*MOAN T*M

K+iK =e ¥
SNT*Ma (T*M A T*M)

21



Example: CY in |IIB

Jy = %f-@(‘ﬂ” = %mf

J3 = %/sw + %,‘iwn — %nvolﬁ — %FLVO|6

2 3]

where k% = volg = gw

K+iK =Q

iw®

adF ~ (TM ® T*M)
SN T*Ma N TM
" GROENTM &N T*M
SANTTM @ AN T*M,

E~xTM@®T*MaA T°M
ONT* M (T*MeANT*M)

22



Example: D3-branes in [IB
Smeared branes on Mgy(p) x R?
ds? = e*2ds?(R*!) + d§°(Msy()) + G + &3,
with integrability
d(e?¢) =0, d(e*®wa) =0, dA = —1xF,

where w,, triplet of two-forms defining SU(2) structure. (Can also add
anti-self-dual three-form flux.)

23



The H and V structures are

adF ~ (TM @ T*M)
Iz :_%"{Iu_%mw(\ /\CIAC2 ONT*MoNTM
i . BRBNTM B A T*M
+ EKV"’?;, N le: A Cj2:’
SANTTM AT T*M,

2:

where k2 = ¢?2 volg and I, are complex structures

R+1R:nieA(lei<2) E~xTMO T M&AN T*M
Finfe® (¢ — iCo) A volg ONT M (T*Me A T*M)
where n’ = (i, 1) is S-duality doublet, then twist by C,

K=c¢“K o =% J, e

24



Generic form?
Complicated but

e interpolates between symplectic, complex, product and hyper-Kahler
structures

e can construct from bilinears and twisting

25



Integrability




GDiff and moment maps
Symmetries of supergravity give generalised diffeomorphisms
GDiff = Diff x gauge transf.
acts on the spaces of H and V structures
integrability < vanishing moment map

Ubiquitous in supersymmetry equations

e flat connections on Riemann surface (Atiyah-Bott)
e Hermitian Yang-Mills (Donaldson-Uhlenbeck-Yau)

e Hitchin equations, Kahler-Einstein, ...

27



Space of H structures, Ay
Consider infinite-dimensional space of structures, J,(x) give coordinates
Ay has hyper-Kahler metric

inherited fibrewise since at each x ¢ M

E7(7) X 1§+

Jou(x) e W = Spin(12)

and W is HK cone over homogenous quaternionic-Kahler (\Wolf) space
(n.b. Ay itself is HK cone by global HT = SU(2) x R*)

28



Triplet of moment maps
Infinitesimally parametrised by V' € I'(E) ~ goiff and acts by
0Jo = Ly J, e MN(TAp)
preserves HK structure giving maps fiq, : Aq — goiff* @ R3
ta(V) = *%ﬂwq /M trJg(LvJy)

functions of coordinates J,(x) € Ay

29



Integrability

integrable H structure < po(V) =0, VYV

for CY gives dw =0o0r dQ2 =10

Moduli space

Since structures related by GDiff are equivalent
My = An /) GDiff = u7*(0) N py *(0) N w3 *(0)/GDiff.

moduli space is HK quotient, actually HK cone over QK space of hyper-
multiplets (as for CY 4hy 1 + 4 or 4hy 1 + 4)

30



Space of V structures, Ay
Consider infinite-dimensional space of structures, K(x) give coordinates
Ay has (affine) special-Kahler metric

(explains K) inherited fibrewise since at each x € M

and P is homogenous special-Kahler space

31



Moment map
Infinitesimally gdiff and acts as
0K =LyK elMN(TAy)

*

preserves SK structure giving maps u : Ay — goiff
u(V) = —%/ trs(K, Ly K)
M

where s(-,-) is E7(7y symplectic invariant

32



Integrability

integrable V structure < pu(V) =0, VYV
for CY gives w A dw = 0 or (dQ)3 1 = 0 Weak!

Moduli space

Since structures related by GDiff are equivalent
My = Ay //GDiff = 4~1(0)/GDiff.

moduli space is symplectic quotient, giving SK space

33



SU(6) structure integrability
Integrable H and V structures not sufficient: need extra condition
ta(V)=pu(V)=0 and Lpgdl = Ll =0

for CY give dw =dQ2 =0

Integrability and generalised intrinsic torsion

e in all cases integrability implies exists torsion-free, compatible D

e integrable SU(6) is equivalent to KS equations [CSW/]

34



Why moment maps?
Reformulate [IA or M-theory as D = 4, A/ = 2 but keep all KK modes

e oo-number of hyper- and vector multiplets: Ay and Ay
e gauged 4d supergravity with G = GDiff

e integrability is just A/ = 2 vacuum conditions of [Hristov, Looyestijn, &
Vandoren; Louis, Smyth & Triendl]

[Grada, Louis & DW: GLSW]
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Other cases

» In M-theory, same H and V strutures, generalises notion of CY x S!

» For type |l or M-theory in D = 5,6 with eight supercharges

Jo 1 SU*(6) hyper-Kahler
Eé(6) _
K : Faa very special real
E Si(5,5) Jo 1 SU(2) x Spin(1,5) hyper-Kahler
~ Spin(5,
°©) Q : Spin(4,5) flat (tensor)

» Extend to AdS backgrounds, generalises Sasaki—Einstein

36



Application : marginal deformations

with Ashmore, Gabella, Grana, Petrini




N = 1 marginal deformations for N = 4 [Leigh & Strassler]
Superpotential deformation
W=eptrZIZIZ* + fytr 2/ 20 7%

o fiix symmetric giving 10 complex marginal deformations

e but beta-function constrains moment map for SU(3) symmetry
P — L/ figm ™ = 0
e only 2 exactly marginal deformation as symplectic quotient
M= {fiic}//SU(3)

long calculation in supergravity [Aharony, Kol & Yankielowicz]

38



General analysis [Green, Komargodski, Seiberg, Tachikawa & Wecht]

1. "Kahler deformation” dual to bulk vector multiplets

2. “superpotential deformation” dual to bulk hypermultiplets

Field theory analysis

e no Kahler deformations
e every marginal superpotential deform. is exactly marginal unless ...

e if global symmetry G (other then U(1)g) then

exactly marginal = marginal /G

39



H and V structures in Eg) X RT generalised geometry
Bulk is D =5, /' = 1 supergravity

H structure, J, G =SU"(6)

G = USp(6)
V structure, K G = Fys

with integrability to AdS

ta(V) = Aa / c(K,K,V)
Jm
LxJo = €apyAgdy LK =0

where c(-,-,-) is Eg(g) cubic invariant

40



Kahler deformations: 0K # 0, 6J, =0

No solution to moment map equation . ..

Superpotential deformations: K =0, §J, # 0
For moment maps no obstruction to linearised solution unless fixed point

e fixed point of GDiff is a gen. Killing vector ie. global symmetry G

e obstruction is moment map of G on linearised problem

41



Summary

e supersymmetry is special holonomy in generalised geometry

e natural extension of CY geometry

Questions/Extensions

e N =1 backgrounds ?v/
e deformation theory: underlying DGLA, cohomology, ... 7V

topological string?: J,, is generalisation of Kahler and
Kodaira/Spencer gravity even to M-theory ...

algebraic geometry?: CFT gives (non-commuatative) algebraic
description . ..
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