#### Probing Light Stops with Stoponium

# SLAC National Accelerator Lab, Stanford Univ

2016 High1 Workshop

1504.01740 with Brian Batell

#### Stop Searches & Blind Spots

1. Direct searches at the LHC

2. Indirect constraints

#### Stop Searches & Blind Spots

#### 1. Direct searches at the LHC



#### stop NLSP, Bino LSP

#### Sunghoon Jung, SLAC

#### Stop Searches & Blind Spots



After all, no indirect constraints when the coupling vanishes.

#### Stoponium can cover both

SJ, Batell



Highly complementary to both direct and indirect constraints.

## Stoponium

Stoponium: The stop—anti-stop QCD bound state. (1S0 quantum number equals to SM Higgs'.)



Produced just below the stop-pair threshold.

$$\sigma(pp \to \eta_{\tilde{t}_1}) \propto \alpha_S^5$$

#### Annihilation makes it special

 $\eta_{\tilde{t}} \rightarrow \gamma \gamma, Z \gamma, WW, ZZ, hh, \cdots$ 



- Clean resonance signal. (high sensitivity, mass measurable)
- Independent on stop decay modes.
  (but depends on different parameters and assumptions)
- Another remarkable property that makes it highly complementary to existing searches...

# Diphoton and Zgamma

Assuming the stoponium forms and annihilates...



ideal(maximal) BRs ~ 0.4%, 1%

#### Indirect + stoponium



Complementarity!



#### Complementarity!



#### Indirect + stoponium



#### Common lore

Relevant when no unsurpassed 2-body stop decays...

In green and blue regions, the top squark hadronizes before it decays.



#### Formation condition

If the stop decay is slow enough compared to the • binding time scale. 2 Log<sub>10</sub>[ [ ] [GeV] -2  $t_1$ stop NLSP, Bino LSP  $\eta_{\rm c}$ 3-body 2-body decay stop decay -6 (NB: the toponium has -8⊔ 100 150 200 250 300 not been observed!)  $m_{\tilde{t}_1}$  [GeV]

## Annihilation condition

- Annihilation is what makes it a resonance peak.
- Individual stop decay should be slower than stoponium annihilation.



## Annihilation condition

- Annihilation is what makes it a resonance peak.
- Individual stop decay should be slower than stoponium annihilation.



#### New combined limits – RPC stop-bino



# New combined limits – RPV stop-UDD



#### Uncertainties

~4.0 factor uncertainty from:

Non-perturbative potential models: Coulomb vs. charmonium-inspired (vs. lattice)

~1.5 factor uncertainty from:

Not only ground state, but excited S-wave states can also contribute.

#### Summary

- Highly complementary to existing probes of direct collider and indirect Higgs precision.
- Clean/unambiguous resonance searches: diphoton, Zgamma, ZZ, hh, ttbar...
- Applicable to various models.
- Uncertainties from potential models and excited states shall be improved (lattice did some).

#### ZZ, WW, hh are weaker

Assuming the stoponium forms and annihilates...



#### ideal(maximal) BRs