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Introduction



Supersymmetric background with no flux

∇mε = 0 =⇒ special holonomy

Classic case: Type II on Calabi–Yau

Geometry encoded in pair of integrable objects

dω = 0 symplectic structure

dΩ = 0 complex structure
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Supersymmetric background with flux (eg type II)?(
∇m ∓ 1

8Hmnpγ
np
)
ε± + 1

16e
φ
∑
i

/F (i)γmε
∓ = 0

γm
(
∇m ∓ 1

24Hmnpγ
np − ∂mφ

)
ε± = 0

What is the geometry?

• special holonomy? analogues of ω and Ω?

• integrability?

• deformations? moduli spaces? . . .

(n.b. no-go means non-compact/bdry for Minkowski)
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G structures

Killing spinors ε±i invariant under

G = Stab({ε±i }) ⊂ SO(6) ⊂ GL(6)

define G -structure and flux gives lack of integrability, eg

G = SU(3)

{
dω ' flux Sp(6,R) structure

dΩ ' flux SL(3,C) structure

• classification, new solutions, . . .

• global questions: G can change, . . . , moduli hard, . . .

[Gauntlett, Martelli, Pakis & DW; Gauntlett & Pakis; . . . ,]

5



Is there some integrable geometry?

supersymmetry⇔ integrable G -structure in generalised geometry
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Generalised Calabi–Yau structures

Generalised tangent space E ' TM ⊕ T ∗M with

Stab({ε±i }) = SU(3)× SU(3) ⊂ SO(6)× SO(6) ⊂ O(6, 6)× R+

gives class of pure NS-NS backgrounds

G = SU(3)× SU(3)

{
dΦ+ = 0 SU(3, 3)+ structure

dΦ− = 0 SU(3, 3)− structure

for generalised spinor Φ± ∈ S±(E ) ' Λ±T ∗M

Φ+ = e−φe−B−iω Φ− = e−φe−B (Ω1 + Ω3 + Ω5)

[Hitchin, Gualtieri; Graña, Minasian, Petrini and Tomasiello]
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Generic N = 2 backgrounds

Warped compactification

ds2 = e2∆ds2(R3,1) + ds2(M)

{
M6 type II

M7 M-theory

• “exceptional generalised geometry” with E7(7)×R+

• spinors in SU(8) vector rep ε = (ε+, ε−)

• so for N = 2 we have

Stab(ε1, ε2) = SU(6) ⊂ SU(8) ⊂ E7(7)×R+
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The problem

Generalised ω and Ω

G = SU(6)

{
??? “H structure”

??? “V structure”

• how do we define structures?

• what are integrability conditions?

[cf. Graña, Louis, Sim & DW; Graña & Orsi; Graña & Triendl ]
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Generalised geometry



O(d , d)× R+ generalised geometry

Unify symmetries of NS-NS sector δg = Lvg , δB = LvB + dλ

• generalised tangent space E ' TM ⊕ T ∗M

• natural O(d , d) metric given VM = v + λ ∈ Γ(E )

η(V ,V ) = vmλm

• infinitesimal symmetries as “generalised Lie derivative ”

LV = diffeo by v + gauge by λ

[Hitchin, Gualtieri ]
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Ed(d)×R+ generalised geometry (d ≤ 7)

Unify all symmetries of fields restricted to Md−1 in type II

δg = Lvg δC± = LvC± + dλ∓ + . . .

δB = LvB + dλ δB̃ = Lv B̃ + dλ̃+ . . .

gives generalised tangent space

E ' TM ⊕ T ∗M ⊕ Λ5T ∗M ⊕ Λ±T ∗M ⊕ (T ∗M ⊗ Λ6T ∗M)

VM = (vm, λm, λ̃m1···5 , λ
±, . . . )

Transforms under Ed(d)×R+ rep with R+ weight (detT ∗M)1/(9−d)

[Hull; Pacheco & DW ]
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In M-theory

E ' TM ⊕ Λ2T ∗M ⊕ Λ5T ∗M ⊕ (T ∗M ⊗ Λ7T ∗M)

VM = (vm, λm, λ̃m1···5 , . . . )

Generalised Lie derivative

LV = diffeo + gauge transf = V · ∂ − (∂ ×ad V )

where type IIA, IIB and M-theory distinguished by

∂M f = (∂mf , 0, 0, . . . ) ∈ E∗

[Coimbra, S-Constable & DW ]
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Generalised tensors: Ed(d)×R+ representations

For example, adjoint includes potentials

ad F̃ ' R⊕ (TM ⊗ T ∗M)⊕ Λ2T ∗M ⊕ Λ2TM

⊕ Λ6TM ⊕ Λ6T ∗M ⊕ Λ±TM ⊕ Λ±T ∗M,

AM
N = (. . . ,Bmn, . . . , B̃m1...m6 , . . . ,C

±)

Gives “twisting” of generalised vector and adjoint

V = eB+B̃+C±
Ṽ R = eB+B̃+C±

R̃ e−B−B̃−C±
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Generalised geometry and supergravity

Unified description of supergravity on M

• Generalised metric

GMN invariant under max compact Hd ⊂ Ed(d)×R+

equivalent to {g , φ,B, B̃,C±,∆}

• Generalised Levi–Civita connection DMV N = ∂MV N + ΩM
N
PV

P

exists gen. torsion-free connection D with DG = 0

but not unique
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• Analogue of Ricci tensor is unique gives bosonic action

SB =

∫
M

|volG |R eom = gen. Ricci flat

where |volG | =
√
g e2∆

• Leading-order fermions and supersymmetry

δψ = D g ε δρ = /Dε etc

unique operators, full theory has local SU(8) invariance

[CSW ] (c.f [Berman & Perry,. . . ] and [Siegel; Hohm, Kwak & Zweibach; Jeon, Lee &

Park] for O(d , d))
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H and V structures



H and V structures

Generalised structures in E7(7)×R+

H structure G = Spin∗(12) “hypermultiplets”

V structure G = E6(2) “vector-multiplets”

[Graña, Louis, Sim & DW ]

Invariant tensor for V structure

Generalised vector in 561

K ∈ Γ(E ) such that q(K ) > 0

where q is E7(7) quartic invariant, determines second vector K̂
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Invariant tensor for H structure

Weighted tensors in 1331

Jα(x) ∈ Γ(ad F̃ ⊗ (detT ∗M)1/2)

forming highest weight su2 algebra

[Jα, Jβ] = 2κεαβγJγ

tr JαJβ = −κ2δαβ

where κ2 ∈ Γ(detT ∗M)
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Compatible structures and SU(6)

The H and V structures are compatible if

Jα · K = 0
√
q(K ) = 1

2κ
2

analogues of ω ∧ Ω = 0 and 1
6ω

3 = 1
8 iΩ ∧ Ω̄

the compatible pair {Jα,K} define an SU(6) structure

Jα and K come from spinor bilinears.
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Example: CY in IIA

J+ = 1
2κΩ− 1

2κΩ]

J3 = 1
2κ I + 1

2κ vol6 − 1
2κ vol]6

ad F̃ ' (TM ⊗ T∗M)

⊕ Λ2T∗M ⊕ Λ2TM

⊕ R⊕ Λ6TM ⊕ Λ6T∗M

⊕ Λ−TM ⊕ Λ−T∗M,

where κ2 = vol6 = 1
8 iΩ ∧ Ω̄ and I is complex structure

K + iK̂ = e−iω E ' TM ⊕ T∗M ⊕ Λ+T∗M

⊕ Λ5T∗M ⊕ (T∗M ⊗ Λ6T∗M)
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Example: CY in IIB

J+ = 1
2κ e

−iω − 1
2κ e

−iω]

J3 = 1
2κω + 1

2κω
] − 1

2κ vol6 − 1
2κ vol]6

ad F̃ ' (TM ⊗ T∗M)

⊕ Λ2T∗M ⊕ Λ2TM

⊕ R⊕ Λ6TM ⊕ Λ6T∗M

⊕ Λ+TM ⊕ Λ+T∗M,

where κ2 = vol6 = 1
6ω

3

K + iK̂ = Ω
E ' TM ⊕ T∗M ⊕ Λ−T∗M

⊕ Λ5T∗M ⊕ (T∗M ⊗ Λ6T∗M)
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Example: D3-branes in IIB

Smeared branes on MSU(2) × R2

ds2 = e2∆ds2(R3,1) + ds̃2(MSU(2)) + ζ2
1 + ζ2

2 ,

with integrability

d(e∆ζi ) = 0, d(e2∆ωα) = 0, d∆ = − 1
4 ? F ,

where ωα triplet of two-forms defining SU(2) structure. (Can also add

anti-self-dual three-form flux.)
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The H and V structures are

J̃α = − 1
2κ Iα −

1
2κωα ∧ ζ1 ∧ ζ2

+ 1
2κω

]
α ∧ ζ

]
1 ∧ ζ

]
2,

ad F̃ ' (TM ⊗ T∗M)

⊕ Λ2T∗M ⊕ Λ2TM

⊕ R⊕ Λ6TM ⊕ Λ6T∗M

⊕ Λ+TM ⊕ Λ+T∗M,

where κ2 = e2∆ vol6 and Iα are complex structures

K̃ + i ˜̂K = nie∆(ζ1 − iζ2)

+ inie∆(ζ1 − iζ2) ∧ vol4

E ' TM ⊕ T∗M ⊕ Λ−T∗M

⊕ Λ5T∗M ⊕ (T∗M ⊗ Λ6T∗M)

where ni = (i, 1) is S-duality doublet, then twist by C4

K = eC4K̃ Jα = eC4 J̃α e
C4

24



Generic form?

Complicated but

• interpolates between symplectic, complex, product and hyper-Kähler

structures

• can construct from bilinears and twisting
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Integrability



GDiff and moment maps

Symmetries of supergravity give generalised diffeomorphisms

GDiff = Diff n gauge transf.

acts on the spaces of H and V structures

integrability ⇔ vanishing moment map

Ubiquitous in supersymmetry equations

• flat connections on Riemann surface (Atiyah–Bott)

• Hermitian Yang–Mills (Donaldson-Uhlenbeck-Yau)

• Hitchin equations, Kähler–Einstein, . . .
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Space of H structures, AH

Consider infinite-dimensional space of structures, Jα(x) give coordinates

AH has hyper-Kähler metric

inherited fibrewise since at each x ∈ M

Jα(x) ∈W =
E7(7)×R+

Spin∗(12)

and W is HK cone over homogenous quaternionic-Kähler (Wolf) space

(n.b. AH itself is HK cone by global H+ = SU(2)× R+)
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Triplet of moment maps

Infinitesimally parametrised by V ∈ Γ(E ) ' gdiff and acts by

δJα = LV Jα ∈ Γ(TAH)

preserves HK structure giving maps µα : AH → gdiff∗ ⊗ R3

µα(V ) = − 1
2εαβγ

∫
M

tr Jβ(LV Jγ)

functions of coordinates Jα(x) ∈ AH
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Integrability

integrable H structure ⇔ µα(V ) = 0, ∀V

for CY gives dω = 0 or dΩ = 0

Moduli space

Since structures related by GDiff are equivalent

MH = AH///GDiff = µ−1
1 (0) ∩ µ−1

2 (0) ∩ µ−1
3 (0)/GDiff.

moduli space is HK quotient, actually HK cone over QK space of hyper-

multiplets (as for CY 4h1,1 + 4 or 4h2,1 + 4)
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Space of V structures, AV

Consider infinite-dimensional space of structures, K (x) give coordinates

AH has (affine) special-Kähler metric

(explains K̂ ) inherited fibrewise since at each x ∈ M

K (x) ∈ P =
E7(7)×R+

E6(2)

and P is homogenous special-Kähler space
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Moment map

Infinitesimally gdiff and acts as

δK = LVK ∈ Γ(TAV)

preserves SK structure giving maps µ : AV → gdiff∗

µ(V ) = − 1
2

∫
M

tr s(K , LVK )

where s(·, ·) is E7(7) symplectic invariant
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Integrability

integrable V structure ⇔ µ(V ) = 0, ∀V

for CY gives ω ∧ dω = 0 or (dΩ)3,1 = 0 Weak!

Moduli space

Since structures related by GDiff are equivalent

MH = AH//GDiff = µ−1(0)/GDiff.

moduli space is symplectic quotient, giving SK space
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SU(6) structure integrability

Integrable H and V structures not sufficient: need extra condition

µα(V ) = µ(V ) = 0 and LKJα = LK̂Jα = 0

for CY give dω = dΩ = 0

Integrability and generalised intrinsic torsion

• in all cases integrability implies exists torsion-free, compatible D

• integrable SU(6) is equivalent to KS equations [CSW ]
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Why moment maps?

Reformulate IIA or M-theory as D = 4, N = 2 but keep all KK modes

• ∞-number of hyper- and vector multiplets: AH and AV

• gauged 4d supergravity with G = GDiff

• integrability is just N = 2 vacuum conditions of [Hristov, Looyestijn, &

Vandoren; Louis, Smyth & Triendl ]

[Graña, Louis & DW; GLSW ]
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Other cases

I In M-theory, same H and V strutures, generalises notion of CY× S1

I For type II or M-theory in D = 5, 6 with eight supercharges

E6(6)

{
Jα : SU∗(6) hyper-Kähler

K : F4(4) very special real

E5(5) ' Spin(5, 5)

{
Jα : SU(2)× Spin(1, 5) hyper-Kähler

Q : Spin(4, 5) flat (tensor)

I Extend to AdS backgrounds, generalises Sasaki–Einstein
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Application : marginal deformations

with Ashmore, Gabella, Graña, Petrini



N = 1 marginal deformations for N = 4 [Leigh & Strassler ]

Superpotential deformation

W = εijk trZ iZ jZ k + fijk trZ iZ jZ k

• fijk symmetric giving 10 complex marginal deformations

• but beta-function constrains moment map for SU(3) symmetry

fikl f̄
jkl − 1

3δ
j
i fklm f̄

klm = 0

• only 2 exactly marginal deformation as symplectic quotient

M̃ = {fijk}//SU(3)

long calculation in supergravity [Aharony, Kol & Yankielowicz]
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General analysis [Green, Komargodski, Seiberg, Tachikawa & Wecht]

1. “Kähler deformation” dual to bulk vector multiplets

2. “superpotential deformation” dual to bulk hypermultiplets

Field theory analysis

• no Kähler deformations

• every marginal superpotential deform. is exactly marginal unless . . .

• if global symmetry G (other then U(1)R) then

exactly marginal = marginal//G
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H and V structures in E6(6) × R+ generalised geometry

Bulk is D = 5, N = 1 supergravity

H structure, Jα G = SU∗(6)

V structure, K G = F4(4)

}
G = USp(6)

with integrability to AdS

µα(V ) = λα

∫
M

c(K ,K ,V )

LKJα = εαβγλβJγ LKK = 0

where c(·, ·, ·) is E6(6) cubic invariant
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Kähler deformations: δK 6= 0, δJα = 0

No solution to moment map equation . . .

Superpotential deformations: δK = 0, δJα 6= 0

For moment maps no obstruction to linearised solution unless fixed point

• fixed point of GDiff is a gen. Killing vector ie. global symmetry G

• obstruction is moment map of G on linearised problem

41



Summary

• supersymmetry is special holonomy in generalised geometry

• natural extension of CY geometry

Questions/Extensions

• N = 1 backgrounds ?X

• deformation theory: underlying DGLA, cohomology, . . . ?X

• topological string?: Jα is generalisation of Kähler and

Kodaira/Spencer gravity even to M-theory . . .

• algebraic geometry?: CFT gives (non-commuatative) algebraic

description . . .
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